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Abstract. The Moderate Resolution Imaging Spectrora-
diometer Vegetation Continuous Fields (MODIS VCF) Earth
observation product is widely used to estimate forest cover
changes and to parameterize vegetation and Earth system
models and as a reference for validation or calibration where
field data are limited. However, although limited independent
validations of MODIS VCF have shown that MODIS VCF’s
accuracy decreases when estimating tree cover in sparsely
vegetated areas such as tropical savannas, no study has yet
assessed the impact this may have on the VCF-based tree
cover data used by many in their research. Using tropical
forest and savanna inventory data collected by the Tropical
Biomes in Transition (TROBIT) project, we produce a series

of calibration scenarios that take into account (i) the spatial
disparity between the in situ plot size and the MODIS VCF
pixel and (ii) the trees’ spatial distribution within in situ plots.
To identify if a disparity also exists in products trained using
VCF, we used a similar approach to evaluate the finer-scale
Landsat Tree Canopy Cover (TCC) product. For MODIS
VCF, we then applied our calibrations to areas identified as
forest or savanna in the International Geosphere-Biosphere
Programme (IGBP) land cover mapping product. All IGBP
classes identified as “savanna” show substantial increases in
cover after calibration, indicating that the most recent version
of MODIS VCF consistently underestimates woody cover in
tropical savannas. We also found that these biases are prop-
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agated in the finer-scale Landsat TCC. Our scenarios sug-
gest that MODIS VCF accuracy can vary substantially, with
tree cover underestimation ranging from 0 % to 29 %. Mod-
els that use MODIS VCF as their benchmark could therefore
be underestimating the carbon uptake in forest–savanna ar-
eas and misrepresenting forest–savanna dynamics. Because
of the limited in situ plot number, our results are designed
to be used as an indicator of where the product is potentially
more or less reliable. Until more in situ data are available
to produce more accurate calibrations, we recommend cau-
tion when using uncalibrated MODIS VCF data in tropical
savannas.

1 Introduction

Tree cover values derived from Earth observation (EO) data
form a fundamental part of ecological research. They are
used to estimate forest cover change, biomass, and carbon
stocks (Bastin et al., 2019; Giriraj et al., 2017; Saatchi et
al., 2011; Song et al., 2014) and to help identify key areas
for conservation efforts (Miles et al., 2006) and as a basis
for climatic and vegetation modelling and model evaluation
(Brovkin et al., 2013; Burton et al., 2019; Kelley et al., 2013).
All this research, in turn, plays a vital role in informing lo-
cal, regional, and global environmental policies (Harris et al.,
2012). As such, an EO product’s accuracy is important to
consider, as any errors in the initial tree cover estimate can
be further compounded in downstream work.

Only a handful of EO products provide global maps of
percent tree cover or forest and shrub cover distributions
(Bartholomé and Belward, 2005; Bicheron et al., 2008), and
fewer still provide information stretching over at least a
decade (Friedl et al., 2002; Hansen et al., 2003; Sexton et
al., 2013; DiMiceli, 2017). Of these, one of the products
most widely used in ecological modelling is the Moderate
Resolution Imaging Spectroradiometer Vegetation Continu-
ous Fields (MODIS VCF) product (DiMiceli, 2017). MODIS
VCF is a yearly product that provides percent tree cover glob-
ally at a spatial resolution of 250 m. The most recent iteration
(Collection 6) is available for the years 2000 through to 2020.
Its quantitative measure of woody cover is recorded annually
and is described as a percentage of ground cover, making it
particularly suited for use in evaluating dynamic global mod-
els (Lasslop et al., 2018; Rabin et al., 2017), as a proxy for in
situ data that are harder to collect (Kelley et al., 2019), and to
help define parameters for calculating global tree restoration
potential (Bastin et al., 2019). MODIS VCF is also used to
train alternative products, such as the newer finer-scale Land-
sat Tree Canopy Cover (TCC) product (Sexton et al., 2013).

As the VCF product has progressed from Collection 1 to
its current Collection 6, several validations using in situ field
data or higher-resolution remotely sensed data as a refer-
ence measurement have been carried out. These have been

few and limited to sites within a biome (Montesano et al.,
2009), a region (Hansen et al., 2005; White et al., 2005), or
within a country (Gao et al., 2014; Sexton et al., 2013). The
MODIS VCF product evaluated was the most recent collec-
tion available at the time (i.e. Collection 3: Hansen et al.,
2005; White et al., 2005; Collection 4: Montesano et al.,
2009; Collection 5: Gao et al., 2015; Sexton et al., 2013). To
our knowledge, no such independent validation experiment
has yet been conducted on Collection 6, which produces tree
cover estimates in the same manner as Collection 5 but with
improvements made to the upstream inputs to enhance its ac-
curacy (DiMiceli, 2017). Likewise, validation of the finer-
scale TCC product has been limited to its penultimate ver-
sion and to the taiga–tundra circumpolar region (Montesano
et al., 2016).

The validations found that MODIS VCF may be less suit-
able for estimating tree cover in sparsely vegetated areas.
Huang and Siegert (2006) noted that MODIS VCF classi-
fied large areas of land as “bare” where their land cover clas-
sification system identified it as sparsely vegetated. Mon-
tesano et al. (2009) found that MODIS VCF data (Collec-
tion 4) overestimated cover in areas of low tree cover in
taiga–tundra transition zones. Sexton et al. (2013) found that
the Collection 5 product overestimated cover in areas of low
cover (below 20 %) and underestimated in areas of higher
tree cover, while Gao et al. (2015) found that MODIS VCF
can only partially discriminate between tropical forest and
non-forest, struggling in areas that have greater heterogene-
ity. Similarly to MODIS VCF (Montesano et al., 2009), Mon-
tesano et al. (2016) revealed an overestimation of the taiga–
tundra low tree covers in the finer-scale Landsat TCC, sug-
gesting that using VCF as training has propagated these over-
estimations into the higher-resolution product. What is clear
from the history of these validation and comparison experi-
ments is that MODIS VCF has accuracy issues in areas with
low woody-vegetation cover, which has implications when
its tree cover estimates are treated as accurately representa-
tive of real-world conditions. Failure to account for VCF’s
difficulty in estimating low woody covers can, therefore, lead
to miscalibrated models and estimations that do not reflect
real-world conditions. This, in turn, has knock-on effects on
environmental policymaking, conservation efforts, and future
ecological research, especially in areas with vegetation cover
types that are most prone to error.

Tropical savannas have woody covers that fall within the
range particularly affected by the reported MODIS VCF er-
rors. A large proportion of these savannas can be found in
tropical developing countries (Boval and Dixon, 2012) and
are predicted to be home to half of the world’s population by
2050 (Archer et al., 2020). Tropical savannas are therefore
highly vulnerable to anthropogenic change. In the face of a
growing population, land fragmentation, and changing cli-
mate, a savanna’s ability to maintain robust ecosystem func-
tions is directly linked to the amount of woody cover present
(Sankaran et al., 2006). As a result, the ability to accurately
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monitor the state, dynamics, and woody cover trends of trop-
ical savannas is a vital part of understanding how and why sa-
vannas are changing in the tropics (Harris et al., 2012; Miles
et al., 2006), while also improving modelled climate projec-
tions and vegetation dynamics for this complex biome.

In this study, we evaluate MODIS VCF Collection 6 in
tropical savannas and forest areas by comparing VCF’s tree
cover percentage to corresponding field data. Similarly, we
evaluate Landsat TCC (version 4) to explore if, when VCF
is used as training, VCF biases are propagated. We then, for
MODIS VCF, characterize the observed bias in woody cov-
ers across both savanna and forest ecosystems and apply our
calibration across the tropics to highlight the regions most
likely affected by these inaccuracies. We finish by discussing
the implications the uncovered biases may have on tropical
vegetation and terrestrial biogeochemical modelling.

2 Methods

2.1 EO products and field data

We used the MODIS VCF Collection 6 product (250 m
spatial resolution, DiMiceli, 2017) with tree cover values
averaged across the years 2006 through to 2009 to reflect the
range of the field data collection period. MODIS VCF was
downloaded using the MODIS R package (Hijmans, 2017)
in R 3.5.2 (R Core Team, 2018). We used the 2005 and 2010
30 m Landsat TCC version 4 product (https://lcluc.umd.edu/
metadata/global-30m-landsat-tree-canopy-version-4, last
access: 31 October 2021) and worked with the 2005 and 2010
average values. The product was downloaded manually from
https://e4ftl01.cr.usgs.gov/MEASURES/GFCC30TC.003/
(last access: 31 October 2021).

The in situ field data were sourced from the “Trop-
ical Biomes in Transition” project (TROBIT) (https://
www.forestplots.net, last access: 31 October 2021, Torello-
Raventos et al., 2013) and accessed via the https://www.
forestplots.net database (Lopez-Gonzalez et al., 2011, 2009).
The data we used include the corner locations and the canopy
area index (CAI) values for 17 forest and 31 savanna sites
distributed across Australia, Brazil, Bolivia, Cameroon, and
Ghana (Fig. 1 and Table A1 in the Appendix; Fig. 2 in
Torello-Raventos et al., 2013). The TROBIT field campaigns
were carried out over a 3-year period, from 2006 to 2009,
and the field plots used in this study are 1 ha in size except
for BFI-01 (0.5 ha), BFI-02 (0.5 ha), BFI-03 (0.5 ha), CTC-
01 (0.93 ha), and VCR-01 (0.6 ha).

All the sites fall within the tropics, that is, within 23.5◦

north and south of the Equator and were selected in re-
gions where savannas and forests were in close proximity
and within ecotones or “zones of tension”. As such, the sites
sampled show a large variation in physiognomy and edaphic
and climatic conditions (Table S1 in the Supplement; Vee-
nendaal et al., 2015).

The classification of the TROBIT sites as either “forest” or
“savanna” is based on the parameters described in Torello-
Raventos et al. (2013) and Veenendaal et al. (2015). A sa-
vanna is a natural land cover that is not a forest, bare ground,
or body of water. Forest is defined as woody vegetation with
an average tree height of or exceeding 6 m and a canopy area
index (CAI) value of at least 0.3 for open forests and 0.7 for
forests. In addition, floristic differences (i.e. dominance of
savanna species) are used to differentiate forests from taller-
growing savannas that have similar CAIs and tree heights
(see Fig. 9 of Torello-Raventos et al., 2013).

There is some ambiguity in how savannas and “grass-
lands” are defined. Some modelling-based research treat the
two biomes as different (Whitley et al., 2017), while studies
based on plant functional traits group them together (Solo-
fondranohatra et al., 2018; White et al., 2000). As there is
some concern that MODIS VCF will struggle to pick up
woody cover in areas with really sparse vegetation, in this
paper we decided to treat grasslands as part of the savanna
domain.

2.2 Converting in situ canopy area index to MODIS
VCF–Landsat TCC percent tree cover

CAI is defined as the sum of the projected areas of individ-
ual tree crowns divided by the ground area. In the TRO-
BIT project (Torello-Raventos et al., 2013; Veenendaal et
al., 2015), plot-wide CAI is made up of the sum of the
upper-stratum, mid-stratum, and subordinate-stratum crown
areas. Membership to a stratum is determined by the tree’s
dbh (diameter at breast height; upper stratum: dbh> 10 cm,
mid stratum: 2.5 cm< dbh< 10 cm, and subordinate stratum:
dbh< 2.5 cm; height> 1.5 m). About 50 trees per stratum
per plot were measured to derive plot-specific allometric
relations between stem diameter and crown area (Supple-
ment B of Torello-Raventos et al., 2013). These were then
applied to the whole plot to establish plot-level CAI. For the
allometric relationships, tree crowns were treated as circles,
and the individual tree projected crown area was determined
using the average of crown radii measured along the four car-
dinal points (i.e. from the centre of the stem to the distance
furthest from the stem).

CAI values do not account for within-site tree canopy dis-
tribution patterns and the overlap between individual tree
canopies. We account for this by converting each CAI value
into a probability distribution function incorporating the fol-
lowing two extreme scenarios: “enforced overlap”, where the
location probability of individual canopies increases linearly
from 0 to 1 across a site, and “unenforced overlap”, where
individual canopies follow a uniform random distribution
pattern and canopy overlap is not purposefully introduced
(Fig. 2). We repeated this 1000 times per CAI measurement
to determine the probability distribution of expected CAI for
each field plot.
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Figure 1. Location of sampling sites in Africa, Australia, and South America from the TROBIT project (based on Fig. 2 of Torello-Raventos
et al., 2013) shown in MODIS VCF (DiMiceli, 2017). Of the 63 field sites, only the 48 sites with available GPS coordinates were selected
(https://www.forestplots.net).

Unlike CAI, which is the fraction of ground covered by
tree crowns, the percent tree cover value from MODIS VCF
(and so Landsat TCC) is defined as “the portion of the sky-
light orthogonal to the surface which is intercepted by trees”
(Hansen et al., 2002). To make MODIS VCF and Landsat
TCC comparable to tree cover derived from TROBIT plot
CAIs, we divided these product values by 0.8 as suggested
by Hansen et al. (2002). This is also the standard approach in
most modelling studies using VCF (e.g. Lasslop et al., 2020;
Kelley et al., 2013; Burton et al., 2019). The 0.8 value can
be thought of as a gap correction factor (GCF) that accounts
for within-canopy gaps. Although the GCF has been shown
to vary with vegetation type (Lloyd et al., 2008; 0.34–0.60)
and crown cover (Tang et al., 2019b; 0.70–0.96), we opted
to use 0.8, as we found that it yielded more conservative re-
sults compared to a variable GCF. It also avoided introducing
additional parameters into our analysis.

Next, to account for the difference in size between the
MODIS VCF pixel (250 m× 250 m) and the smaller field
plot size (100 m× 100 m), we calculated the possible percent
tree cover an area the size of a TROBIT field plot could have,
given the MODIS VCF percent tree cover for a MODIS-sized
pixel. This was done for two extreme scenarios: “enforced
clumping,” where all the tree cover for the given MODIS
VCF value is forcibly “clumped” on one side of the pixel,
or “unenforced clumping”, where “clumping” is not en-
forced and tree cover is distributed randomly within the pixel
(Fig. 3). The clumping scenarios introduce possible varia-
tions in percent cover due to the area and location mismatch
between a TROBIT field plot and a MODIS pixel. A proba-
bility distribution was generated for each MODIS VCF pixel
by calculating percent tree cover values for 1000 samples
(100 m× 100 m) randomly placed within the 250 m× 250 m
MODIS VCF pixel.

For Landsat TCC, where the Landsat TCC pixels
(30 m× 30 m) are smaller than the TROBIT field sites, we
calculated a TCC percent tree cover to match the TROBIT

Figure 2. Visual representation of the effects of enforcing overlap
within a (100 m× 100 m) TROBIT site with a given canopy area
index (CAI). (a) Overlap is not enforced, and individual crowns
follow a uniform random distribution. (b) Overlap is enforced by
linearly increasing the probability of a canopy being located more
on one side of the site (i.e. here the right side of the site) than the
other. This results in tree canopies “overlapping” to a greater extent,
which affects how accurately CAI represents actual canopy cover.

field site size by summing the percent tree cover within the
TCC pixel part found inside the TROBIT field site and then
dividing the sum by the TROBIT site area. As TROBIT
site orientation was not recorded, we randomized the angle
between the TROBIT site and TCC pixel grid for each of
the 1000 samples when generating the probability distribu-
tion. Enforced clumping was performed as per MODIS VCF
(Fig. 3), with the direction of clumping randomized.

Biogeosciences, 19, 1377–1394, 2022 https://doi.org/10.5194/bg-19-1377-2022
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Figure 3. (a, c) Example of the effects of unenforced and enforced
clumping in a 250 m× 250 m MODIS VCF pixel with 50 % tree
cover. Clumping all the cover (green) to one side of the pixel (c)
affects the average canopy cover value of a 100 m× 100 m sized
TROBIT site (black boxes). (b, d) Example of the effects of unen-
forced and enforced clumping on 30 m× 30 m Landsat TCC pixels
with a mix of tree cover (green) and non-tree cover (brown). White
dotted lines are TCC pixel boundaries. Clumping all the cover to
one side of the pixel (d) affects the average canopy cover value of a
100 m× 100 m sized TROBIT site (black boxes).

2.3 Calculating uncertainty under different
clumping–overlap scenarios

We compared both MODIS VCF and Landsat TCC with
TROBIT under four different scenarios: (1) unenforced over-
lap and clumping, (2) enforced overlap and unenforced
clumping, (3) unenforced overlap and enforced clumping,
and (4) enforced overlap and clumping. Comparisons were
conducted by fitting the following logit function:

logit (Pixel)= C0 + 1 × log(Cτ1/(1−Cτ2)), (1)

where C0, 1, τ1, and τ2 are optimized parameters and
Pixel and C are the MODIS VCF–Landsat TCC pixel (post-
conversion as described in Sect. 2.2) and TROBIT site prob-
ability distributions, respectively. This is similar to a stan-
dard linear regression of logit-transformed data, account-
ing for maximum and minimum bounds of 0 %–100 % tree
cover, with τ1 and τ2 allowing for a non-symmetric trans-
formation of tree cover. To account for the probability den-
sity of each point, we inferred the parameters in Eq. (1) us-
ing a total least-squares Bayesian inference technique using a
Metropolis–Hastings Markov chain Monte Carlo step. Priors
were uninformed but physically bounded (i.e. 1, τ1, τ2 > 0)

to assume an increasing relationship between MODIS VCF–
Landsat TCC and C. Equation (1) allowed us to assume nor-
mally distributed model errors, thus describing our condi-
tional probability of observations for a given parameter com-
bination by a normal distribution (Gelman et al., 2013). Each
combination was run over 10 chains, with 1000 warm-up it-
erations and 10 000 sampling iterations. Optimization was
performed using the rstan 2.19.2 (Stan Development Team,
2019) package in R 3.5.2 (R Core Team, 2018). Our op-
timization accounts for potential errors in TROBIT cover,
which includes those caused by the allometric construction
of the CAI, provided that the errors are unbiased and re-
main roughly consistent across sites (Gelman et al., 2013).
As the TROBIT plots have relatively small total errors asso-
ciated with the allometric relationships (Table B1 in Torello-
Raventos et al., 2013), systematic errors are unlikely to affect
our results.

2.4 Mapping MODIS VCF uncertainty across the
tropics

We evaluated the impact of the MODIS VCF biases inferred
from these regression equations across the tropics by in-
verting our calculation of MODIS VCF bias (Fig. A1) as
follows: first, the inverse (i.e. solving for C) of Eq. (1)
was applied to MODIS VCF values after conversion to a
100 m× 100 m pixel size grid (matching the field site area);
then this calibrated value was translated back to the origi-
nal 250 m× 250 m VCF pixel size. As the inverse of Eq. (1)
has no analytical solution, we found the rounded percent
value of C that minimizes the absolute difference between
the left- and right-hand side of the equation. For computa-
tional feasibility, we constructed maps of the tropics with
calibrated MODIS VCF values (Fig. A2) by randomly sam-
pling 5 iterations from each of our 10 optimization chains
(50 in total) and masking out pixels with cover types not con-
sidered forest or savanna in the 500 m MODIS Land Cover
Type (MCD12Q1 – Collection 6) (Sulla-Menashe and Friedl,
2018).

We then used the MCD12Q1 product to identify the ar-
eas of forest and savanna across the tropics in the MODIS
VCF product. MCD12Q1 is widely used by the global land
surface modelling community (e.g. Sellar et al., 2019; Wilt-
shire et al., 2021) and describes land cover in terms of 17
global land cover classes as per the International Geosphere-
Biosphere Programme (IGBP, Table 3 in Sulla-Menashe and
Friedl, 2018). The product is based on the same spectro-
radiometer (MODIS) and temporal resolution as the VCF
product. Referring to the definition of savanna of Veenendaal
et al. (2015), the following land cover classes were chosen
to represent savanna: closed shrublands, open shrublands,
woody savanna, savanna, and grassland; meanwhile forest
encompasses the following: evergreen needleleaf forests, ev-
ergreen broadleaf forests, deciduous needleleaf forests, de-
ciduous broadleaf forests, and mixed forests. We subset
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MCD12Q1 to the tropical zone between 30◦ north and south
of the Equator and took the median class for the 2006 to 2009
period, matching the field data collection period.

For a more detailed land-cover-specific evaluation, we
extracted the calibrated 250 m MODIS VCF pixel values
for each corresponding 500 m MCD12Q1 pixel to construct
land-cover-specific MODIS VCF tree cover frequency distri-
butions (Fig. A3). Our tree cover calibration by cover type
for the four clumping–overlap regression combinations was
then calculated by multiplying each cover type MODIS VCF
frequency distribution (Fig. A3) with curves representing the
median, 5 %, and 95 % confidence lines of the calibration
equation ensembles.

3 Results

3.1 Comparing MODIS VCF and Landsat TCC to tree
cover from TROBIT field sites

MODIS VCF underestimates tree cover within the 19 %
to 81 % range across all four combinations of enforced–
unenforced overlap and clumping (black line, Fig. 4). Be-
low 12 %, MODIS VCF tree cover values do not significantly
disagree with TROBIT field data and may instead be overes-
timating tree cover (50 % confidence, dashed line, Fig. 4).
A similar pattern is seen when tree cover exceeds 84 %:
MODIS VCF does not differ significantly from TROBIT
when there is enforced overlap (i.e. when tree canopies are
clustering towards one side increasing the degree of canopy
overlap, Fig. 4 right) but may underestimate tree cover when
overlap is not enforced (i.e. tree canopies are spaced ran-
domly within the site, Fig. 4 left).

There is a clear difference in how accurately MODIS VCF
estimates tree cover in forested areas (in green, Fig. 4) as
opposed to areas identified as savannas (in orange, Fig. 4).
In savanna sites, MODIS VCF significantly and consistently
underestimates tree cover regardless of the amount of over-
lap and clumping. Significant underestimation (at 95 % con-
fidence) occurs when in situ tree cover exceeds 19 %–21 %
(without enforced clumping) or 11 %–12 % (with enforced
clumping). In forest sites, MODIS VCF does not show the
same pattern of systematic underestimation. Divergence does
occur at high covers, depending on the enforcement of over-
lap or clumping. MODIS VCF underestimates tree cover
where tree cover exceeds 84 % (at the 95 % confidence inter-
val) when neither overlap nor clumping is enforced and over-
estimates where tree cover exceeds 78 % (at 5 % confidence
interval) when both overlap and clumping are enforced.

Similar patterns can be observed with Landsat TCC (black
line, Fig. 5). There is a significant underestimation of tree
cover in the lower cover ranges up to 59 % when there is
enforced overlap and up to 82 % when overlap is not en-
forced. In savanna sites (orange line, Fig. 5) the underesti-
mation (at 95 % confidence) is significant and consistent for

covers below 75 %–80 % (without enforced overlap) or be-
low 52 %–60 % (with enforced overlap). In forest sites (green
line, Fig. 5) there is no systematic difference.

3.2 Global estimates of post-calibration change in
tropical tree cover

We assessed the impact of VCF’s underestimation of inter-
mediate tree covers across the tropics (IGBP forest and sa-
vanna land cover classes), using a calibration based on the
combined forest and savanna sites (black curve, Fig. 4) in-
stead of using the savanna-only sites for a savanna-specific
calibration (orange curve, Fig. 4). This is because there were
few TROBIT sites representing savanna with MODIS VCF
tree cover values exceeding 40 %, and global land cover
maps disagree on the distribution of savannas within the
forest–savanna ecotone (Herold et al., 2008).

The distribution of tree cover change after calibrating
against field data are similar across the four scenarios
(Fig. A2), and the regions where all four scenarios agree on
the direction of change (positive and negative) are substan-
tial (Fig. 6). However, there are some differences caused by
the uncertainty introduced by different extents of overlap and
clumping. While we see a significant increase in tree cover
across all clumping–overlap combinations in many regions
of tropical savannas and grasslands (Pennington et al., 2018),
such as in the forest–savanna mosaics that surround Congo-
lian rainforests, we do not see the same pattern in the Cerrado
of Brazil. This is likely because the African forest–savanna
regions fall within the range of MODIS VCF values that con-
sistently undergo a positive calibration (∼ 30 %–50 %, see
Fig. A1), while the Cerrado of Brazil does not.

Using field plots over a limited geographic extent creates
uncertainty that may be unaccounted for in our analysis when
our calibration is broadly applied across the highly variable
tropical-forest–savanna ecotone. By multiplying the uncer-
tainty range of our calibrations with the geographical dis-
tance to the closest sampled TROBIT site, we identified pri-
ority regions for further field surveying (Fig. 6 bottom). We
found Southeast Asia, Central America, and Mexico are ar-
eas where additional in situ observations would greatly help
improve confidence. Field data from the northwestern region
of South America, the southeast of the African continent, and
Madagascar would also help.

As our calibrations were based on a limited number of sites
in a limited number of regions, it is important to note that
the maps shown in Figs. 6 and A2 are not definitive. For in-
stance, we found a significant tree cover decrease in the Sahel
post-calibration in multiple scenarios, which runs counter to
the results of Brandt et al. (2020), who found that tree cover
was underestimated in this region. This disparity may be due
to our lack of field sites in these more arid regions, further
highlighting the importance of more in situ data for more
accurate and precise calibration. Therefore, our calibrations
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Figure 4. MODIS VCF percent tree cover versus percent tree cover from TROBIT field data, taking into account uncertainties associated
with tree cover spatial distributions within a MODIS pixel and/or field site. The four combinations are the following: (1) no overlap and no
clumping, where tree canopies are randomly distributed within both the pixel and site; (2) no overlap and maximum clumping, where tree
canopies are clustered in one area of the pixel and randomly distributed throughout the field site; (3) with overlap and no clumping, where
tree canopies are randomly distributed within the pixel but overlap substantially within the field site; and (4) with overlap and maximum
clumping, where tree canopies are clustered to one side within the pixel and overlap substantially within the site. The bolded dashed line in
black shows the 1 : 1 relationship. The solid lines represent the median of the respective regressions (green for forest, orange for savanna,
and black for forest and savanna combined), and the thin lines represent the 5 % and 95 % confidence interval of their respective regression
lines. The vertical error bars represent uncertainty introduced by clumping; the horizontal error bars represent the uncertainty introduced by
overlap.

are most useful in identifying areas where MODIS VCF es-
timates may be more or less reliable.

3.3 Post-calibration change in tree cover within
different vegetation classes in tropical ecosystems

When looking at our calibration in more detail, we see that
MODIS VCF significantly underestimates tree cover in all
the IGBP land cover classes that we considered, regardless
of overlap or clumping (95 % confidence interval) (Fig. 7).
The most substantial and significant underestimation is in the
classes “woody savannas” and savannas. The underestima-
tion is the largest in woody savannas, except when clumping
and overlap are enforced (in purple, Fig. 7). This is because
the peak in the tree cover frequency distribution for savan-

nas aligns with where the calibration for maximum overlap
and clumping is the largest (i.e. at about 20 % tree cover; see
Fig. A3), while the peak in cover distribution for woody sa-
vannas (26 %–67 %, Fig. A3) aligns with the cover range that
undergoes the greatest change (Fig. 7) in the other clumping
and overlap scenarios.

“Open shrublands” only show a small underestimation of
tree cover, despite the woody cover definition (10 %–60 %)
matching the range where MODIS VCF most underestimates
tree cover (26 %–67 % cover). The discrepancy may be be-
cause the majority of the open-shrublands class commission
error is with the grasslands class (see Table S6 in Sulla-
Menashe et al., 2019). The MODIS VCF tree cover in areas
classified as open shrublands is therefore likely to be lower
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Figure 5. Landsat TCC percent tree cover versus percent tree cover from TROBIT field data, taking into account uncertainties associated
with tree cover spatial distributions within a TCC pixel and/or field site. The four combinations are the following: (1) no overlap and no
clumping, where tree canopies are randomly distributed within both the pixel and site; (2) no overlap and maximum clumping, where tree
canopies are clustered in one area of the pixel and randomly distributed throughout the field site; (3) with overlap and no clumping, where
tree canopies are randomly distributed within the pixel but overlap substantially within the field site; and (4) with overlap and maximum
clumping, where tree canopies are clustered to one side within the pixel and overlap substantially within the site. The bolded dashed line in
black shows the 1 : 1 relationship. The solid lines represent the median of the respective regressions (green for forest, orange for savanna,
and black for forest and savanna combined), and the thin lines represent the 5 % and 95 % confidence interval of their respective regression
lines. The vertical error bars represent uncertainty introduced by clumping; the horizontal error bars represent the uncertainty introduced by
overlap.

than the IGBP definition would suggest (see Fig. A3), result-
ing in calibrations that are more conservative.

We found significant increases in tree cover for forests in
every calibration scenario, though net change is not signifi-
cant (95 % confidence) when overlap is enforced. This can be
explained by the presence of both negative and positive cal-
ibrations in the higher ranges of tree cover when overlap is
enforced. Similarly, the net change is insignificant across all
clumping and overlap scenarios for the IGBP classes match-
ing the lower ranges of tree cover (grasslands, closed shrub-
lands, and open shrublands).

4 Discussion

While MODIS VCF is a powerful and accessible tool to map
tree cover, our field-data-based calibrations indicate that the
latest MODIS VCF Collection 6 is missing a lot of woody
cover, even when uncertainty introduced by site canopy over-
lap and clumping within the MODIS VCF pixel are ac-
counted for. The Landsat TCC product, which may be viewed
as an alternative with a higher spatial resolution, behaves in
a similar manner. Our map (Fig. 6 top) highlights that this
potential underestimation of woody cover is mainly occur-
ring in tropical savannas. Moreover, the highest underestima-
tion in the savanna classes occurs when there is no enforced
overlap (Fig. A2) (i.e. when there is a uniform random dis-
tribution of trees) which is the scenario that most likely re-
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Figure 6. (a) The post-calibration change in tree cover that is sta-
tistically significant (95 % interval) in the same direction (positive
or negative calibration leading to an increase or decrease in tree
cover, respectively) across all four scenarios. (b) Uncertainty range
of the post-calibration change in tree cover, calculated as the 90th
percentile (maximum of the four scenarios in Fig. A2) minus the
10th percentile (minimum of the four scenarios in Fig. A2). (c) Ge-
ographic distance to the closest TROBIT site sampled. (d) Regions
coloured to denote priority for field surveying to constrain map un-
certainty (based on multiplying the uncertainty range of each pixel
with the pixel’s geographical distance to the closest TROBIT site
sampled).

flects the TROBIT savanna plots. This is evidenced by work
done by Veenendaal et al. (2015), where TROBIT plots were
tested for complete spatial randomness, and only minor indi-
cations of overlap were found. Woody savannas, as an exam-
ple, may have their tree cover underestimated by up to 32 %
(95 % confidence) when neither clumping nor overlap is en-
forced (grey tones, Fig. 7). If our results are representative of
the tropics, then overall, MODIS VCF may be underestimat-
ing tropical tree cover by between 7 %–29 % for unenforced

clumping and overlap or 0 %–21 % for when either clumping
or overlap are enforced (5 %–95 % confidence).

An overestimation at the lower end of the cover (< 20 %)
(Hansen et al., 2002; Sexton et al., 2013) and underesti-
mation in the lower to middle range of cover (20 %–60 %)
have been identified in validations of previous MODIS VCF
collections (Gross et al., 2018; Yang and Crews, 2019) and
Landsat TCC versions (Montesano et al., 2016). According
to its definition, MODIS VCF only maps trees that are 5 m
or taller (Hansen et al., 2003), while the TROBIT CAI in-
cludes all trees with a minimum dbh of 2.5 cm, as well as
trees with a height exceeding 1.5 m when dbh< 2.5 cm. This
could explain our observed underestimation in the lower tree
cover ranges for both MODIS VCF and Landsat TCC. In fact
Montesano et al. (2016) showed an improved match between
Landsat TCC and their lidar-derived tree cover reference data
when reducing the height threshold from 5 to 2 m. However,
because of how our field reference CAI is derived, we were
not able to conclusively link the 5 m threshold to our ob-
served underestimation.

On the other hand, when looking at the relationship be-
tween TROBIT’s upper-stratum canopy height and the dif-
ference between TROBIT and VCF, we would have expected
an increasing underestimation in the lower height ranges. In-
stead we found a low R2 and a mixture of under- and overes-
timations in heights between 0 and 10 m (Fig. A4). This sug-
gests that the inclusion of trees below 5 m height in the TRO-
BIT inventory does not fully explain the observed underesti-
mation. However, as the relationship between upper canopy
heights and the subordinate strata composition (and canopy
cover thereof) varies widely depending on factors including
ecosystem type and altitude (Rutten et al., 2015), more re-
search needs to be done with in situ height data.

We also found discrepancies between the tree cover val-
ues derived from MODIS VCF and the corresponding class
definition of the MCD12Q1 product (Fig. A3) which again
suggests that the 5 m height threshold may not always ap-
ply in MODIS VCF. For example, MODIS VCF recorded
tree cover in the open-shrublands and “closed-shrublands”
classes of the MCD12Q1 product (Fig. A3), even though the
height range for these classes is 1–2 m. For the savanna class,
MODIS VCF yields a percent tree cover range that matches
closely with the savanna class definition (between 10 % and
30 %), despite the differing tree thresholds for MODIS VCF
and IGBP (5 m minimum for MODIS VCF and 2 m mini-
mum for IGBP). These discrepancies suggest one of the fol-
lowing three things: open/closed shrublands and savannas
contain trees taller than 5 m, MODIS VCF is distinguishing
trees below the 5 m threshold, or some combination of both.

Another explanation for the discrepancy between the
IGBP class definitions and those estimated through MODIS
VCF could be the between-class omission and commission
errors (Fig. 5 in the present paper and Table S6 in Sulla-
Menashe et al., 2019). For example, the accuracy for closed
shrublands is particularly low. It is mainly confused with
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Figure 7. Percent change in tree cover post-calibration (clockwise: no enforced clumping or overlap (black), enforced clumping and no
enforced overlap (blue), no enforced clumping and enforced overlap (red), and enforced clumping and overlap (pink)) in the forest supercat-
egory and the five savanna classes. The palest tone indicates positive change; the mid tone indicates negative change; and the darkest tone
indicates net change. Error bars denote the 5 %–95 % confidence interval; if the error bar extends past the x axis, the post-calibration change
is not considered significant.

open shrublands, woody savannas, and savannas. The ma-
jority of the open-shrublands class commission error is with
the grasslands class, and there is confusion to a lesser ex-
tent between open shrublands, woody savannas, and savan-
nas. Also, the “cropland/natural vegetation mosaics” class is
often mapped as closed shrublands, woody savannas, savan-
nas, or grasslands.

More work needs to be done to evaluate how effective both
MODIS VCF, Landsat TCC, and MCD12Q1 are at imple-
menting the height thresholds in their respective “tree” def-
initions, as this may have implications when MODIS VCF,
Landsat TCC, and MCD12Q1 are used for global model cal-
ibration or validation.

Overall, our results suggest that the biases found in the
previous collections may have persisted in Collection 6, de-
spite reported improvement in accuracy (DiMiceli et al.,
2017). This indicates that the biases introduced by binning

the training data (Gerard et al., 2017) and using a CART
(classification and regression tree) model (Hanan et al., 2013)
are inherent and still present within this version of MODIS
VCF. Similar results for MODIS VCF and Landsat TCC also
suggest that by training TCC with VCF tree cover these bi-
ases have been propagated into the finer-scale product. There
is a risk of bias propagation when MODIS VCF (or related
products) is used as a single source for benchmarking mod-
els (e.g. Brandt et al., 2017; Lasslop et al., 2020; Burton et
al., 2019; Kelley et al., 2019, 2021). To avoid this, studies
should try use multiple data sources (e.g. for woody cover
possibly the GEDI – Global Ecosystem Dynamics Investiga-
tion – lidar-based canopy cover product, Tang et al., 2019a)
whether for model calibration/validation (e.g. Sellar et al.,
2019; Wiltshire et al., 2021; Burton et al., 2021) or hypothe-
sis testing (e.g. Taylor et al., 2012).
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We suggest that while MODIS VCF and landsat TCC give
a good overview of tree cover on a global scale, both should
be used cautiously in savanna regions. Special care should
be taken in savannas, a biome that has long been noted as be-
ing challenging for EO products to characterize, as solitary
trees in the landscape tend to be missed by global tree cover
products (Jung et al., 2006; Brandt et al., 2020). The poor
performance of MODIS VCF and Landsat TCC in savannas
in particular (Gaughan et al., 2013; Gross et al., 2018; Kumar
et al., 2019) emphasizes the importance of continuous inde-
pendent validation and re-calibration of these products. The
ecosystem functions of savannas can vary drastically with
just a slight difference in tree cover (Gaughan et al., 2013),
and even slight errors may create issues in how we interpret
the state and dynamics of the biome, which in turn affects
how the land is managed.

Work on forest restoration potential would also be im-
pacted. Bastin et al. (2019), for example, used MODIS VCF
to estimate tree cover in agricultural land. As this tree cover
is likely to have been underestimated substantially, the de-
rived available land space for replanting may be less than
projected, with the restoration potential being overestimated.
However, our results also indicate an underestimated tree
cover in woodier savannas and forests. Accounting for this,
the restoration potential could actually be greater than an-
ticipated because the carrying capacity of a unit of land
could be greater than previously thought. Calibration could
also result in a more uniform cover distribution across re-
gions, producing a more gradual transition between low-
cover savannas and high-cover forests. This could have im-
plications for work that, for example, uses MODIS VCF to
study forest–savanna dynamics and bi-stability (Lasslop et
al., 2018; Wuyts et al., 2017; Xu et al., 2016).

To ensure the appropriate use of both products, we suggest
that where field data are available, the products should be cal-
ibrated for use in the target region. However, calibrating on
a large scale using field data as a reference presents several
challenges. Firstly, different in situ measurement techniques
tend to measure different types of tree cover (e.g. Fiala et al.,
2006; Korhonen et al., 2006; Rautiainen et al., 2005), and
each will require a specific conversion method to enable di-
rect comparison with MODIS VCF or Landsat TCC. For ex-
ample, the comparison of Montesano et al. (2016) did not
acknowledge VCF’s and thus TCC’s “within canopy gaps”,
which may explain their observed underestimation in cov-
ers above 80 %. In our case, to account for gaps between
tree crowns, we applied the 0.8 “gap correction factor” to
the CAI. However, the GCF and resulting tree cover could
vary widely on a plot-by-plot basis (Lloyd et al., 2008). With
further in situ data that describe tropical vegetation-type-
specific GCF variation, we may be able to incorporate site-
specific GCFs into our analysis.

There is also the uncertainty associated with the field data
collection. In our case, the site-specific CAI standard errors
(Supplement B in Torello-Raventos et al., 2013) are small

and show no systematic bias and are therefore not expected
to significantly change our results. However, our results in
Fig. 6 have been extrapolated from a limited number of field
sites, with somewhat limited distribution across the tropics.
While our uncertainty map gives a good idea of areas of con-
cern, for a more robust description of MODIS VCF’s accu-
racy, we would need substantially more widely distributed in
situ sites to represent the tropics. Field data collection re-
mains costly and labour intensive, and adopting protocols
that ensure standardization and data sharing via information
platforms would facilitate large-scale validation exercises. In
the case of validating woody cover products, including direct
tree cover measurements such as crown area would also help.

However, the reality for much of pre-existing data is that
they are not standardized, and field data (whether standard-
ized or not) are not designed to be directly comparable to
remote-sensing-derived variables. Here, our technique offers
a potential solution to this. By accounting for uncertainties
that arise from differences between the available in situ data
and the remotely sensed variable, we are able to use in situ
data, which may initially seem unsuitable, to carry out a more
conservative evaluation.

Finally, factors such as cloud cover, landscape heterogene-
ity, phenology, vegetation type, and soil type affect the ac-
curacy of remotely sensed products like MODIS VCF and
Landsat TCC (Hansen et al., 2003; Huete et al., 1997; Smith
et al., 2002). Data characterizing these at the plot level would
help identify potential confounding factors affecting perfor-
mance and so help further constrain uncertainties.

Alternatively, comparing MODIS VCF to other land cover
maps or higher-resolution remotely sensed data are recom-
mended (Gross et al., 2018; Lary and Lait, 2006; Monte-
sano et al., 2016), though without a large-scale effort to re-
calibrate MODIS VCF and products trained using VCF like
Landsat TCC, the question of how appropriate MODIS VCF
is for use in both forests and savannas in the tropics will
remain. By highlighting the extent to which MODIS VCF
struggles to estimate tree cover in tropical forests and savan-
nas, we hope to inform the future use of this product and
improve its useability.

5 Conclusion

We found that MODIS VCF significantly underestimates tree
cover in tropical forests and savannas, even when within-site
and pixel–site variation are accounted for in calibration. We
also found that using MODIS VCF for training likely prop-
agates these biases, even in the finer-scale Landsat TCC.
As MODIS VCF is a product that is commonly used in
a wide variety of ecological research including vegetation
modelling, estimating restoration potential, and identifying
forest–savanna bimodality, we stress that more independent
work on validating and re-calibrating is required before its
tree cover estimates can be relied upon in the tropics.
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Appendix A

Table A1. Site names, locations, canopy area index values, MODIS VCF percent tree cover values, cover type, and TROBIT site descriptions
of the 48 TROBIT project plots used in this study. TROBIT site descriptions are based on Table S1 of Veenendaal et al. (2015).

Site Country Latitude Longitude MODIS Canopy Average Cover TROBIT site
name VCF tree area upper- type description

cover index stratum
(%) height (m)

ALC-01 Brazil −2.53 −54.91 12.5 0.32 6.56 Savanna Savanna woodland
ALF-01 Brazil −9.6 −55.94 77 2.31 37.02 Forest Tall forest
ALF-02 Brazil −9.58 −55.92 76 2.65 41.32 Forest Tall forest
ASU-01 Ghana 7.14 −2.45 41.33 2.54 45.27 Forest Tall forest
BBI-01 Burkina Faso 12.73 −1.17 1.33 0.52 12.53 Savanna Savanna woodland
BBI-02 Burkina Faso 12.73 −1.16 1.5 0.99 13.6 Savanna Savanna woodland
BDA-01 Burkina Faso 10.94 −3.15 6.17 0.3 14.53 Savanna Shrub-rich savanna woodland
BDA-02 Burkina Faso 10.94 −3.15 4.5 0.18 14.47 Savanna Shrub-rich savanna woodland
BFI-01 Ghana 7.71 −1.69 15 1.22 29.67 Savanna Tall closed woodland
BFI-02 Ghana 7.71 −1.69 12.83 1.08 28.2 Savanna Tall savanna woodland
BFI-03 Ghana 7.71 −1.7 25.83 2.54 45.07 Savanna Tall savanna woodland
CTC-01 Australia −16.1 145.45 72.67 2.35 40.37 Forest Tall forest
DCR-01 Australia −17.02 145.58 21.67 1.67 27.19 Savanna Tall savanna woodland
DCR-02 Australia −17.03 145.6 65.67 0.71 22.51 Savanna Tall savanna woodland
EKP-01 Australia −18.07 145.99 43.5 0.74 28.13 Savanna Tall savanna woodland
FLO-01 Brazil −12.81 −51.85 65.67 2.4 28.21 Forest Forest
FMS-01 Australia −18.09 144.84 7.67 0.32 20.03 Savanna Shrub-rich savanna woodland
FMS-02 Australia −18.11 144.82 44.17 1.21 16.69 Forest Stunted shrub-rich forest
HOM-01 Mali 15.34 −1.47 0.5 0.05 3.87 Savanna Savanna grassland
HOM-02 Mali 15.33 −1.55 0.83 0.16 6.13 Savanna Savanna grassland
IBG-01 Brazil −15.95 −47.87 20.83 0.22 7.48 Savanna Scrub savanna
IBG-02 Brazil −15.95 −47.87 20 0.02 6.29 Savanna Scrub savanna
IBG-03 Brazil −15.93 −47.87 20.5 0.12 8.01 Savanna Scrub savanna
IBG-04 Brazil −15.94 −47.86 27.17 0.77 12.65 Savanna Savanna woodland
KBL-01 Australia −17.77 145.54 75 1.69 39.5 Forest Tall forest
KBL-02 Australia −17.85 145.53 61.17 0.81 29.2 Savanna Tall savanna woodland
KBL-03 Australia −17.69 145.53 79.5 3 36.62 Forest Tall forest
KCR-01 Australia −17.11 145.6 78.83 2.44 42.37 Forest Tall forest
LFB-03 Bolivia −14.6 −60.85 28.17 0.39 9.93 Savanna Shrub-rich savanna woodland
MDJ-01 Cameroon 6.17 12.83 42 3.24 45 Forest Tall forest
MDJ-02 Cameroon 6.16 12.82 18.67 0.44 16.13 Savanna Long-grass savanna
MDJ-03 Cameroon 5.98 12.87 64.67 2.97 36.53 Forest Stunted shrub-rich forest
MDJ-04 Cameroon 6 12.87 15 0.37 18.93 Savanna Long-grass savanna
MDJ-05 Cameroon 5.98 12.87 70.33 2.85 21.27 Forest Stunted shrub-rich forest
MDJ-06 Cameroon 6 12.89 20.5 0.68 15.27 Savanna Long-grass savanna
MDJ-07 Cameroon 6.01 12.89 57.33 1.75 42.67 Forest Tall forest
MDJ-08 Cameroon 6.21 12.75 15 0.48 18 Savanna Long-grass savanna
MLE-01 Ghana 9.3 −1.86 10 0.34 14.67 Savanna Savanna woodland
NXV-02 Brazil −14.7 −52.35 20.83 1.82 15.76 Savanna Tall closed woodland
RSC-01 Australia −20.16 146.54 28 1.15 13.14 Forest Stunted forest
SMT-01 Brazil −12.82 −51.77 36.67 1.55 14.37 Savanna Savanna woodland
SMT-02 Brazil −12.82 −51.77 41.5 1.44 14.64 Savanna Savanna woodland
SMT-03 Brazil −12.83 −51.77 19.33 0.53 11.19 Savanna Savanna woodland
TUC-01 Bolivia −18.52 −60.81 50.33 1.29 14.9 Forest Stunted forest
TUC-02 Bolivia −18.53 −60.63 21.67 0.81 12.05 Savanna Shrub-rich woodland
TUC-03 Bolivia −18.19 −60.86 10.83 0.37 14.11 Savanna Savanna woodland
VCR-01 Brazil −14.83 −52.16 69.5 2.81 28.94 Forest Tall forest
VCR-02 Brazil −14.83 −52.17 69.67 2.74 30.93 Forest Forest
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Figure A1. The calibration curves developed for MODIS VCF based on four pixel–site mismatch scenarios (no clumping and no overlap,
enforced clumping and no overlap, no clumping and enforced overlap, and enforced clumping and enforced overlap). The dashed line
signifies the “ideal” 1 : 1 relationship wherein calibrated MODIS VCF is unchanged from the original MODIS VCF values. The shaded
regions represent the 5 % to 95 % confidence intervals for the respective calibrated MODIS VCF values.

Figure A2. The change in tree cover post-calibration for all four scenarios. Black dots indicate areas where the post-calibration values have
a 95 % certainty of being positive (increasing cover) or negative (decreasing cover) calibrations. These uncertainty maps are indicators of
areas where MODIS VCF estimates may be more or less reliable and cannot be used as definitive calibrations due to the limited number of
field sites used as reference.
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Figure A3. Frequency distributions of percent tree cover value as estimated by MODIS VCF across the forest supercategory and the following
IGBP classes that by our definition count as part of the savanna domain: closed shrublands, open shrublands, woody savannas, savannas, and
grasslands. Specific class definitions as per the user guide for the MODIS land cover product (Sulla-Menashe and Friedl, 2018).

Figure A4. TROBIT plot upper-stratum height versus the difference between MODIS VCF and TROBIT percent tree cover for the four
clumping and overlap scenarios. Upper and lower bars represent the uncertainty range’s 10th and 90th percentile, respectively, based on the
convolution of MODIS VCF and TROBIT cover uncertainties from Fig. 4.
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Code and data availability. The code and data used to support the
findings of this study are archived at https://github.com/douglask3/
VCF_vs_sites with revision number fdda3ff (Adzhar et al., 2022).

Upon being granted access, the data are available at https://www.
forestplots.net and can be found using the site names we have listed
in Table A1 (Torello-Raventos et al., 2013).

MODIS VCF is accessible via the MODIS R package
(http://CRAN.R-project.org/package=raster; Hijmans, 2017).
The product itself should be attributed to DiMiceli (2017,
https://doi.org/10.5067/MODIS/MOD44B.006).

TCC data are accessible at https://e4ftl01.cr.usgs.gov/
MEASURES/GFCC30TC.003/ (Sexton et al., 2013).
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