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Abstract: The commitment by over 100 governments covering over 90% of the world’s forests at
the COP26 in Glasgow to end deforestation by 2030 requires more effective forest monitoring sys-
tems. The near real-time (NRT) change detection of forest cover loss enables forest landowners,
government agencies and local communities to monitor natural and anthropogenic disturbances
in a much timelier fashion than the thematic maps that are released every year. NRT deforestation
alerts enable the establishment of more up-to-date forest inventories and rapid responses to unli-
censed logging. The Copernicus Sentinel-2 satellites provide operational Earth observation (EO)
data from multi-spectral optical/near-infrared wavelengths every five days at a global scale and
at 10 m resolution. The amount of acquired data requires cloud computing or high-performance
computing for ongoing monitoring systems and an automated system for processing, analyzing and
delivering the information promptly. Here, we present a Sentinel-2-based NRT change detection
system, assess its performance over two study sites, Manantlán in Mexico and Cartagena del Chairá
in Colombia, and evaluate the forest changes that occurred in 2018. An independent validation with
very high-resolution PlanetScope (~3 m) and RapidEye (~5 m) data suggests that the proposed NRT
change detection system can accurately detect forest cover loss (> 87%), other vegetation loss (>
76%) and other vegetation gain (> 71%). Furthermore, the proposed NRT change detection system is
designed to be attuned using in situ data. Therefore, it is scalable to larger regions, entire countries
and even continents.
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1. Introduction

Tropical forests stabilize the world’s climate and protect biodiversity [1,2]. In the
context of the UN Framework Convention on Climate Change and the Paris Agreement,
the initiative on “Reducing Emissions from Deforestation and forest Degradation” (REDD+)
aims to protect carbon stores, biodiversity and other ecosystem services [3,4]. One of the
main requirements for the implementation of REDD+ is a robust and objective measure-
ment, reporting and verification (MRV) system that is based on satellite technology [5].
Humans have changed the natural environment on a global scale to an unprecedented
degree. The global changes in atmospheric chemistry and climate have led to a new ge-
ological era called the Anthropocene [6]. Land use change is the driver with the largest
global impact on forest cover since three quarters of these lands have changed, thereby
diminishing the productivity of 23% of global land surface [4,7,8].

Remote sensing has provided new tools and opportunities for monitoring land cover
changes in recent decades. Research has focused on the generation of tree cover maps [9,10],
forest aboveground biomass maps [11,12] and land cover change maps [13], as well as
improving algorithms to increase their accuracy [10,13–15]. Many of these products are
produced annually or with a fixed delivery schedule, which limits their usability for
enabling timely interventions when unlicensed forest cover loss is detected. Additionally,
current monitoring systems do not operate at spatial scales that are sufficient to detect
smaller areas of deforestation [5,16]. Examples of such global products are the tree cover
change maps from Global Forest Watch using Landsat imagery and the forest/non-forest
maps produced from ALOS imagery by JAXA [9,10,16,17]. However, some regional studies
have used near real-time (NRT) applications that help authorities to respond quickly
to events (i.e., deforestation, degradation or extreme environmental events), enabling
government agencies to manage the land more effectively and supporting local decision-
making with timely information [16,18–21]. NRT change alerts have been used for other
purposes than in forestry, such as flood mapping [22], active wildfire monitoring, natural
disasters and food security [18,23,24]. Generally, they are using imagery of medium
(30 m, Landsat) to coarse spatial resolution (1 km, MODIS). Most of them rely on spectral
signatures to derive indices (i.e., vegetation, fires, etc.) that allow the observation of the
changes being monitored [16].

The provision of freely available and timely satellite remote sensing data has grown
exponentially in recent years. With the launch of the Copernicus Sentinel satellites by the
European Space Agency (ESA), there is much greater potential for monitoring land cover
change in NRT at high spatial resolution. Sentinel-2 provides multi-spectral (MS) imagery
at a finer spatial and temporal resolution compared to Landsat 8 and 9. The 10 m spatial
resolution enables Sentinel-2 to map even small plantations, clearances and wind throw in
complex forest landscapes [15]. With a 5-day return period, Sentinel-2 can be used for NRT
monitoring and has a higher chance of acquiring a cloud-free image than Landsat. Various
papers have demonstrated the capability of Sentinel-2 data in detecting NRT forest change
by combining different sensors [25–27], and particularly by using freely available cloud
processing platforms such as Google Earth Engine [28].

Alongside the satellite data revolution, change detection methods have advanced
dramatically in the fields of remote sensing, image processing and computer vision [29].
General review papers include critical syntheses of techniques that include image algebra,
trend analysis, moving window calculations, dimensionality reduction, post-classification
comparison and direct pixel classification, which may be used in isolation or in combi-
nation [30]. Many factors will affect the choice of the most appropriate method, such
as the aims of the change detection, the temporal frequency of the observations and the
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level of existing knowledge about the change. Image differencing is the simplest change
detection technique since it only involves the subtraction of one image from another [31,32].
Moving window methods provide a localized alternative to image algebra, although they
require post-operation analysis to provide a change product. Additionally, moving win-
dows require the identification of a scale that is coarser than the spatial resolution of the
image, which can reduce the detectability of specific small-scale features in the imagery [33].
Dimensionality reduction techniques, such as principal components analysis (PCA), pro-
duce uncorrelated Eigen images, within which a prominent representation of the change
may occur [34,35]. Further processing via the use of thresholds or statistical learning is
required to extract thematic change from the Eigen values. Techniques such as multi-variate
alteration detection [36] use canonical correlation analysis to produce a similar output to
PCA in the sense that a multi-band image is produced where any patterns of change are
prominent, but they aim to eliminate some of the short comings of PCA, such as noise
and linear scaling sensitivities. As with the previously mentioned techniques, further
analysis, such as image thresholding or statistical learning, is required to map the thematic
change classes [34–36]. One advantage of the methods outlined so far is that they provide a
quantitative representation of change. However, they require either manual or automated
post-processing to map the change.

Trend analysis techniques aim to analyze the variation of pixel values over time, such
that a change in values between images beyond the bounds of the expected variation
constitutes a change. Notable examples of such studies include those using the “Breaks
for additive seasonal and trend” (Bfast) algorithm [37–41] and the continuous change
detection and classification of land cover algorithm. Post-classification comparison (PCC) is
another widely used change detection method that produces thematic maps of change. It is
generated from statistical learning techniques and applied manually or by a set of rules [42].
The direct classification of change through a chronologically stacked pair of images reduces
error propagation and has the advantage of directly classifying the signatures of change in
the data. One of the most notable recent publications that utilizes this technique is Global
Forest Watch [9], where a time series of global forest cover change is being produced from
the year 2000 onwards. It employs a direct pixel classification of change, followed by trend
analysis to identify the time when the changes occurred. Nonetheless, an NRT system
requires an immediate detection of change rather than an annual retrospective approach.
This requires the direct classification of a chronologically stacked image pair.

In this study, we introduce a Sentinel-2-based near real-time (NRT) forest monitoring
system that is based on an open-source Python library called Python for Earth Observation
(PYEO v3.6) [43], which automates data downloading, processing, analysis, validation and
change alert reporting and won the Copernicus Masters’ Award (Sustainable Living) in
2017. The change detection was conducted using a refined machine learning algorithm on
a chronologically stacked pair of images. Reflectance bands of two image acquisitions were
stacked into a bi-temporal image stack and the classifier was trained using the temporal
and spectral information. To test the accuracy and scalability of the system, forest change
detection was conducted during the 12 months from December 2017 to December 2018 in
the Manantlán area of Mexico and Cartagena del Chairá in Colombia. The results were
validated independently using PlanetScope data.

2. Materials and Methods
2.1. Near Real-Time (NRT) Change Detection System

The new NRT change detection system was designed to automate Sentinel-2 data
downloading and processing, model training, image classification, the creation of change
alerts and validation procedures. The Sentinel-2 satellite constellation consists of two
satellites with a combined image acquisition frequency of 5 days with 10 m, 20 m and
60 m spatial resolutions and 13 spectral bands, from the visible spectrum to short-wave
infrared [44].
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This NRT change detection system was able to ingest all available Sentinel-2 bands.
However, we only used the highest-resolution (10 m) bands to provide the maximum
capacity to detect small-scale changes. The system was designed to detect changes in forest,
as well as other vegetation, covering the nine classes as described in Table 1. Water bodies
were masked out in the analysis.

Table 1. The definitions of change classes considered in the NRT change detection system.

Classes Definition

Stable Forest Forest that remains forest between two
observations.

Forest > Other Vegetation

Forest that changes to other vegetation. This
class is difficult to detect during a short period
of analysis. It may happen when deforested
areas are in a recovery process but are still not
within the definition of forest, or areas that
replaced by other type of vegetation not
identified as forest (i.e., bracken, agriculture,
palm plantations).

Forest > Non-vegetation Forest that changes to non-vegetated areas, i.e.,
deforestation.

Stable Other Vegetation Areas that are covered by vegetation other than
forest on both observation dates.

Other Vegetation > Forest
Other vegetation that changes into forest, i.e.,
areas of tree planting, afforestation or
reforestation.

Other Vegetation > Non-vegetation
Other vegetation that changes into
non-vegetated areas, i.e., change in crops,
seasonal shrubs.

Stable Non-vegetation Areas that are not covered by vegetation in
either observation, i.e., bare soils, urban areas.

Non-vegetation > Forest

Non-vegetated areas that change into forest,
i.e., areas of tree planting, afforestation or
reforestation. This class might occur in a longer
time series (i.e., > 10 years) [45,46].

Non-vegetation > Other Vegetation
Non-vegetated areas that change into other
vegetation, i.e., crop growth, bracken growth,
succession.

Prior to the NRT change detection analysis, a baseline forest cover map was generated.
The baseline map consisted of a forest/non-forest mask, resulting from applying the trained
model to the identification of these two classes over a year before the monitoring period.
If a pixel was classified as forest for most image acquisitions in the given year and was
not deforested within the last 3 months of the period, that pixel was identified as “forest”.
For the baseline, we did not consider the class “other vegetation”, so as to avoid false
positives due to seasonality. Therefore, areas identified as other vegetation were classified
as non-vegetation on the baseline map. Once the baseline map was defined, the NRT
change detection system followed the steps shown in Figure 1.
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Figure 1. (A) A conceptual diagram of the proposed near real-time processing chain and outputs. S2
refers to the Sentinel-2 images. AOI refers to the area of interest or area of studio. The aoi_config.ini
is the file containing all parameters for processing the Sentinel-2 image. The trained_model.pkl refers
to any pre-trained machine-learning model. (B) An example of a deforestation alert in the Forest
Sentinel App. (C) A quick look at the classification of change.

(i) A configuration file was generated to write all parameters required for the processing
chain, such as login information for the Copernicus hub account, path to the Sen2cor
installation for cloud masking, input and output paths for the processing, etc. Further
details can be found at [43].

(ii) The system monitored the ESA Copernicus Open Data Hub to find any new Sentinel-2
data acquisitions over the area of interest on a regular basis.

(iii) Sentinel-2 imagery was acquired by an optical sensor, so the data were affected by
atmospheric effects (i.e., clouds, cloud shadows, aerosols) and topographic effects
(i.e., illumination angle, shadows from terrain). Masking out the pixels affected
by noise and clouds was the key to reducing the omission errors in the change
detection, especially for pan-tropical regions with frequent cloud cover and steep
terrain. Therefore, we used a robust cloud and cloud shadow masking algorithm
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by combining the cloud mask from Sen2Cor (version 2.5.5) [47], to process the top
of atmosphere (TOA) L1C image to the bottom of atmosphere (BOA) reflectance at
level L2A [48], with the cloud mask generated by F-mask [49] and buffered by a
user-defined pixel number. Temporal gaps in the time series corresponded to areas
where the cloud cover was ≥80%. Therefore, those images were not processed due to
the likelihood of generating false positives in the change detection.

(iv) A cloud-free reference composite was generated using all available cloud-masked im-
ages from the composite-building time window for the selected area. (v) As soon as a
new Sentinel-2 image was acquired and added to the Copernicus Open Access Hub, it
was downloaded and processed using a pre-trained machine learning model to detect
vegetation change compared to the reference image composite. The NRT element
operated on the same principles as the time series data, whereby a chronologically
ordered image stack, consisting of a cloud-free reference image and a newly acquired
image, was processed for change detection. (vi) The last available cloud-free pixel
before the current acquisition data was then used to detect change against the baseline
composite. A binary mask was updated after every new image was ingested into the
system, so if a pixel was identified as change, it would be eliminated from the next
iteration of change detection. (vii) If visual interpretation was required for validating
the resultant change maps, a set of sampling points was automatically generated in
shapefile format. When a forest cover change was detected, it was archived and then
disseminated in a user-friendly interactive format to an authorized server and/or
registered mobile devices for further action.

In addition, this NRT system was designed to be applied to monitor local landscapes.
Therefore, as vegetation types changes, it was necessary to select new AOIs representing
these new vegetation types (i.e., rain forests vs. dry forests in the class “Forest” or bracken
vs. crops in “Other Vegetation”). It was noticed in trials that collecting more training
areas could benefit the performance and accuracy of the model. New models are generally
trained over different regions to ensure that the model is adapted to local vegetation
types and change patterns. If a new AOI has a distinct forest type or change pattern
compared to existing AOIs, then the model will need to be updated. Moreover, we did
not update the model for every new Sentinel-2 image, but rather regularly on an annual
basis to achieve a better performance as we had more samples of different vegetation types
represented in the same class (i.e., bracken vs. crops in “Other Vegetation”). Generally,
keeping the model up to date was of importance since, for example, changes to data
formats and the re-calibration of the satellite signal needed to be monitored and the models
updated/changed accordingly.

The outputs consisted of: (i) a thematic map of stable and change classes; (ii) probabil-
ity maps; (iii) a KMZ file with the forest cover change areas, with mean probabilities across
all pixels in the contiguous polygon and their geometric properties; and (iv) quick look
maps of the imagery used to detect the change for visual verification purposes (Figure 1C).
The KMZ file could be displayed on any computer or mobile device and was based on
Google Earth/Google Maps or integrated with axillary datasets to refine the detection
results. The geospatial processing element used the PYEO v3.6 library [43]. The geospatial
data outputs formed part of an integrated system that leverages mobile technology named
Forest Sentinel, which won the Copernicus Masters’ Sustainable Living Challenge Award in
2017 (Figure 1B). The resulting forest cover change map and alerts were sent to a server and
disseminated to computers or mobile devices by registered users who could then verify the
alerts in the field, allowing users to add photos, voice recordings and survey information
to the data.

2.2. NRT Change Detection System Performance Evaluation

We evaluated the performance and accuracy of our new NRT change detection system
(Section 2.1) in two study areas in the tropics: Manantlán in Mexico and Cartagena del
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Chairá in Colombia (see Figure 2). The change detection was carried out with data acquired
over one year, from December 2017 to December 2018.

Figure 2. The window areas of Manantlán (Mexico) and Cartagena del Chairá (Colombia).

2.2.1. Study Regions

Manantlán is located in the western region of north-central Mexico, spanning the
states of Jalisco and Colima. Within the region is the biosphere reserve Sierra de Man-
antlán, which is one of the most important natural mountain reserves in Mexico due to
its biological richness, extent, environmental services and water resources. The forest
vegetation is a mixture of temperate and cloud forests. Shrubs, grassland and agricultural
areas are also present [50]. The forests of Manantlán have been subject to deforestation and
forest fragmentation due to extensive cattle ranching and the timber extraction of oak and
pine [46,51]. In addition, illegal logging and gold mining have affected the area significantly
in the last decade [52,53]. Forest fires are a frequent phenomenon in Manantlán, and about
18,000 ha were affected in 2017. Most were surface fires that mainly affected leaf litter
and shrub vegetation. Consequently, they did not contribute significantly to deforestation.
However, in cases where the fires have affected the canopy, they could be identified as
deforestation [54,55].

Cartagena del Chairá is located in the Colombian Amazon, in the Caquetá department.
This region is covered by tropical moist broadleaf forest [56] and is a transition between
the Orinoquia savannahs and Amazonia. The region is known for having the highest
biological diversity in the country, holding a great variety of flora and fauna [57,58]. Land
cover is characterized by undisturbed and natural forests that are subject to some human
intervention, shrubs and grasslands, which are mainly for cattle ranching [59]. The Caquetá
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Department historically has the largest deforestation rate in Colombia. Cartagena del Chairá
presented the largest deforestation rate in 2015 (23,812 ha deforested), which was equivalent
to 19% of the national deforestation [60,61], and the second largest in 2017 (22,591 ha
deforested), which was equivalent to 10.3% of the deforested area in the country [62]. The
main deforestation driver is the conversion of forest to pastures for cattle ranching and
agriculture. At a lower intensity, unlicensed logging, crop production and mining also
contribute [56,61,63–65]. Forest fires may occur during the conversion of forest to facilitate
logging [61,66]. For 2018, this region reported 17,719 ha of burned areas, 8266 ha of which
were identified as forests. In Manantlán, we used 56 cloud-free images covering 93,153 ha
and in Cartagena del Chairá, we used 87 images covering 31,922 ha.

2.2.2. Change Detection Algorithm

A wide range of machine learning algorithms is currently available. These algorithms
have different strengths and weaknesses, but the success of their application relies on
the relevant specific circumstances and data characteristics [67–69]. Nonlinear models
have emerged as effective solutions for many real-world classification problems, such as
nonlinear support vector machines (nl-SVM) and ensemble methods, such as random forest
(RF) and gradient boosting (GB).

Amongst these, RF [70] was deemed the most suitable method due to it providing the
best compromise between model accuracy and processing speed. Both SVM and gradient
boosting (GB) algorithms are close to RF in their overall accuracy, but they take longer to
optimize the parameters via the grid search cross-validation due to limited parallelization.
We selected RF due to its easy parallelization and computational speed in comparison
to SVM. Deep neural networks (DNN), which have gained increasing attention in the
recent machine learning literature, may offer a slight increase in accuracy. However, the
computational demand for the training and model calibration using DNN is significantly
higher than the RF and, thus, is impractical for a model that has to be regularly updated.
Still, our system was built to be flexible and could be adapted to other any classifier (i.e.,
SVM, DNN) based on specific research needs.

RF is an ensemble classifier, where a group of typically deep CART classifier prob-
abilities are averaged to predict the most likely class label of a pixel or object [70]. Each
tree within the ensemble employs random feature selection and bootstrap sampling with a
replacement for every split of the CART tree, followed by the averaging of the probabilities
across all trees, which aims to mitigate against high variance [70]. For a more detailed ex-
planation of the underlying mathematics of RF, see [70] and [71]. Random forests also offer
some interpretability, such as the “out of bag error” and “feature importance” measures,
allowing some insight into the inner workings of a particular model [70].

A general rule of thumb with ensemble methods is the more trees, the more accurate
the model; although, the error rate may eventually increase beyond a certain number
of trees. Hence, for an increasing number of decision trees, there is normally a point of
diminishing return that can be approximated to minimize computation time, which is an
important factor in a near real-time system. In order to reduce the number of model fits
in the subsequent grid search cross-validation, the number of trees was first tested using
the out of bag error rate (OOB). This allowed for the fixing of the number of decision trees
prior to further hyper-parameter tuning [72].

We calibrated the RF models using training samples from the different land cover
change classes (see Table 2) using an exhaustive grid search method where the data were
subset into five “folds”, with a different fold retained during each iteration to test the
model’s accuracy and the remainder used to train the model. The contents of each fold
were stratified to ensure that they each contained the same percentage of classes as the
entire training set. Every possible input parameter combination within the following range
was run for each test fold, with the number of decision trees fixed at 500 and 300 for
Colombia and Mexico, respectively. The parameter combination that was the most accurate
on average across the folds was chosen for scene classification. The models were optimized
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using the average accuracy score across the folds. As with scene classification, the change
detection used a random forest classier that was trained using the exhaustive methods
described above. These were generated using Geospatial Learn [73], which itself in turn
uses Scikit-Learn methods [74] applied to geospatial data.

Table 2. The training and validation samples per class in each window area (Colombia and Mexico).
The training points are pixel-based, while the validation areas correspond to polygons drawn by
visual interpretation using PlanetScope data.

Classes
Training Sampling Points Validation Polygons

Colombia Mexico Colombia Mexico

1 Stable Forest 74,486 87,527 181 123

2 Forest > Non-vegetation 3839 8033 100 50

3 Stable Other Vegetation 6933 25,214 30 20

4 Other Vegetation > Non-vegetation 1439 14,455 40 25

5 Stable Non-vegetation 8294 22,039 45 13

6 Non-vegetation > Other Vegetation 730 11,047 40 8

TOTAL 99,047 168,315 446 239

2.2.3. Targeted Change Classes and Training Data Collecting Protocol

As a supervised classification method, the RF machine-learning model requires a large
training dataset for each defined class. For our test areas, we selected six generic categories
representing forest-related land cover change based on Table 1. However, from the nine
classes in this application of the NRT change detection system, we discarded the classes
“Forest > Other Vegetation”, “Other Vegetation > Forest” and “Non-vegetation > Forest”
because we did not find any examples of these changes. That was expected, considering
that this is study used a short time series and these changes occur over a longer period.

Training samples consisted of polygons created by visually digitizing the different
classes of study (see Table 1). The samples were collected by examining bi-temporal image
stacks for the entire archive of Sentinel-2 data. The training polygons were collected
from five to six image pairs over a year to train a more generic model for the different
seasons for each window area. Once a sufficient coverage across the AOI and TOI (time
of interest) was produced, the polygons/samples were split into training and calibration
data using the stratified random split approach. Each pixel within the extent of the training
polygons was used as one training data point. A forest baseline map was used to constrain
the “Forest > Non-vegetation” class to previously forested areas. The forest baseline map
was generated by applying the trained model to the 2017 time series data. A pixel that was
classified as forest for most image acquisitions in 2017 and was not deforested within the
last 3 months of 2017, was identified as “Forest”.

2.2.4. Validation Strategy and Accuracy Assessment

A stratified random sampling strategy was employed for validation [75,76]. We val-
idated the total change over the year of analysis so as not to include seasonal variations.
Therefore, training samples for each class were generated based on two cloud-free compos-
ites that were one year apart. Validation points for each stratum were generated randomly
in proportion to the area of that class, with an emphasis on the change classes. We ensured
that the standard error of the estimated overall accuracy was below 2% and that, for each
stratum, the expected user accuracy was over 70% for the change classes and over 90% for
the stable classes (Appendix A, Table A2). With this desired standard deviation for overall
accuracy and user accuracy, the proposed validation sampling design is given in Table 2.
A Python library was used to automatically generate the validation points based on this
approach [43].
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Cloud-free composites were generated for a historical baseline mapping period and
the monitoring periods. Change detection was applied to the cloud-free composites and
then validated. We also compared the NRT change detection accuracies to the monthly
products generated from cumulative change detection with a fixed baseline (see training
points in Table 2) [20]. PlanetScope image pairs covering the same time period were used
for validation [77]. The individual CubeSats of the PlanetScope constellation images had
four spectral bands (red, green, blue and near-infrared) with a spectral bandwidth of
60–90 nm and a spatial resolution of 3–4 m. Validation was conducted by overlaying
the validation points with the PlanetScope images, visually interpreting the very high-
resolution PlanetScope images and assigning the identified change class.

The user, producer and overall accuracies were derived from the confusion matrix
to assess the accuracy of the resulting change maps. The user accuracy (Equation (1))
represented the probability that a pixel classified as a given category was a true repre-
sentation of that category when compared to the validation data. The producer accuracy
(Equation (2)) represented how well the reference pixels for the given class were assigned
to pixels on the map, i.e., the number of real changes that were correctly detected by the
algorithm (see Table 2). The overall accuracy was the percentage of correctly classified
pixels across all classes.

Ui =
pii
Pi·

(1)

Pi =
pjj

P·j
(2)

O =
q

∑
j=1

pjj (3)

where Ui and Pi represent the user and producer accuracy of class i and O is the overall
accuracy among all targeted classes. pii is the number of validation points that are in class
pi· on the classified map to calculate the omission error. pjj is the validation points of the
reference class pj in the validation dataset used to calculate the commission error [75,76].

3. Results
3.1. Forest Change Alerts

From the historical observations for 2018 in the study area, the change detection
identified 1,200,000 deforestation pixels in Manantlán and 50,000 in Cartagena del Chairá.
In the Manantlán window area, deforestation events mainly happened in the dry season
between December and March (Figure 3, Mexico).

Figure 3. The temporal variation in the deforestation alerts for 2018 using Sentinel-2 images in the
window areas for Manantlán, Mexico, and Cartagena del Chairá, Colombia.
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In total, 0.4% of the forested area in 2017 was disturbed in 2018, with 91% of the
detected changes being below 0.04 ha in size and 0.9% of deforested areas being covered
by vegetation. A similar trend was observed in the Cartagena del Chairá window area,
where deforestation events mainly happened in the dry season between January and March
(Figure 3, Colombia). The forest disturbance rate was higher in Cartagena del Chairá
than in Manantlán, with 2.2% of forested area being disturbed in 2018. The Colombian
study area was smaller than the Mexican area. The size distribution of deforestation events
in Cartagena del Chairá showed more smaller disturbances than in Manantlán, where
deforested areas were larger in size (Figure 4). In total, 90% of the detected changes were
below 0.18 ha and 0.9% of the deforested areas were covered by vegetation.

Figure 4. The proportional size distribution of the detected deforestation events for the Colombia
and Mexico window areas.

Even though this NRT system recorded change alerts as and when a new image was
acquired, in Figure 5 we present the total change for all classes for 2018 in both window
areas. In Mexico, most changes occurred near settlements and areas of active land use.
We observed changes in regrowth and the loss of vegetation other than forest, as well as
deforestation in areas of pristine forest (zoom window in Figure 5A). In Colombia, the
study area was not close to big settlements. Therefore, the forest loss occurred in the natural
Amazonian forest and the changes in other vegetation classes followed land management
practices, such as crop growth and harvesting (Figure 5B).
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Figure 5. The detected forest change events for the window areas in 2018. (A) Mexico. (B) Colombia.
In the RGB Sentinel-2 change composite, red corresponds to the blue channel of the earliest date,
green corresponds to the green channel of the latest data and blue corresponds to the red channel of
the latest acquisition date. In the RGB composite shown in the zoom windows, areas of dark blue
correspond to forest loss, while the purple areas correspond to changes from other vegetation to
non-vegetation.

3.2. Change Detection Accuracy

The results from the random forest algorithm with the trained forest cover change
model achieved an overall accuracy of 92.5% for the automated deforestation alerts from
Sentinel-2. Table 3 shows the estimated user, producer and overall accuracies for each
change class. The accuracies were sufficiently high to make the PYEO forest cover change
detection system useful for local, regional or national forest monitoring for measurement,
reporting and verification (MRV) purposes under the REDD+ initiative (Reducing Emis-
sions from Deforestation and Forest Degradation in Developing Countries). The system
showed higher accuracies for detecting stable land cover classes and sharp changes, such
as forest loss, while there were lower accuracies (65–80%) in the detection of the changes in
other vegetation. The lowest accuracy (42%) was observed in the class of non-vegetated
areas changing to other vegetation in the Manantlán window area, mainly in the steep
mountains. We also found that the omission/commission errors corresponded to broader
classes relating to other vegetation and non-vegetated areas. These errors were related to
brighter parts of the images due to atmospheric haze.
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Table 3. The accuracy assessment of the change detections from Sentinel-2 by the visual interpretation
of PlanetScope data for the two window areas. NRT: near real-time; PA: producer accuracy; UA: user
accuracy; OA: overall accuracy.

Classes
PA (%) UA (%) OA (%)

Colombia Mexico Colombia Mexico Colombia Mexico

1 Stable Forest 94 95 96 100 95 97

2 Forest > Non-vegetation 75 88 99 97 87 93

3 Stable Other Vegetation 90 95 68 67 79 81

4 Other Vegetation > Non-vegetation 95 74 59 77 77 76

5 Stable Non-vegetation 93 86 88 40 90 63

6 Non-vegetation > Other Vegetation 75 42 100 100 88 71

TOTAL 87.0 87 80 85 80 86

4. Discussion

The main advantages of the PYEO forest alerts system using Sentinel-2 data over other
forest monitoring systems are the timeliness and speed of detection being within hours
after a new image becomes available. The system was designed with the speed of detection
in mind so that forest managers are able to intervene in forest cover loss events much more
quickly than before. Sentinel-2 was chosen as the satellite for the change detection because
it provides a new image every 5 days over all global land areas, which gives it an advantage
over Landsat 8 and 9. The Sentinel-2 data are also open-access. In addition, Sentinel-2 has a
10 m resolution in the red, green, blue and NIR bands, which means that the images show
small-scale forest loss events, down to the identification of individual large tropical trees
being logged when their crown cover is larger than a Sentinel-2 pixel, i.e., 100 m2. The
PYEO software package can be adapted to be applied regionally or even globally, although
it was not created to generate global forest cover change maps. Instead, it was designed
with the user in mind. Hence, the software allows a bottom up, regional approach to change
detection based on locally trained machine learning models with user-specified classes of
change between land cover types. This gives the user greater control over the definitions of
change classes of interest and makes the system very flexible and adaptive. For example, it
can be adapted to national or regional forest definitions. This change detection system was
based on forest cover loss, as well as the change detection of other change classes that are
useful for identifying the transition between other land cover classes.

In this paper, we tested the PYEO NRT forest alert system in two different ecoregions
of the tropics: Manantlán in Mexico and Cartagena del Chairá in Colombia. Both areas have
been identified as having high deforestation rates over the past years. Nonetheless, they
have different ecosystem conditions, as well as different deforestation drivers and patterns.
For instance, Manantlán is in a cloud forest in a mountainous region, where the biggest
contributions to deforestation are forest fires, agriculture practices, livestock grazing, pine
timber extraction and gold mining. In addition, the area presents forest degradation due to
illegal logging and gold mining [52,53]. On the other hand, Cartagena del Chairá is on an
alluvial plain, where the conversion of forest land to pastures for cattle ranching, as well as
illicit agriculture and mining, is rapidly and indiscriminately changing the ecosystems [1,2].
Nonetheless, both areas presented high accuracies for the detected land cover change
classes, and particularly high accuracies (>87%) for detected deforestation, for which the
model was trained.

Producing a time series change detection analysis using optical data will always make
it difficult to maintain the frequency of the detections of the stable classes, particularly in
tropical forest. In our study regions, we observed that Manantlán was more affected by
clouds on a yearly basis since 11% of the area was permanently covered by clouds, while
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only 0.65% of the area at Cartagena del Chairá could not be observed during the period
of study.

We compared the PYEO forest loss alerts in 2018 to the Global Forest Watch (GFW)
tree cover loss data [9], which is the most established operational global forest monitoring
system. There are marked differences between both systems. Firstly, the GFW was designed
to detect abrupt changes in forested pixels (deforestation), whilst the PYEO system classifies
change between land cover classes directly, not only forest gain and loss but other types of
change as well. Secondly, the GFW uses 30 m resolution Landsat images whilst PYEO is
based on 10 m Sentinel-2 data. Therefore, it is able to identify a much greater number of
small areas of probable forest cover loss, as observed in Figure 6.

Figure 6. A comparison of PYEO deforestation alerts to Global Forest Watch over two small areas in
Colombia and Mexico, showing a color composite of Sentinel-2 data used for the automated change
detection in this example from January to December 2018. The color composite has the combination of
the earliest acquisition date and the date of change detection. In the Sentinel-2 RGB composite image,
red corresponds to the blue channel of the earliest date, green corresponds to the green channel of the
latest date and blue corresponds to the red channel of the latest date. On the maps to the left, dark
blue corresponds to forest cover loss, while in the center and to the right, forest cover loss detections
are overlaid in orange. GFW: Global Forest Watch.

While it is possible that some of the very small forest cover loss detections could be
false alarms, this comparison demonstrates the added information content in the higher
spatial resolution images of 10 m instead of 30 m. In addition, the finer spatial resolution
from Sentinel-2 enables a better detection of forest degradation, which can be defined as a
“state of anthropogenically induced arrested succession, where ecological processes that
underlie forest dynamics are diminished or severely constrained” [74]. While forest cover
loss data do not allow for any direct inferences about anthropogenic or natural causes, they
do enable the detection of areas in which ecological processes in a forest are beginning
to be disturbed. GFW was designed to automatically identify changes based on spectral
differences from a global training sample database [16]. PYEO was designed to be trained
on local conditions and, although it can be used globally in principle, it was not designed
to produce global maps.

Comparing the forest loss reported by the GFW system and the PYEO alert system for
2017, the GFW reported 67,373 deforested pixels (6635 ha) for the Colombia window area
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whilst PYEO resulted in 156,629 smaller pixels (1566 ha). Hence, GFW reported nearly four
times more deforested area than our system. For Mexico, the PYEO alert system identified
29,748 pixels (292.48 ha), about 13 ha more than the 3097 pixels from GFW (278.73 ha). This
difference could be associated with the spatial resolution and the fact that we included the
class “Other Vegetation”, which could be identified by GFW as forest. In Colombia, we
identified 437,147 pixels (4371 ha) classified as “Other Vegetation > Non-vegetation”. For
Mexico, the class “Other Vegetation > Non-vegetation” was almost non-existent whilst for
Colombia, that class covered a large area (4371 ha), as seen in Figure 5.

In developing, testing and applying the PYEO forest alert system, we identified some
current limitations of its application. Firstly, seasonally dry tropical forest poses a challenge
to training a machine learning model from Sentinel-2 image pairs due to the strong influence
of the vegetation seasonality on the spectral reflectance. Secondly, the spectral reflectance in
the visible and near-infrared domain is also not very good at distinguishing between forest
plantations and natural forest. Thirdly, during the processing of the Sentinel-2 images, due
to the fully automated nature of the processing chain, sometimes residual atmospheric
effects, such as haze, cloud fringes and cloud shadows, can remain in the images and lead
to spurious change detections. The timeliness of the forest alerts depends on the availability
of cloud-free pixel observations; hence, the 5-day updates are the best-case scenario that
is achievable from free and open data. Finally, to train a good machine learning model
requires the representative sampling of the landscape areas, which requires substantial skill
and effort on the part of the image interpreter. As a result, the uncertainty of the estimates
or false negative detections could be reduced.

5. Conclusions

This paper presented a NRT change detection system based on a Sentinel-2 monitoring
system. It was developed to detect deforestation events, as well as changes in other land
cover classes, at 10 m spatial resolution in a fully automated manner and using a bottom up
approach. The system was based on the Python package “PYEO” (see the Supplementary
Material for GitHub location). It is flexible and can be adapted to any classifier (i.e., RF,
SVM, etc.) based on the user requirements. In addition, it is thought to be useful for all
landscapes since it is built on a local training approach, which can be adapted to local
landscapes. Nonetheless, local training data need to be collected to replicate the model.
We presented the application of the NRT alert system to two window areas in Mexico and
Colombia. The results showed that deforestation detections based on this system achieved
user accuracies of 97% and 99% for the two window areas, respectively.

This system is highly useful as an automated forest monitoring system, where frequent
information is required to improve forest governance. The forest alerts enable the frequent
monitoring of deforestation events from space. Hence, it can provide vital information
for forest managers and governments regarding the disturbances in their forest land and
enable rapid interventions. In this way, the system can contribute to the implementation of
the COP26 goal to end deforestation worldwide by 2030.
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Appendix A

Appendix A.1. Model Calibration Results

A fixed number of trees for scene models and change models was established at 500,
where OOB errors level out.

Whilst log2 initially appeared to be more accurate, the “number of features” parameter
changed in effectiveness during the more rigorous cross-validated grid search. The scene
map and change map models consisted of the following hyper-parameters and internal
average accuracies in Figure A1 (Appendix A).

Figure A1. The fine tuning of the RF model. OOB is the error rate for change detection measured for
the no. of trees (n_estimators), log2 and square root of the number of features choice for each tree
node split.

Table A1. The cross-validated grid search results for the hyper-parameters of the scene and
change models.

Value Scene Model Change Model

Number of trees 500 500
Split criterion gini gini

Maximum tree depth None–increased until pure 10
Maximum features square root square root

Minimum leaf samples 5 5
Minimum split samples 2 2

It is notable that the optimal parameters are only similar to the tree depth, differing
between scene and change models. The feature importance is plotted for each of the
image bands used to build the scene and RF change models, which are based on the mean
information gain (gini impurity or entropy) per split across the trees. The most important

https://github.com/clcr/pyeo
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features in the segregating vegetation and non-vegetation classes that were analyzed in
this study are blue, green, red edge, third near infra-red (NIR3) and short-wave infra-red
bands (Figure A2 Appendix A).

Figure A2. The feature importance calculated from the RF scene model. The numerical designations
per band indicate where a wavelength area (e.g., red or NIR) is subdivided into smaller bands.

For the change model, the “before” green, “after” green and red band features have
the highest importance values, suggesting that they have the most discriminative power
for the classes in the change model (Figure A3).

Figure A3. The feature importance calculated from the RF change model.
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Such changes are in line with the expectations of the input change imagery, where
there will be data groupings associated with the changes in the green values from both
time slices as vegetation is removed. The feature importance of red band 2 may be due to
the exposure of bare soil cover in the “after image”, represented as a sharp increase in red
values. The remaining features are of similar importance, though the NIR band 2 feature is
of greater importance than the remaining bands.

Appendix A.2. Validation

Table A2. The expected user accuracy.

Classes Expected User’s Accuracy

1 Stable Forest 0.9
2 Forest > Other Vegetation 0.7
3 Forest > Non-vegetation 0.7
4 Stable Other Vegetation 0.8
5 Other Vegetation > Non-vegetation 0.7
6 Non-vegetation > Forest 0.7
7 Stable Non-vegetation 0.9
8 Non-vegetation > Other Vegetation 0.7
9 Forest > Other Vegetation 0.7
10 Water Bodies 0.9
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