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Instability in Jacobians is determined by the presence of an 
eigenvalue lying in the right half plane. The coefficients of 
the characteristic polynomial contain information related to 
the specific matrix elements that play a greater destabilising 
role. Yet the destabilising circuits, or cycles, constructed by 
multiplying these elements together, form only a subset of 
all the cycles comprising a given system. This paper looks 
at the destabilising cycles in three sign-restricted forms in 
terms of sets of the matrix elements to explore how sign 
structure affects how the elements contribute to instability. 
This leads to quite rich combinatorial structure among the 
destabilising cycle sets as set size grows within the coefficients 
of the characteristic polynomial.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

There are three standard matrix forms that emerge from the linearisation of Lotka-
Volterra type dynamical equations ([3],[11]) within the field of ecology. Each of the forms 
is represented through differing sign conventions as can be seen in the following 3 × 3
examples ({a, b, c, ..., k} > 0), which shall be referred to by their ecological names:
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Table 1
The Routh table for Eq. (0.1). 
The number of sign changes as one 
moves down the first column in-
dicate the number of roots in the 
right half plane. In this case, two.

x4 1 3 5
x3 2 4
x2 1 5
x1 -6
x0 5

Predator-Prey Mutualistic Competitive[−a b c
−d −e f
−g −h −k

] [−a b c
d −e f
g h −k

] [−a −b −c
−d −e −f
−g −h −k

]
.

Stability of these systems is determined by whether all of the eigenvalues lie in the left 
half of the complex plane. The characteristic polynomial of an n × n matrix is an nth-
order monic polynomial (or made so by change of sign), whose roots are the eigenvalues 
of the system. A necessary condition for the roots of a polynomial to all lie in the left half 
plane, and therefore for the system to be stable, is for all of its coefficients to be positive. 
However, this condition is not sufficient. The Routh-Hurwitz stability criterion ([8],[1]) 
provides a further, and sufficient, condition. The following equation is an example of a 
polynomial satisfying the necessary condition of positive coefficients,

x4 + 2x3 + 3x2 + 4x + 5 = 0, (0.1)

yet whose Routh table (Table 1) reflects the existence of two roots in the right half plane 
and is therefore not Routh-Hurwitz stable.

Polynomials of the example just described can only have roots in the right half plane 
that are complex conjugate pairs. This was proven by Obrechkoff [6], who showed that 
there are no solutions to polynomials with positive coefficients that lie on the positive 
real axis (the right half plane roots of Eq. (0.1) are 0.29 ± 1.42i).

Therefore, any systems that have a real maximal (largest real part) eigenvalue (with 
imaginary part zero) have their tipping point between stability and instability just where 
the last coefficient of their characteristic polynomial becomes positive.

The coefficients of the characteristic polynomial are derived from the minors of the 
matrix. These minors may be exhaustively described by the terms consisting of sets of 
multiplied elements, or cycles, of the matrix. Such cycles may consist of directed graph 
cycles, as well as the union of disjoint, or composite, cycles of the given length.

Within each coefficient of a characteristic polynomial, one can distinguish the cycles 
that contribute to the coefficient becoming more positive, and therefore stabilising, or 
more negative and destabilising. For example, consider the general characteristic poly-
nomial of the 3 × 3 predator-prey system described above,

a3x
3 + a2x

2 + a1x + a0,
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which expands, in terms of its matrix elements as,

x3 +(a+ e+k)x2 +(bd+ae+ cg+ fh+ak+ ek)x+(ceg+ bfg+afh+ bdk+aek− cdh).

Given that characteristic polynomials are monic, we know that the highest order 
coefficient, a3, is 1 and therefore positive, a2 is the negative of the trace, and therefore 
positive, and as can be seen, a1, the summed combination of 2-tuples, is also positive. 
This leaves only a0 able to switch between being positive or negative and therefore able 
to destabilise the system. For clarity of explanation, we have used the change of sign of 
the coefficient for consideration of stability, even though this is only a clear indication in 
systems with a maximal real-valued eigenvalue. But the effect of increasing the positive 
or negative value of a coefficient on its stability applies to all of the systems. Within a0, 
the only destabilising circuit, or tipping cycle, is cdh,

⎡
⎢⎣−a b c

−d −e f

−g −h −k

⎤
⎥⎦ .

This means that however large the other elements are, they cannot force the system to 
become unstable (if it is not already so), only the circuit of c, d and h can do that. Given 
that there are five other cycles of size three that make up the a0 coefficient, it is helpful 
to consider a ratio, the coefficient sensitivity, ãi, which in this case is

ã0 = 1/6.

Table 2 shows the values of ãi for predator-prey, mutualistic and competitive systems 
up to size 8 × 8.

Consider the 4 × 4 predator-prey system,
⎡
⎢⎢⎢⎣
−a b c d

−e −f g h

−k −l −m p

−q −r −s −t

⎤
⎥⎥⎥⎦ ,

then the coefficient a1, consisting of 3-cycles (n − i) is,

cfk + bgk + agl + bem + afm + dfq + bhq + dmq + cpq + ahr + hmr + gpr+

aps + fps + bet + aft + ckt + glt + amt + fmt− cel − der − dks− hls.

We define the tipping cycle set of a1 as â1 = {cel, der, dks, hls}. These four negative 
cycles (ã1 = 4/24, and |â1| = 4), that if strong enough, could tip the a1 coefficient 
from positive to negative, destabilising the system, consist of only eight distinct matrix 
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Table 2
For the three forms under discussion ãi is presented for systems up n = 8. By the inherent sign symmetries 
and proportions it would be reasonable to suggest that, for any size n, ãi < 1/2 in predator-prey (P-
P) systems (but as n increases, ã0 asymptotically tends to 1/2), ãi ≥ 1/2 in mutualistic (M) systems 
(the case when ãi = 1/2 only when the diagonal terms do not play a role in the cycles contributing to 
destabilisation), and ãi = 1/2 in competitive (C) systems. Coefficients indicated by a + have no negative 
destabilising cycles and therefore ãi = 0. The total number of terms (denominator) for each ai is n!/i!. 
The values of the numerators of the highest predator-prey ãi follow the tetrahedral numbers, while the 
mutualistic and competitive highest order numerators of the ai are the triangular numbers. The sequence 
of tipping cycles of the competitive systems for a given n as i decreases follows the sequence of path 
polynomials of the complete graph Kn [10].

n a8x
8 a7x

7 a6x
6 a5x

5 a4x
4 a3x

3 a2x
2 a1x a0

P-P 2 + + +
3 + + + 1/6
4 + + + 4/24 8/24
5 + + + 10/60 40/120 52/120
6 + + + 20/120 120/360 312/720 344/720
7 + + + 35/210 280/840 1092/2520 2408/5040 2488/5040
8 + + + 56/336 560/1680 2912/6720 9632/20160 19904/40320 20096/40320

C 2 + + 1/2
3 + + 3/6 3/6
4 + + 6/12 12/24 12/24
5 + + 10/20 30/60 60/120 60/120
6 + + 15/30 60/120 180/360 360/720 360/720
7 + + 21/42 105/210 420/840 1260/2520 2520/5040 2520/5040
8 + + 28/56 168/336 840/1680 3360/6720 10080/20160 20160/40320 20160/40320

M 2 + + 1/2
3 + + 3/6 5/6
4 + + 6/12 20/24 20/24
5 + + 10/20 50/60 100/120 84/120
6 + + 15/30 100/120 300/360 504/720 424/720
7 + + 21/42 175/210 700/840 1764/2520 2968/5040 2680/5040
8 + + 28/56 280/336 1400/1680 4704/6720 11872/20160 21440/40320 20544/40320

elements, c, d, e, h, k, l, r and s, with each element included in a differing number of 
cycles. That is, each element has a specific weight. If we construct a weighted matrix 
of the elements of this tipping cycle set ([â1]) by counting the number of times each 
element is represented in the â1 set and placing this number in the element’s position 
in the matrix, one can clearly see the patterning of the key elements that play a role in 
destabilisation,

[â1] =

⎡
⎢⎢⎢⎣

0 0 1 2
2 0 0 1
1 2 0 0
0 1 2 0

⎤
⎥⎥⎥⎦ .

Applied to all the different forms, we can see that the sign structure of the matrix has 
an effect on the different elements in their role in the destabilising cycles,

[â0] =

Predator-Prey Competitive Mutualistic⎡
⎢⎣

1 1 3 3
3 1 1 3
3 3 1 1
1 3 3 1

⎤
⎥⎦

⎡
⎢⎣

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

⎤
⎥⎦

⎡
⎢⎣

5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5

⎤
⎥⎦

[â1] =

⎡
⎢⎣

0 0 1 2
2 0 0 1
1 2 0 0

⎤
⎥⎦

⎡
⎢⎣

3 2 2 2
2 3 2 2
2 2 3 2

⎤
⎥⎦

⎡
⎢⎣

3 4 4 4
4 3 4 4
4 4 3 4

⎤
⎥⎦
0 1 2 0 2 2 2 3 4 4 4 3
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[â2] =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦

⎡
⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎦

⎡
⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎦

In addition, the total weighting of the elements in their role in destabilisation across all 
the coefficients is a summation of the individual coefficient tipping cycle set weightings,

n∑
i=0

[âi] =

Predator-Prey Competitive Mutualistic⎡
⎢⎣

1 1 4 5
5 1 1 4
4 5 1 1
1 4 5 1

⎤
⎥⎦

⎡
⎢⎣

6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

⎤
⎥⎦

⎡
⎢⎣

8 10 10 10
10 8 10 10
10 10 8 10
10 10 10 8

⎤
⎥⎦.

Extending the summed weightings to the 5 × 5 systems,

Predator-Prey Competitive Mutualistic⎡
⎢⎢⎢⎣

12 11 20 23 24
24 12 11 20 23
23 24 12 11 20
20 23 24 12 11
11 20 23 24 12

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

30 25 25 25 25
25 30 25 25 25
25 25 30 25 25
25 25 25 30 25
25 25 25 25 30

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

46 38 38 38 38
38 46 38 38 38
38 38 46 38 38
38 38 38 46 38
38 38 38 38 46

⎤
⎥⎥⎥⎦.

The symmetry seen in the competitive and mutualistic 
∑n

i=0[âi] is clearly a con-
sequence of the symmetry in the sign structure of these two forms, while for the 
predator-prey systems it reflects its lack of sign symmetry. Such bias in the weight-
ing of certain individual elements in the predator-prey case raises the question as to 
how much stability or instability is an artifact of the structure. For example, in larger 
systems, positioning of one species over another in the governing equations from which 
the Jacobians are constructed may prove crucial for the outcome. That is, it posits the 
question of whether the medium may well be the message.

If the elements comprising tipping cycles are considered in terms of set inclusion, in 
which for a given âi, set comparability is considered as an antichain, and the set inclusion 
properties of smaller to larger sized cycles is likewise determined by the collection of 
elements, then we can describe the inclusion properties of âi as i decreases for a given 
n. To see this, we again look at the 4 × 4 predator-prey system, where the 4-cycles are 
â0 = {chlq, dgkr, demr, cepr, dfks, bhks, ahls, celt}. In terms of the constituent elements, 
the set of 3-cycles of â1 are subsets of some of the 4-cycles of â0 (i.e. cel ∈ celt):

â1 ⊂ â0.

This property, in which the smaller tipping cycle sets are a subset of the larger sized sets 
holds across all the forms of matrices for a given n:

âi ⊂ âj, ∀j<i.
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Yet the way the different forms (i.e. predator-prey, mutualistic and competitive) result 
in different element weightings is also reflected in the different ways their âi flow through 

their ai as i decreases.
For example, with the 4 × 4 predator-prey system, there are four tipping cycles 

in â1 and eight tipping cycles in â0. While the smaller sets of â1 are subsets of 
four of the sets in â0, the four remaining sets of â0 do not have such an embedding 

from sets of â1, but are new configurations of elements from the 4 × 4 system (i.e. 
{cel, der, dks, hls} ⊂ {celt, derm, dksf, hlsa} + {bhks, cepr, chlq, dgkr}). The sets of 4-
cycles of â0 that contain the 3-cycles from ã1 are composite cycles in which the remaining 

disjoint diagonal term has been added ({cel(t), der(m), dks(f), hls(a)}), while the non-
composite ã0 configurations ({bhks, cepr, chlq, dgkr}) are the addition of new directed 

graph cycles.
In the 4 × 4 competitive case, the six sets in â2 are subsets in two sets each in â1

(with each set in â2 a part of two new composite cycles in â1 through their construction 

with the remaining distinct disjoint diagonal terms), but in this case there are no new 

configurations of directed graph cycles. Six of the twelve sets of â0 consist of two sets 
each from â1 (constructed through merging two of the composite cycles in ã1 which share 

the same directed graph cycle from ã2), with the remaining six sets new directed graph 

cycle configurations:

â2 â1 â0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

be

ck

dq

gl

hr

ps

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bem

bet

ckf

ckt

dqf

dqm

gla

glt

hra

hrm

psa

psf

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

bemt

ckft

dqfm

glat

hram

psaf

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

bgpq

bhks

cepr

chlq

dgkr

dels

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

or, explicitly showing the composite cycles,
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â2 â1 â0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

be

ck

dq

gl

hr

ps

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

be(m)
be(t)
ck(f)
ck(t)
dq(f)
dq(m)
gl(a)
gl(t)
hr(a)
hr(m)
ps(a)
ps(f)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

be(m)(t)
ck(f)(t)
dq(f)(m)
gl(a)(t)
hr(a)(m)
ps(a)(f)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

bgpq

bhks

cepr

chlq

dels

dgkr

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

With the 4 × 4 mutualistic system, there are six tipping cycles in â2, and as with 
the competitive case, each of these are in two composite cycles in â1. However, unlike in 
the competitive case, there are eight new tipping cycles that include none of the â2 as 
subsets. In the next tipping cycle set, â0, it follows the competitive case in having six 
sets, each of which consists of two sets from â1, and six sets that are new configurations 
(the same new configurations as in the competitive case). In addition, there are eight 
composite cycles generated from the new directed cycles begun in â1, indicating a general 
pattern:

â2 â1 â0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

be

ck

dq

gl

hr

ps

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

be(m)
be(t)
ck(f)
ck(t)
dq(f)
dq(m)
gl(a)
gl(t)
hr(a)
hr(m)
ps(a)
ps(f)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bgk

bhq

cel

cpq

der

dks

gpr

hls

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

be(m)(t)
ck(f)(t)
dq(f)(m)
gl(a)(t)
hr(a)(m)
ps(a)(f)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bgk(t)
bhq(m)
cel(t)
cpq(f)
der(m)
dks(f)
gpr(a)
hls(a)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

bgpq

bhks

cepr

chlq

dels

dgkr

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Thus, the differences in the specific sign structure of the matrices alter the flow of 
the inclusion properties of the tipping cycle sets as their cycle size increases. A full 
combinatorial characterisation of the flows in general yields the values reflected in the 
ãi of the different forms, yet in a more intricate way.
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For example, in the competitive case, the way the size of each tipping cycle set (|âi|) 
unfolds as i decreases for a given n is as follows. For n = 8, the tipping cycle set size of 
a6 (the first ai where ãi > 0) is

|â6| = 1
2 × 8!

6! .

The sets from â6 are then carried, through inclusion (i.e. as composite cycles), as subsets 
into â5,

|â5â6
| = 6 × |â6|

1

where the expression â5â6
indicates the sets first seen in â6 now included in the â5 sets, 

and where the value of |â6| is divided by 1 (the first step in which the set is included, and 
reflecting the number of additional disjoint elements that are included in the construction 
of each new composite cycle), and multiplied by 6 (i.e. i + 1, the coefficient index of 
the smaller (in set size), preceding set, and reflecting the number of remaining disjoint 
diagonal elements with which the preceding cycle size can draw on to form a composite 
cycle).

In the case of competitive systems, we know that the number of tipping cycle sets for 
each ai is 1

2 × n!
i! , which for i = 5 (n = 8) equals the value of |â5â6

|. Therefore there are 
no new additional sets arising in â5 that are not supersets of â6,

|â5| = |â5â6
|.

Moving to the supersets of the next coefficient,

|â4â6
| = 5 ×

|â5â6
|

2 .

Again, with |â5â6
| divided by 2 (the second step from |â6|), and multiplied by 5 (i + 1).

In addition to the supersets of â6 (via â5â6
), there are a number of newly formed sets 

(â4â4
) easily calculated from the total number of sets,

|â4â4
| = 1

2 × 8!
4! − |â4â6

|

Therefore,

|â4| = |â4â6
| + |â4â4

|.

This process can continue as i decreases as follows,

|â3â
| = 4 ×

|â4â6
|
, |â3â

| = 4 ×
|â4â4

|

6 3 4 1
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where again the denominator indicates the number of steps away from the original set 
construction,

|â3â3
| = 1

2 × 8!
3! − |â3â6

| − |â3â4
|

and

|â3| = |â3â6
| + |â3â4

| + |â3â3
|.

Continuing,

|â2â6
| = 3 ×

|â3â6
|

4 , |â2â4
| = 3 ×

|â3â4
|

2 , |â2â3
| = 3 ×

|â3â3
|

1

|â2â2
| = 1

2 × 8!
2! − |â2â6

| − |â2â4
| − |â2â3

|

|â2| = |â2â6
| + |â2â4

| + |â2â3
| + |â2â2

|

and so on, down to a0,

|â1â6
| = 2 ×

|â2â6
|

5 , |â1â4
| = 2 ×

|â2â4
|

3 , |â1â3
| = 2 ×

|â2â3
|

2 , |â1â2
| = 2 ×

|â2â2
|

1

|â1â1
| = 1

2 × 8!
1! − |â1â6

| − |â1â4
| − |â1â3

| − |â1â2
|

|â1| = |â1â6
| + |â1â4

| + |â1â3
| + |â1â2

| + |â1â1
|

|â0â6
| =

|â1â6
|

6 , |â0â4
| =

|â1â4
|

4 , |â0â3
| =

|â1â3
|

3 , |â0â2
| =

|â1â2
|

2 , |â0â1
| =

|â1â1
|

1

|â0â0
| = 1

2 × 8!
0! − |â1â6

| − |â1â4
| − |â1â3

| − |â1â2
| − |â1â1

|

|â0| = |â0â6
| + |â0â4

| + |â0â3
| + |â0â2

| + |â0â1
| + |â0â0

|

In general, for competitive systems, and a given n,

|ân−2| = 1
2

n!
(n− 2)!

and for i < n − 2, for individual supersets derived from smaller âj sets, each smaller set 
is divided by the number of steps (j − i) removed from their original construction (at 
index j) and the whole expression multiplied by i + 1,

|âiâj
| = (i + 1) ×

|â(i+1)âj
|

j − i
.

Therefore, for a given index i the supersets are
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Table 3
Values of Γi for each |âi| for competitive systems up to n = 12. There is rich structure among the 
Γi. For example, the a0 values ({6, 20, 135, 924, ...}) are the rencontres numbers with two fixed points; 
the first entries for each n ({α4, α5, α6, α7, ...} = {6, 30, 90, 210, ...}) are n(n − 1)(n − 2)(n − 3)/4 (or 
αn = αn−1+(n −1)(n −2)(n −3)); the second set of values ({β5, β6, β7, β8, ...} = {20, 120, 420, 1120, ...}) 
in each n can be described as βn = βn−1 + (n − 1)(2

(n−2
3

)
+ (n − 2)

(n−3
2

)
); the third set of values 

({δ6, δ7, δ8, δ9, ...} = {135, 945, 3780, 11340, ...}) is δn = δn−1 + (n − 1)(
((n−3

2
)

2

)
+ (n − 2) (n−3)!

(n−6)! ).

n a8 a7 a6 a5 a4 a3 a2 a1 a0

4 6
5 30 20
6 90 120 135
7 210 420 945 924
8 420 1120 3780 7392 7420
9 756 2520 11340 33264 66780 66744
10 1260 5040 28350 110880 333900 667440 667485
11 1980 9240 62370 304920 1224300 3670920 7342335 7342280
12 2970 15840 124740 731808 3672900 14683680 44054010 88107360 88107426

Ωi = (i + 1) ×
j=n−2,k=n−2−i∑

j=i+1,k=1

|â(i+1)âj
|

k

while the number of newly formed sets in each i that are not supersets are,

Γi = 1
2
n!
i! − Ωi.

The Γi values for competitive systems up to n = 12 are shown in Table 3. Each âi, 
consisting of the cumulative supersets and the newly formed sets, is then

|âi| = Ωi + Γi.

While the Ωi follows a similar patterning for mutualistic and predator-prey systems, 
a natural question arises as to what a full characterisation of the Ωi and Γi for any 
n × n system with any sign structure might suggest. For example, the discussion so far 
has considered forms of matrices with diagonal entries whose elements are all negative 
which is an assurance of stability, given large enough diagonal values. A diagonal of all 
positive entries, on the other hand, would result in an unstable system through a positive 
trace, and therefore a negative coefficient for xn−1 (i.e. ãn−1 = 1). In the case in which 
the diagonal elements are all 0, then all the Ωi = 0 in the competitive example above. 
That is, all the composite cycles, which are constructed with diagonal elements, would 
be removed. The significance of the diagonal, and its role in assuring stability, becomes 
even more apparent when generalising to other sign structures and sparser matrices.

There is a long history of studying sign-stable and potential sign-stable matrices ([9], 
[7], [4], [2], [5]), which explores the stability of systems solely based on the sign (and 0) 
of their elements. Consider a few examples

A =
[ 0 + 0
− − 0

]
B =

[ 0 + 0
0 − +

]
C =

[+ 0 +
0 0 +

]

0 0 − − 0 − − + −
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D =
[ 0 + −
− 0 0
+ 0 −

]
E =

[− + 0
0 0 +
− − 0

]
F =

[+ + +
+ − +
+ + +

]
.

Applying the coefficient sensitivities approach to these matrices needs care. Matrices 
A, B, D and E have all their ãi = 0; C has ã0 = 0, ã1 = 2/3 and ã2 = 1/2; F has ã0 = 3/6, 
ã1 = 5/6 and ã2 = 2/3. Matrices A, B, D and C are potentially stable, however matrices 
E and F are not. While systems that are potentially stable must have all their ãi < 1, 
it is not the case in general that if all ãi < 1 the system is potentially stable. Questions 
remain as to the extent to which certain of the approaches that have been described for 
the specific sign-restricted forms may be extended to more general matrix structures.
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