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Abstract 23 

Soil erosion accelerated by poor agricultural practices, land degradation, deprived infrastructure 24 

development and other anthropogenic activities has important implications for nutrient cycling, land 25 

and lake productivity, loss of livelihoods and ecosystem services, as well as socioeconomic 26 

disruption. Enhanced knowledge of dynamic factors influencing soil erosion is critical for 27 

policymakers engaged in land use decision-making. This study presents the first spatio-temporal 28 

assessment of soil erosion risk modelling in the Winam Gulf, Kenya using the Revised Universal Soil 29 

Loss Equation (RUSLE) within a geospatial framework at a monthly resolution between January 2017 30 

and June 2020. Dynamic rainfall erosivity and land cover management factors were derived from 31 

existing datasets to determine their effect on average monthly soil loss by water erosion. By assessing 32 

soil erosion rates with enhanced temporal resolution, it is possible to provide greater knowledge 33 

regarding months that are particularly susceptible to soil erosion and can better inform future 34 

strategies for targeted mitigation measures. Whilst the pseudo monthly average soil loss was 35 

calculated (0.80 t ha−1 month-1), the application of this value would lead to misrepresentation of 36 

monthly soil loss throughout the year. Our results indicate that the highest erosion rates occur between 37 

February and April (average 0.95 t ha−1 month−1). In contrast, between May and August, there is a 38 

significantly reduced risk (average 0.72 t ha−1 month−1) due to the low rainfall erosivity and increased 39 

vegetation cover as a result of the long rainy season. The mean annual gross soil loss by water erosion 40 

in the Winam Gulf catchment amounts to 10.71 Mt year-1, with a mean soil loss rate of 41 

9.63 t ha−1 year−1. These findings highlight the need to consider dynamic factors within the RUSLE 42 

model and can prove vital for identifying areas of high erosion risk for future targeted investigation 43 

and conservation action. 44 

 45 

Graphical Abstract  46 

 47 

Keywords: RUSLE, GIS, Remote Sensing, Soil Erosion, Winam Gulf, Kenya 48 



3 
 

1. Introduction 49 

Soil erosion is one of the greatest global threats to water and food security (Amundson et al., 2015; 50 

Borrelli et al., 2017; Igwe et al., 2017). Within East Africa’s interlacustrine countries of Burundi, 51 

Kenya, Rwanda, Tanzania and Uganda soil erosion is the main cause of land degradation to 52 

agricultural and pastoral landscapes (Wynants et al., 2019). Land degradation caused by soil erosion 53 

leads to the loss of nutrient rich surface soils, decreased soil fertility and increased runoff with severe 54 

consequences for food, water and livelihood security (Blaikie and Brookfield, 2015; Obalum et al., 55 

2012; Oldeman, 1992; Pimentel, 2006; Vrieling, 2006). Sub-Saharan Africa has experienced rapid 56 

and extensive land-use change; between 1975 and 2000 16% of forested areas were lost, whilst 57 

agricultural land expanded 55% (Brink and Eva, 2009). As natural vegetation cover is displaced, 58 

rainfall infiltration capacity decreases, which results in increased surface runoff contributing to high, 59 

nutrient rich sediment loads in rivers (Van Oost et al., 2000; Zuazo and Pleguezuelo, 2009). 60 

Moreover, the increased frequency of extreme weather events occurring due to climate change will 61 

significantly influence the intensity of precipitation, increasing the energy available in rainfall for 62 

eroding soils (Maeda et al., 2010). Yang et al. (2003) predicted that global average soil erosion would 63 

increase approximately 9% by 2090 due to climate change. Whilst soil erosion is a natural process, 64 

accelerated rates of soil loss, compounded by poor land management practices and changes to 65 

vegetation cover and rainfall intensity, represent serious environmental issues. Increased rates of soil 66 

erosion are directly associated with nutrient loss, negatively influencing agricultural productivity and 67 

causing eutrophication of aquatic systems, threatening food security (Bakker et al., 2007; Istvánovics, 68 

2010; Maeda et al., 2010). 69 

Estimating the risk of soil erosion is critical to enable policymakers to implement land-use decisions 70 

aimed at mitigating the loss of soil substrate. Substantial efforts have been made to develop soil 71 

erosion models as useful tools for obtaining a baseline to which alternative land use management 72 

strategies can be applied (Ganasri and Ramesh, 2016; Nearing et al., 2005). Multiple soil erosion 73 

models exist with varying degrees of complexity. The most widely applied empirical model for 74 

investigating soil erosion is the Revised Universal Soil Loss Equation (RUSLE). The model is 75 
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formulated as the compound product of multiple single layers; rainfall erosivity (R factor), soil 76 

erodibility (K factor), topography (LS factor), cover management (C factor), and support practices (P 77 

factor), which creates a single soil erosion risk map. This model has been widely applied to assess the 78 

risk of soil erosion and estimate soil loss around the globe (Chen et al., 2011; Kouli et al., 2009; Lu et 79 

al., 2004; Panagos et al., 2014b; Prasannakumar et al., 2012) and while there are caveats in terms of 80 

rate quantification, it remains a valuable tool for evaluating spatial variability and areas of relatively 81 

high risk. The model, calculated and integrated using remote sensing data and geographical 82 

information systems (GIS), enables soil erosion risk mapping to become feasible with sufficient 83 

accuracy and precision in large basin-scale and regional studies (Magesh and Chandrasekar, 2016). 84 

Conventional methods used to assess soil erosion risk are expensive, time consuming and have poor 85 

spatial resolution. The RUSLE model approach can predict erosive potential with detailed spatial 86 

assessment and characterisation within large areas. However, the majority of RUSLE model 87 

applications are somewhat limited by presenting a singular erosion map of time averaged data. Whilst 88 

soil erodibility and topographic factor maps are relatively static (excluding large scale geogenic or 89 

anthropogenic induced land alterations), high intra-annual variability is expected for rainfall and cover 90 

management factors due to the natural patterns of precipitation and vegetation growth (Panagos et al., 91 

2012; Schmidt et al., 2019; Wang et al., 2001).  92 

The importance of capturing spatial variability within a soil erosion model is not a revolutionary 93 

concept. Wischmeier and Smith (1965) advocated that soil erosion risk modelling should be assessed 94 

with a monthly temporal resolution. However, due to the lack of availability of high temporal 95 

resolution spatial datasets, the application of this method is limited. Recent studies have integrated 96 

dynamic variables into soil risk erosion modelling, such as R factors (Angulo-Martínez and Beguería, 97 

2009; Ballabio et al., 2017; Ma et al., 2014; Nunes et al., 2016) and C factors (Alexandridis et al., 98 

2015; Schmidt et al., 2018; Yang, 2014) to assess intra-seasonal and annual changes to soil erosion. 99 

However, the application of combining dynamic R and C factors for assessing soil over multiple years 100 

has not previously been assessed. Quantifying soil loss on a dynamic time scale will develop a wider 101 

understanding, and allow for the implementation of targeted protection measures for susceptible 102 
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hotspots during particularly high-risk seasons (Schmidt et al., 2019; Troxler et al., 2004). In this 103 

study, we aim to create a dynamic soil erosion map for the Winam Gulf catchment of Lake Victoria in 104 

Kenya, with the following objectives: (1) Use of monthly R and C factors to delineate inter- and intra-105 

annual spatio-temporal patterns of soil erosion; and (2) identify soil erosion hotspots within the 106 

catchment to inform ground-truthing surveys and mitigation strategies. 107 

 108 

2. Materials and Methods 109 

2.1 Study Site 110 

The study area was the Winam Gulf catchment (0°38’S-0°10’N, 34°8’E-35°33’E), with an 111 

approximate area of 11,000 km2, located in western Kenya (Figure 1). The Winam Gulf catchment 112 

comprises four sub-basins; (i) the Northern Shore, which is relatively flat; (ii) the Nyando, which 113 

contains the Nandi Hills; (iii) the Sondu, with low plains near the lakeshore and a mountainous region 114 

eastward, and; (iv) the Southern Shore, which is dominated by extinct volcanic masses (Mt Homa, 115 

Gembe Hills and Gwassi Hills). The dominant soil groups in the region are acrisols, cambisols, and 116 

vertisols (IUSS Working Group, 2014). The study area experiences an equatorial climate with dipole 117 

rainy seasons which occur in March to May (long rainy season) and October to November (short rainy 118 

season). Therefore, there is significant interannual variation in the volume and duration of rainfall in 119 

the region with the annual average precipitation between 600 and >2000 mm; the annual average 120 

temperature varies between 17.4-29.9 °C (Calamari et al., 1995; Fusilli et al., 2013; Okungu et al., 121 

2005). Historic land use within the catchment area was predominantly natural vegetation (61.8 %), 122 

followed by agricultural land (32.5 %) and infrastructure/miscellaneous land use (5.7%) (Calamari et 123 

al. 1995). 124 
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 125 

 126 

Figure 1 Elevation map of the Winam Gulf catchment, Kenya and its major sub-basins: (A) 127 

Northern Shore, (B) Nyando, (C) Sondu, and (D) Southern Shore. Roman numerals represent 128 

specific landforms within the Winam Gulf catchment: (i) Nandi Hills, (ii) Kisumu Basin, (iii) Mt 129 

Homa, (iv) Gembe Hills, and (v) Gwasshi Hills 130 

 131 

2.2 Erosion risk assessment using RUSLE 132 

Assessment of the soil erosion risk within the Winam Gulf catchment was performed in ArcGIS 133 

(version 10.7) using the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997; 134 

Wischmeier and Smith, 1978), which calculated soil loss rates by sheet and rill erosion using the 135 

following Eq. 1: 136 

𝐴 ൌ 𝑅 ൈ 𝐾 ൈ 𝐿𝑆 ൈ 𝐶 ൈ 𝑃          (1) 137 

where A is the annual average soil loss (t ha−1 yr−1); R is the rainfall erosivity factor (MJ mm ha−1 h−1 138 

yr−1); K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1); LS is the slope length and steepness 139 

factor (dimensionless); C is the cover management factor (dimensionless, ranging between 0 and 1); 140 

and P is the support practice factor (dimensionless, ranging between 0 and 1). The equation can be 141 

modified to a monthly soil loss equation by including a monthly temporal resolution for the dynamic 142 

R (MJ mm ha−1 h−1 month−1) and C (dimensionless, ranging between 0 and 1) factors (Eq. 2) (Schmidt 143 

et al., 2019): 144 

𝐴௠௢௡௧௛ ൌ 𝑅௠௢௡௧௛ ൈ 𝐾 ൈ 𝐿𝑆 ൈ 𝐶௠௢௡௧௛ ൈ 𝑃        (2) 145 

 146 

2.3 Rainfall erosivity factor (R) 147 



7 
 

The rainfall factor (R), an index unit, reflects the effect of rainfall intensity on soil erosion and 148 

requires detailed, continuous precipitation data for its calculation (Wischmeier and Smith, 1978). The 149 

R factor is often determined using rainfall intensity and frequency, as they are more predictive 150 

compared to the total rainfall amount (Ganasri and Ramesh, 2016; Wynants et al., 2018). However, 151 

this information is not readily available for the majority of Sub-Saharan African countries. Moore 152 

(1979) observed a strong correlation between the kinetic energy of the high intensity storms in Kenya, 153 

Tanzania and Uganda and the mean annual precipitation. Mean monthly rainfall (MMR) data was 154 

acquired from The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset, 155 

which is a 30+ year quasi-global rainfall dataset (Funk et al., 2015). Using the regression equation 156 

outlined by Moore (1979) and Wynants et al. (2018), the kinetic energy (KE) of the rains (Eq. 3) and 157 

the rainfall erosivity factor (R) were calculated (Eq. 4) for each month between January 2017 and 158 

June 2020 as shown below:  159 

𝐾𝐸 ൌ 3.96 ൈ𝑀𝑀𝑅 ൅ 3122           (3) 160 

𝑅 ൌ 17.02ሺ0.029 ൈ 𝐾𝐸 െ 26ሻ          (4) 161 

 162 

2.4 Soil erodibility factor (K) 163 

The soil erodibility (K) factor was calculated based on intrinsic topsoil (0–20 cm depth) properties 164 

(i.e. texture, organic matter, structure, and permeability) from a harmonised dataset derived from the 165 

Soil and Terrain Database for Kenya, compiled by the Kenya Soil Survey (Batjes, 2013). Direct 166 

measurements of the K factor on field plots are not financially sustainable at regional or national 167 

scales. Therefore, the soil erodibility nomograph (Wischmeier et al., 1971) is most commonly used 168 

for assessing soil erodibility. An algebraic approximation of the nomograph that includes five soil 169 

parameters (texture, organic matter, coarse fragments, structure, and permeability) was proposed by 170 

Wischmeier and Smith (1978) and Renard et al. (1997) as shown in Eq. 5: 171 

𝐾 ൌ ሾሺ2.1 ൈ 10ିସ 𝑀ଵ.ଵସሺ12 െ 𝑂𝑀ሻ ൅ 3.25ሺ𝑠 െ 2ሻ ൅ 2.5ሺ𝑝 െ 3ሻሻ 100ሿ ∗ 0.1317⁄   (5) 172 
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Where OM (%) is the organic matter content of the soil, s is the soil structure class (Table S1) and p is 173 

the permeability class (Table S2) from Panagos et al. (2014b), respectively and M is the textural 174 

factor calculated as shown in Eq. 6 175 

𝑀 ൌ ሺ𝑚𝑠𝑖𝑙𝑡 ൅ 𝑚𝑣𝑓𝑠ሻ ൈ ሺ100 െ𝑚𝑐ሻ         (6) 176 

In Eq. 6 msilt (%) is the silt fraction content (0.002 – 0.05 mm); mvfs (%) is the very fine sand 177 

fraction content (0.05 – 0.1 mm); and mc (%) is the clay fraction content (< 0.002 mm). The very fine 178 

sand structure (0.05 – 0.1 mm) as sub-factor (mvfs) in Eq. 6 was estimated as 20% of the sand 179 

fraction (0.05 – 2.0 mm) according to Panagos et al. (2014b). The use of these equations has 180 

previously been applied in East Africa by Fenta et al. (2020) and Elnashar et al. (2021). 181 

 182 

2.5 Topographic factor (LS) 183 

The topographic factor (LS) is the combination of the length (L) and steepness (S) of the slope to 184 

determine the impact of topography on soil erosion. As slope length increases, so does the total soil 185 

erosion loss per unit due to the progressive accumulation of surface runoff. As the slope steepness 186 

increases, so does the velocity and erosivity of runoff (Wischmeier and Smith, 1978). In the present 187 

study, the LS factor was computed in ArcGIS based on the digital elevation model (DEM) from the 188 

Shuttle Radar Topography Mission (SRTM) with 30 m resolution and derived using ArcGIS (10.3) 189 

using Eq. 7 (Mitasova et al., 1996; Pelton et al., 2012; Prasannakumar et al., 2012; Simms et al., 190 

2003). 191 

 192 

𝐿𝑆 ൌ ቀ௙௟௢௪ ௔௖௖ ൈ௠௔௣ ௥௘௦௢௟௨௧௜௢௡

ଶଶ.ଵଷ
ቁ
௠
ൈ ቀୱ୧୬ ௦௟௢௣௘

଴.଴ଽ
ቁ
௡

       (7) 193 

Where flow acc. (accumulation) denotes the accumulated slope effect on a given cell created using 194 

Arc hydro tool, map resolution is the dimension of the map grid cell, m and n are slope and area 195 

exponent, and sin slope is slope degree of land in sin. The values for m and n, were 0.4 and 1.4, 196 
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respectively, and were determined based on topographical condition and land use type (Mitasova et 197 

al., 1996; Oliveira et al., 2013; Pelton et al., 2012). 198 

 199 

2.6 Cover management (C) and conservation support practice factor (P) 200 

The C Factor represents the protective effect of land cover against the erosive action of rainfall. It 201 

represents the relationship between soil loss in an area with specific vegetation cover and 202 

management and an area with tilled soil, permanently bare during the cropping period, with values 203 

closer to 0 corresponding to denser vegetation and values closer to 1 indicate bare land (Durigon et 204 

al., 2014; Renard et al., 1997). Due to the variety of land cover patterns with spatial and temporal 205 

variations, satellite remote sensing data sets were used for the assessment of the C factor 206 

(Prasannakumar et al., 2012). Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery 207 

from the Terra platform was used to determine monthly C factors. Normalised Difference Vegetation 208 

Index (NDVI) data were obtained at monthly intervals between January 2017 and June 2020 for 209 

MODIS tiles ‘h21v08’ and ‘h21v09’ from the MODIS-Terra MOD13Q1 product, a 16-day vegetation 210 

index composite with a spatial resolution of 250 m. The NDVI, an indicator of the vegetation vigour 211 

and health, data was then used to generate the C factor value image for the study area using Eq. 8: 212 

𝐶 ൌ ቀିே஽௏ூାଵ
ଶ

ቁ            (8) 213 

The P factor accounts for control practices that diminish the erosion potential of runoff by their 214 

influence on drainage patterns, runoff concentration, runoff velocity and hydraulic forces exerted by 215 

the runoff on the soil surface (Renard et al., 1991). Typically, P factor values close to 0 indicate good 216 

conservation practice such as terracing, contour tillage, and permanent barriers or strips reducing the 217 

overall risk of erosion, whilst values approaching 1 indicates poor conservation practice. Due to the 218 

lack of data regarding conservation practices in the study area, the RUSLE model was run with a P 219 

factor of 1. 220 

 221 

 222 
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3. Results and Discussion 223 

3.1 Soil erodibility factor (K) 224 

The K factor values in the Winam Gulf catchment ranged between 0.008 and 0.045 225 

t ha h ha−1 MJ−1 mm−1, with complex spatial distribution and varying degrees of erodibility within the 226 

study area (Figure 2). The highest K factor values (0.045 t ha h ha−1 MJ−1 mm−1) correspond with 227 

mountainous areas, including Nandi Hills in the Nyando sub-basin and the Gwassi Hills in Homa Bay 228 

County, located on the Southern Shore of the catchment. The highest degree of K factor heterogeneity 229 

occurs in the Kisumu basin at the centre of the catchment; however, the overall risk of soil erodibility 230 

in this region remains low due to the topography. 231 

 232 

 233 

Figure 2 Soil erodibility (K) factor in the Winam Gulf catchment, Kenya 234 

 235 

3.2 Topographic factor (LS) 236 

The LS factor values in the study area range from 0 to 38.3, with an average of 2.26 (Figure 3). The 237 

study area is dominated by low LS values within the Kisumu basin and land adjacent to the Winam 238 

Gulf, as they correspond to flat open plains or wetlands. However, within these areas of low LS 239 

values, large river channels have significantly higher LS values due to channel morphology and 240 

changes to the riverbank slope (Magesh and Chandrasekar, 2016). Moderately higher LS factors are 241 

located to the east of the catchment. The highest LS values are located within the Nandi Hills, Mt 242 

Homa, and the Gwassi Hills located on the Southern Shore of the Gulf. All of these areas have steep 243 

slopes pertaining to the high LS values. 244 
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 245 

 246 

Figure 3 Topographic (LS) factor in the Winam Gulf catchment, Kenya 247 

 248 

3.4 Rainfall erosivity factor (R) 249 

The R factor showed notable spatial variation with clear seasonal and annual changes to the R factor 250 

in the Winam Gulf catchment (Figure 4).  251 

 252 

 253 

Figure 4 Monthly rainfall erosivity (R) factor from January 2017 to June 2020 in the Winam Gulf 254 

catchment, Kenya 255 

 256 

The R factor value in the study ranges from 92.85 to 180.55 MJ mm ha-1 h-1 month-1. During the rainy 257 

season months, the R factor significantly increased compared to dry season months, with the largest R 258 

factors typically occurring in April of each year. The trend between the mean R factor (MJ mm ha-1 h-1 259 

month-1) and soil erosion rate (t ha-1 month-1) in the Winam Gulf over the study period is shown in 260 

Figure S1. Previous assessments of intra-annual soil erosion dynamics have shown that the R factor is 261 

the most influential aspect of the RUSLE model (Polykretis et al., 2020; Schmidt et al., 2016). 262 

However, in this study, no correlation (r = -0.09, p = 0.53) was associated between the R factor values 263 

and the mean monthly soil erosion rate in the Winam Gulf (Figure S2). By using a modified dynamic 264 

version of the RUSLE model, Gianinetto et al. (2019) were able to differentiate large seasonal soil 265 

erosion variability in the Italian Alps. They conducted sensitivity analysis and indicated that whilst the 266 

R factor has the highest impact on the potential soil erosion risk, their pixel-based Pearson’s 267 
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correlation between soil erosion and the R factor was an uncorrelated variable, as replicated in the 268 

present study. 269 

 270 

3.5 Cover management (C) factor 271 

The C factor analysis performed in this study visualises the dynamic seasonal trends with phases of 272 

abundant and fractionated or absent vegetation cover over consecutive years. The dynamic C factor 273 

assessment presented here provides key information when determining the presence of soil erosion 274 

hot spots, as this process is accelerated on uncovered or bare soil. Low C factor values (<0.15) 275 

correspond with areas of vegetation cover and a reduced risk of soil erosion, whereas higher values 276 

indicate bare/uncovered land with a greater susceptibility to soil erosion (Figure 5). 277 

  278 

  279 

Figure 5 Monthly cover management (C) factor from January 2017 to June 2020 in the Winam 280 

Gulf catchment, Kenya 281 

 282 

During the long rainy season from March to May, vegetation cover increases with a significant 283 

reduction (p < 0.05) of the mean C factor within the catchment (Table S3). The increased vegetation 284 

cover that was initiated by the rains begins to degrade across the catchment throughout the subsequent 285 

dry season (from June to September), and as crops were harvested at the end of the growing season. 286 

The increased C factor values (reduction in vegetation cover) extend from the Kisumu basin, an area 287 

that typically receives the warmest temperatures in the catchment, to the east of the Gulf. Areas to the 288 

south and east of the study area (in the Sondu sub-basin) are relatively resilient regions to seasonal 289 

changes, as they are dominated by larger forested areas. Following the warmer temperatures from 290 

December to February, the highest C factor values occur in January and February, most noticeably in 291 

January 2017 and 2018. The extent of this is highly influenced by the variability of the short rainy 292 
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season in October, leading to an increased risk of erosion. Our results show that soil erosion rates are 293 

influenced by seasonal changes to land cover. Gianinetto et al. (2019) reported that the use of multi-294 

temporal satellite data for calculating C factor values highlighted an increased erosion risk in 295 

autumn/winter compared to spring/summer in the Italian Alps. The application of dynamic satellite-296 

derived data can increase the spatial resolution of C factor values leading to improved accuracy of the 297 

estimates of soil erosion at regional and local scales, particularly where vegetation is the predominant 298 

land cover (Gianinetto et al., 2019). The relationship between C factor values and mean soil erosion (t 299 

ha-1 month-1) in the Winam Gulf from January 2017 to June 2020 is shown in Figure S3. There is a 300 

strong positive relationship (r= 0.85, p= <0.001) between the mean C factor and soil erosion in the 301 

Winam Gulf (Figure S4). Panagos et al. (2014a) investigated changes to the risk of soil erosion in 302 

Crete, Greece using dynamic R and C factors. In their study, the rainy season in Crete (October to 303 

January) accounted for 80% of the annual soil erosion on the island. More recently, in the Kyrgyz 304 

mountain grasslands, Kulikov et al. (2016) observed that the highest potential soil erosion risk was 305 

due to the combined influence of high C factors and simultaneous high R factors. These results stress 306 

the importance of seasonal erosion assessments for the identification of erosion hotspots and the 307 

sensitivity of RUSLE based models to the status of vegetation cover.  308 

The relationship between the R factor (MJ mm ha-1 h-1 month-1) and the C factor in the Winam Gulf 309 

over the study period is shown in Figure S5. The negative trend between the R factor and C factor (r= 310 

-0.60, p= <0.001) (Figure S6) highlights the response of vegetation to increase rainfall. Interestingly, 311 

this trend is stronger in the dry season (r= -0.72, p= < 0.001) compared to the wet season (r= -0.18, p= 312 

0.43) (Figure S6). Our results support previous assessments of the spatio-temporal correlation 313 

between NDVI values and precipitation in the Central Asian region, which indicated time-delayed 314 

correlations attributable to vegetation dynamics during growing seasons (Gessner et al., 2013). 315 

 316 

3.6 Implications of dynamic soil erosion risk evidence for land management decisions 317 
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All RUSLE model factors were integrated using the formula outlined in Eq. (2) and soil erosion maps 318 

were created with a spatial resolution of 30 m, representing the loss of soil (t ha-1 month-1), between 319 

January 2017 and June 2020 (Figure 6). The risk of soil erosion ranges from <0.5 to >5 t ha-1 month-1. 320 

Several hotspots were identified within the catchment area; these are typically dominated by steep 321 

topography, including the Nandi Hills in the Nyando sub-basin and the Gwassi Hills on the Southern 322 

Shore, and have consistently elevated soil erosion risks compared to the relatively flat Kisumu basin, 323 

regardless of seasonal changes to R and C factors. Throughout the study, the average soil erosion loss 324 

rate for the catchment was 9.63 t ha-1 year-1, which would hypothetically equate to a total eroded soil 325 

mass of 10.71 Mt year-1 in the Winam Gulf catchment area. Within the sub-basins, the average soil 326 

erosion was 9.69, 12.29, 7.94 and 10.73 t ha-1 year-1, in the Northern Shore, Nyando, Sondu, and 327 

Southern Shore, respectively. 328 

 329 

 330 

Figure 6 Monthly soil erosion risk from January 2017 to June 2020 in the Winam Gulf catchment, 331 

Kenya 332 

 333 

Assessing soil erosion with dynamic R and C factors is critical for determining the extent to which 334 

changing climatic conditions influence soil erosion, and the potential impact on the socioeconomic 335 

stability of subsistence farming communities in Sub-Saharan Africa. The results of this study 336 

highlight that the greatest soil erosion rates occur between February and April (0.95 t ha−1 month−1, 337 

Table S3), with additional increased risk in October following drier periods and the short rains. In 338 

contrast, between May and August, there is a significantly reduced risk (average soil loss 0.72 t ha−1 339 

month−1) due to the low rainfall erosivity and increased vegetation cover as a result of the long rainy 340 

season. These results demonstrate the lag between rainfall and vegetation growth originally illustrated 341 

by Kirkby (1980). These results highlight that the most vulnerable period for erosion is the early part 342 

of the wet season when rainfall intensity is increasing with insufficient vegetation growth to protect 343 
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the soil; as such, peak erosion rates precede peak rainfall. Whilst the validation of soil loss models 344 

with in-situ plot-scale measurements is desirable it is often constrained by the absence of long-term 345 

plot-scale measurements for different land cover types (Fenta et al., 2020). Moreover, plot-scale 346 

measurements may be biased due to the highly heterogeneous nature of soil erosion, measurement 347 

uncertainty or failure to accurately capture soil loss at the landscape scale (Alewell et al., 2019). 348 

Despite these challenges, the modelled RUSLE-based estimated mean soil loss rates in the present 349 

study are within the range of soil loss rates reported by other studies based on plot-scale 350 

measurements in Kenya (Angima et al., 2000; Kinama et al., 2007). Furthermore, the RULSE model 351 

estimated soil erosion rates in this study were validated against previous studies performed in the 352 

same region. The results of our study yielded similar predictions to those published by Fenta et al. 353 

(2020) who was assessing water and wind erosion risks in the East Africa region. However, additional 354 

plot studies are required due to the uncertainty associated with future seasonal weather patterns. 355 

Recent climate projections predicted an increasingly vigorous hydrological cycle that could increase 356 

global water erosion by +30 to +66%, with some of the most severe impacts affecting Sub-Saharan 357 

Africa (Borrelli et al., 2020). Maeda et al. (2010) investigated the potential impacts of climate change 358 

on soil erosion in the Kenyan Eastern Arc Mountains and reported that the highest risk of erosion 359 

occurred in April and November, associated with higher rainfall during these months. Using a Monte 360 

Carlo simulation and synthetic precipitation datasets, Maeda et al. (2010) concluded that there was the 361 

possibility of an increased risk of erosion in regions with an elevation greater than 1000 m a.s.l. where 362 

precipitation rates are historically higher and experience much higher erosion risk, especially in April 363 

and November. Due to the complexity and multifaceted nature of determining soil erosion risk, 364 

Maeda et al. (2010) disregarded the impact of dynamic vegetation cover in agricultural areas in their 365 

model, which can act as a buffer against the impact of rainfall and soil erosion.  366 

Meusburger et al. (2012) and Schmidt et al. (2016) have previously assessed the effect of combined 367 

dynamic R and C factors which can amplify the risk of soil erosion. The overall effectiveness of a 368 

crop reducing erosion risk depends largely on how much of the erosive rain occurs during those 369 

periods when the crop is absent and provides little to no protection (Wischmeier and Smith, 1965). 370 
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Months with, and following, the highest rainfall usually coincide with periods of maximum vegetation 371 

vigour, and the months of lower rainfall with the seeding and harvest. In the present study, evidence 372 

of this is demonstrated in May, which on average receives some of the highest rainfall and associated 373 

R factors, yet the risk of erosion is significantly decreased due to lower C factors. The decreased C 374 

factor is resulting from the high rainfall in April, which promotes greater crop growth and vegetation 375 

cover, thus limiting the erosion risk. In contrast, January and February, which on average have the 376 

lowest R factors, have erosion risks that are attributable to the high C factor and lack of vegetation. 377 

There are numerous benefits of assessing soil loss rates with monthly temporal resolution compared to 378 

annual rates. Comparing the pseudo average monthly soil loss rate of 0.80 t ha−1 (Table S3) against 379 

the calculated monthly loss rates would lead to an underestimation of soil loss in dry seasons and an 380 

overestimation during the rainy seasons. The higher temporal resolution achieved by monthly 381 

modelling provides greater knowledge regarding particularly vulnerable months (January to April), 382 

and can inform future strategies for targeted mitigation measures. In a recent study quantifying soil 383 

losses in Kenya coastal region, Hategekimana et al. (2020) suggested that areas with an annual 384 

average soil erosion >10 t ha−1 year−1 should be prioritised in soil conservation plans. Based on their 385 

recommendations, a significant area of the Winam Gulf would require prioritising, particularly in the 386 

Nyando and Southern Shore sub-basins. 387 

 388 

3.7 Limitations, uncertainties and needs 389 

The primary limitation to this study was the omission of the analysis of the management practice (P) 390 

factor. Gianinetto et al. (2019) and Maeda et al. (2010) have previously stated that the assessment of 391 

soil erosion risk could be further refined by introducing a parametrisation for the P factor. The 392 

application and maintenance of support practise measures can substantially decrease the risk of soil 393 

erosion. Conservation practices such as contour farming, strip cropping, or terracing can reduce 394 

RUSLE estimated soil loss by a factor of 2, 4, and 10, respectively (Schürz et al., 2020). In practice, 395 

Terranova et al. (2009) in Calabria, Italy, and Feng et al. (2010) in the Loess Plateau, China, have 396 
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demonstrated that soil conservation measures can significantly decrease the risk of soil erosion. 397 

Hence, further investigation is required to evaluate the potential of using conservation farming 398 

practices that mitigate the impact of soil erosion in the Winam Gulf, with particular emphasis on 399 

reducing the risk of erosion in the region. It is important to acknowledge the uncertainty contribution 400 

in the soil erosion calculations derived from using precipitation, DEM, soil, and NDVI data with 401 

different spatial resolutions. Soil erosion modelling is inherently influenced by the accuracy of these 402 

variables, and input data with finer spatial resolutions yield more accurate risk assessments (Guo et 403 

al., 2021). Whilst the RUSLE model has its limitations, it is widely used due to its relative simplicity 404 

and robustness. This approach is capable of facilitating soil conservation policies at national and 405 

multinational scales as local methodologies may suffer from poor consistency and high levels of 406 

uncertainty (Panagos et al., 2016; Rellini et al., 2019). Notwithstanding the limitations, the 407 

information provided in this study has identified areas in the Winam Gulf catchment, primarily within 408 

the Nandi Hills and Gwassi Hills, which require further investigation to assess the full extent of soil 409 

erosion. Field-based studies capable of incorporating existing conservation practices are 410 

recommended in areas prone to significant soil erosion risk to determine actual soil loss rates. This 411 

will aid decision-making enabling stakeholders and policymakers to target specific management 412 

efforts for reducing soil erosion.  413 

 414 

4. Conclusion 415 

The soil erosion maps presented here provide the first assessment of erosion risk with monthly 416 

temporal resolution in Sub-Saharan Africa, considering dynamic rainfall and vegetation cover 417 

datasets. They enable the quantification of soil erosion and provide information regarding spatio-418 

temporal patterns of soil loss due to water erosion in the Winam Gulf. Our RUSLE model outputs 419 

showed that the mean annual gross soil loss by water erosion is approximately 10.71 Mt year-1 with a 420 

mean soil loss rate of 9.63 t ha-1 year-1. These results show that the highest risk occurs between 421 

January and April, which coincides with periods of reduced vegetation cover and high rainfall. We 422 

demonstrated the need to assess soil erosion with greater temporal resolution than annual assessments, 423 
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due to seasonal variability leading to the under and overestimation of soil erosion by water in specific 424 

months. Moreover, as the effects of climate change on precipitation patterns are projected to increase 425 

the risk of soil erosion a greater level of understanding is essential to evaluate how to best implement 426 

soil conservation practices.  427 
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