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A B S T R A C T   

Machine learning is rapidly developing as a tool for gathering data from imagery and may be useful in identifying 
(classifying) visible specimens in large numbers of seabed photographs. Application of an automated classifi
cation workflow requires manually identified specimens to be supplied for training and validating the model. 
These training and validation datasets are generally generated by partitioning the available manual identified 
specimens; typical ratios of training to validation dataset sizes are 75:25 or 80:20. However, this approach does 
not facilitate the desired scalability, which would require models to successfully classify specimens in hundreds 
of thousands to millions of images after training on a relatively small subset of manually identified specimens. A 
second problem is related to the ‘class imbalance’, where natural community structure means that fewer spec
imens of rare morphotypes are available for model training. We investigated the impact of independent variation 
of the training and validation dataset sizes on the performance of a convolutional neural network classifier on 
benthic invertebrates visible in a very large set of seabed photographs captured by an autonomous underwater 
vehicle at the Porcupine Abyssal Plain Sustained Observatory. We tested the impact of increasing training dataset 
size on specimen classification in a single validation dataset, and then tested the impact of increasing validation 
set size, evaluating ecological metrics in addition to computer vision metrics. Computer vision metrics (recall, 
precision, F1-score) indicated that classification improved with increasing training dataset size. In terms of 
ecological metrics, the number of morphotypes recorded increased, while diversity decreased with increasing 
training dataset size. Variation and bias in diversity metrics decreased with increasing training dataset size. 
Multivariate dispersion in apparent community composition was reduced, and bias from expert-derived data 
declined with increasing training dataset size. In contrast, classification success and resulting ecological metrics 
did not differ significantly with varying validation dataset sizes. Thus, the selection of an appropriate training 
dataset size is key to ensuring robust automated classifications of benthic invertebrates in seabed photographs, in 
terms of ecological results, and validation may be conducted on a comparatively small dataset with confidence 
that similar results will be obtained in a larger production dataset. In addition, our results suggest that automated 
classification of less common morphotypes may be feasible, providing that the overall training dataset size is 
sufficiently large. Thus, tactics for reducing class imbalance in the training dataset may produce improvements in 
the resulting ecological metrics.   

1. Introduction 

Machine learning is developing as a tool for gathering data from 
imagery, and marine ecologists have begun to apply it to exploit 
photographic datasets (e.g. Beijbom et al., 2015; Hu & Davis, 2005; 
Matabos et al., 2017; Purser et al., 2009). It can be used to count and 

identify specimens in imagery (generally megafauna >1 cm; Bett, 2019), 
data critical to monitoring benthic communities to detect natural and 
anthropogenic change, and for conservation purposes (Danovaro et al., 
2020). The basis for such monitoring is benthic ecological studies. Im
agery datasets for these studies are increasing in size (number of pho
tographs, hours of video) as camera, platform, and battery technologies 
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improve (Durden et al., 2016b), facilitating the examination of larger 
areas of seafloor. Such large spatial scale seabed photography, typically 
using still images captured from a moving platform (e.g. autonomous 
underwater vehicle, remotely operated vehicle, towed platform), has 
been instrumental in improving our understanding of standing stocks, 
spatial heterogeneity, and ecosystem function in benthic environments 
(e.g. Benoist et al., 2019; Durden et al., 2020b, this Collection; Mitchell 
et al., 2020, this Collection; Morris et al., 2016; Simon-Lledó et al., 
2019b). Machine learning tools may be employed to reduce the sub
stantial effort required to manually annotate the specimens in these 
large datasets (e.g. Durden et al., 2016a; MacLeod et al., 2010). How
ever, the cost of the manual effort to generate annotations for the 
training and validation of machine learning tools has hampered their 
development and application. Studies of the applications of machine 
learning tools to seabed images have been confined to relatively small 
photographic datasets (hundreds to thousands of images; e.g. Piechaud 
et al., 2019; Schoening et al., 2012), with subsequent extrapolation of 
results to the dataset sizes possible with contemporary seabed photo
graphic survey techniques (hundreds of thousands to millions of 
images). 

An automated annotation workflow to generate ecological data from 
images involves the processes of detection, segmentation, and classifi
cation. Detection identifies the presence and location of any specimens 
in an image, segmentation identifies the pixels belonging to a specimen, 
and classification assigns each specimen to a category. Classification is 
also known as ‘identification’ when experts assign an organism to a 
morphotype or taxonomic identity. Classification is the key challenge, 
since state-of-the-art object detection and segmentation algorithms 
fundamentally rely on classification performance (e.g. He et al., 2020; 
Ren et al., 2017). Machine learning approaches, such as support vector 
machine classifiers (e.g. Beijbom et al., 2015; Schoening et al., 2012) 
and random forests (e.g. Osterloff et al., 2016), have been used for 
classification of benthic megafauna in seabed photographs. However, 
these approaches rely on the manual selection of visual features to train 
the classifier, and as a result their performance is limited by the choice of 
features extracted. By contrast, neural networks do not require initial 
feature extraction, as they learn features from the supplied training data, 
making them an attractive approach. Convolutional neural networks 
(CNN; Lecun et al., 1998) have recently been applied to the classification 
of fish in video (e.g. Qin et al., 2016; Salman et al., 2016) and megafauna 
in seabed images (e.g. Langenkämper & Nattkemper, 2016; Lan
genkämper et al., 2020; Piechaud et al., 2019). 

The application of an automated classification workflow requires 
expert-identified specimens in images to be supplied for training the 
model, and further expert-identified specimens for use in validating the 
results of the model. These training and validation data are usually 
generated through manual annotation of images by experts, potentially 
representing substantial effort. Those wishing to apply a model to their 
collected imagery are faced with the challenge of determining the 
minimum expert-generated data required to adequately train and vali
date their model. In addition to using relatively small datasets of an
notated seabed photographs, prior studies of AI for spatial ecology have 
largely generated the training and validation datasets by partitioning 
those data; ratios of training to validation dataset sizes are commonly 
75:25 or 80:20 (e.g. Piechaud et al., 2019; Qin et al., 2016; Shafait et al., 
2016). In effect, models are trained on small datasets and validated on 
even smaller ones. Cross validation may be employed as a technique to 
partition available annotated images and perform repeated validation, 
which involves small training and larger validations datasets (Kohavi, 
1995), and has been used in the application of AI to identify fish in 
images from a fixed observatory (Marini et al., 2018); this method still 
requires a sufficiently-sized annotated dataset from which to draw 
training and validation data. However, this method of assigning data to 
large training and smaller validation datasets does not align well with 
the desired scalability of a model in real-world applications. To be 
effective and efficient, models must successfully classify specimens in 

very large image datasets after training with a relatively small subset. To 
accomplish such scalability, the small subset must be sufficient in size to 
provide adequate training data for the model, and model performance 
must be evaluated with much larger datasets than those that have been 
previously employed in model validation studies. 

The natural composition of most benthic communities involves 
varying abundances of different taxa, and thus a substantial imbalance 
in the number of specimens per morphotype. This presents a problem in 
computer vision (known as the ‘class imbalance’, Langenkämper et al., 
2019; Langenkämper et al., 2020), as it leads to reductions in the suc
cessful classification of less common morphotypes. Previous studies 
have focused on relatively common morphotypes (e.g. 1–10 morpho
types or taxa: Matabos et al., 2017; Piechaud et al., 2019; Schoening 
et al., 2012; Shafait et al., 2016), in effect avoiding this significant issue. 
However, effective real-world application of automated classification 
models must include less common morphotypes, and still produce 
ecologically robust results. 

We investigated the application of automated classification of 
benthic invertebrate megafauna in seabed photographs, focusing on the 
ecological evaluation of the results. In particular, we examine the impact 
of variations in training and validation dataset sizes on the performance 
of automated classification of invertebrate megafauna visible in seabed 
photographs via two scenarios. Scenario 1 tests the impact of increasing 
training dataset size on specimen classification in a single validation 
dataset, with training-to-validation ratios of 80:20 to 98:2. In Scenario 2, 
we use a single training dataset size to test the impact of increasing 
validation set size. The datasets used were drawn from expert-annotated 
seabed photographs captured with an autonomous underwater vehicle 
at the Porcupine Abyssal Plain Sustained Observatory (Durden et al., 
2020b, this Collection). This annotated image set is larger than those 
previously used in AI development for spatial ecological studies, 
providing a realistic assessment of the scale of annotation required to 
generate appropriately-sized training and validation datasets. We eval
uate CNN model performance using standard computer vision metrics 
(recall, precision, F1-score), ecological parameters (diversity measures, 
community composition), and comparisons to manually generated 
expert data. We also consider the effects of the class imbalance in the 
training dataset on CNN model results. 

2. Methods 

2.1. Photographic and annotation data 

The Porcupine Abyssal Plain Sustained Observatory (PAP-SO, 4850 
m water depth; Hartman et al., 2021) is a long-term time series site 
where photographic data is used to assess benthic invertebrate mega
faunal community dynamics (e.g. Bett et al., 2001; Durden et al., 
2020a). Seabed images (2448 × 2048 pixel) were captured using the 
autonomous underwater vehicle Autosub6000 in the PAP-SO area, and 
processed for colour and illumination (Morris et al., 2014), including 
dark frame removal, non-uniform illumination correction, histogram 
correction, and steps to mosaic the imagery into strips of ten images 
(referred to as ‘tiles’; Fig. 1). Megafaunal (>1 cm) invertebrate speci
mens (‘samples’ in computer vision nomenclature) were manually 
detected, their location in the image noted, and classified to the most 
detailed taxonomic level possible by experts. These specimen counts and 
identifications have been the subject of prior studies on the ecology of 
the PAP-SO area (e.g. Durden et al., 2020b, this Collection; Durden et al., 
2017; Mitchell et al., 2020, this Collection; Morris et al., 2016), and form 
part of the time series of invertebrate megafauna at the site (Billett et al., 
2010; Billett et al., 2001; Durden et al., 2015; Durden et al., 2020b). 
These data have also been used in a study comparing detection and 
classification performance among expert annotators (Durden et al., 
2016a). Individual specimens detected by the experts in these photo
graphs were used in this study by cropping them from the images (see 
Section 2.4 Specimen preparation; Fig. 1). 
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A total of 25 benthic invertebrate megafaunal morphotypes, previ
ously noted to be of ecological significance at the PAP-SO, were targeted 
for CNN classification (Table S1). These morphotypes were selected 
based on the following criteria: (1) only morphotypes occurring on the 
abyssal plain were included, and morphotypes known from only abyssal 
hill locations were excluded (Durden et al., 2020b), to simplify the 
subsequent ecological assessments; (2) only morphotypes where the 
expert annotations represented the most specific taxonomic identifica
tions were used, these were generally genus- or species-level identifi
cations; (3) only morphotypes with sufficient specimens for training and 
validating a model were included. The abyssal plain megafaunal com
munity was dominated by few morphotypes: Iosactis vagabunda 
contributed 53% of specimens (see Table S1), while the least abundant 
morphotype included in this study contributed 0.2% of specimens. Note 
that the morphotype Elpidiidae spp. represents a complex of species 
(Amperima rosea, Ellipinion mole and Kolga nana) from the family Elpi
diidae that are difficult to reliably distinguish in seabed photographs, 
while specimens of another confamilial genus, Peniagone sp., were 
considered as a distinct morphotype. A single morphotype for all ophi
uroids was also used. A ‘gold standard’ was generated from the expert 
annotations for comparison to the CNN-generated classifications: all 
specimens detected by any expert were included, and specimens for 
which experts disagreed on their original classifications were re- 
inspected and assigned to a morphotype (as described in Durden et al., 
2016a). Results from the model-generated classifications were 
compared to these expert-generated gold standard classifications. 

2.2. Scenario 1 – Effects of increasing training dataset size 

In Scenario 1, we examined the effect of increasing training dataset 
size on automated classification results using five sizes of training 

dataset (2344, 4688, 9376, 18752 and 28128 specimens; Table 1) on a 
single validation dataset. The training dataset sizes represent 4, 8, 16, 32 
and 48 times the size of the validation set size in terms of numbers of 
specimens (i.e., training to validation ratios of 80:20, 89:11, 94:6, 97:3 
and 98:2). The CNN model was then independently applied to each 
training dataset. Training and validation datasets in Scenario 1 
(Table S1) were formed from the pool of identified specimens as follows: 

Fig. 1. Seabed photograph processing and annotation steps to prepare specimen crops for the training and validation datasets. Processing of seabed photographs to 
form tiles is described in Morris et al (2014). 

Table 1 
Size of the training and validation datasets in Scenarios 1 and 2.    

Training Validation 

Scenario Ratio of 
training: 
validation 
specimens 

No. 
specimens 

No. 
sample 
units 

No. 
specimens 
per sample 
unit:median 
[range] 

Seabed area 
(m2) per 
sample unit: 
median 
[range] 

1 80:20 2344 1 586 780 
89:11 4688 
94:6 9376 
97:3 18752 
98:2 28128  

2 91:9 18752 5 393 
[375–410] 

778 
[768–780] 

82:18 18752 10 406 
[371–442] 

774 
[759–782] 

70:30 18752 20 403 
[364–431] 

774 
[764–782] 

61:39 18752 30 398 
[368–437] 

772 
[754–791] 

54:46 18752 40 402 
[349–442] 

773 
[754–792] 

48:52 18752 50 405 
[349–447] 

775 
[759–792]  
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(1) First, the validation dataset was selected from the pool. It con
sisted of 586 specimens in 64 tiles that were the subject of a 
previous study comparing annotations by three experts (the 
’common tiles’ in Durden et al., 2016a). These specimens were 
then excluded from the pool from which the training datasets 
were formed.  

(2) For each training dataset size, ten replicate training datasets were 
generated by randomly selecting specimens by morphotype from 
the remaining pool without replacement, to optimally achieve an 
equal number of specimens per morphotype. This was done to 
reduce the effects of the class imbalance (Langenkämper et al., 
2019). Some imbalance in the training datasets remained, as 
rarer morphotypes did not achieve the balanced target, conse
quently the number of morphotypes achieving the balanced 
target number of specimens declined as the overall training 
dataset size increased. This process was repeated for each 
training dataset size, generating 10 replicates for 5 sample sizes. 

2.3. Scenario 2 – Effects of increasing validation dataset size 

In Scenario 2, we tested the effects of increasing validation set sizes 
given a fixed training dataset size. The training dataset size (number of 
specimens = 18752) was selected based on the results of Scenario 1. The 
training and validation datasets were formed (Table S2) as follows:  

(1) Validation datasets were based on replicate sample units from the 
abyssal plain environment having a sufficient seabed area to 
generate ecologically appropriate replicates, as determined in 
Durden et al. (2020b, this Collection; depth group 6), and using 
the constituent tiles and specimens within each sample unit. The 
tiles in a typical sample unit represented 775 m2 seabed area and 
405 specimens (Table 1). Validation datasets of six sizes were 
formed, comprising 5, 10, 20, 30, 40 and 50 sample units. 
Randomly selected sample units were assigned, without 
replacement, to the validation datasets, with specimens from the 
corresponding tiles forming the validation data. Specimens 
assigned to the validation dataset were removed from the pool of 
specimens available to form the corresponding training dataset.  

(2) For each validation dataset size, the training dataset was formed 
by randomly selecting from the specimens in the remaining pool 
without replacement, aiming for the numbers of specimens of 
each morphotype to approximate the natural community 
composition (Table S2). This contrasts with Scenario 1, where 
this class imbalance was minimised. 

To compare the impact of validation dataset size, analyses were 
conducted on a per sample unit basis, using the results from a single CNN 
run for each validation dataset size. Comparisons were also made to the 
gold standard expert identifications for the same sample units. 

2.4. Comparison of compensation for class imbalance in training data 

A comparison of the effects of the two contrasting methods of 
addressing class imbalance employed in Scenarios 1 and 2 was con
ducted using validation data generated with the same training dataset 
size. Results from the validation data (586 specimens) generated with 
the second-largest training dataset (n = 18752) from Scenario 1 was 
treated as a single sample unit. This was compared to results from the 
validation data from 5 randomly-selected sample units in Scenario 2. 
The corresponding gold standard data were used as the benchmark. 

2.5. Specimen preparation 

Specimens were extracted from the tiles (Fig. 1). The centre x- and y- 
pixel coordinates and pixel size of each specimen were used to generate 
a ‘crop’ adjusted to the size of the specimen (minimum crop dimensions 

75 pixels × 75 pixels). Where pixel coordinates did not correspond to the 
centre of the specimen, the cropped size was increased to 175% of the 
measured specimen pixel size. The crops were rescaled to normalise 
resolution prior to training and validation. Bicubic interpolation was 
used to resample each crop to a fixed spatial resolution (128 pixels ×
128 pixels). To reduce the distortion introduced by resampling, each 
crop was scaled to a spatial resolution close to the average resolution of 
the entire dataset (127 pixels × 127 pixels). The exact resolution was 
selected by rounding the average to the nearest power of 2, to enable 
more efficient computation. Crops where a portion of the specimen was 
optically distorted or not visible were removed (e.g. where a specimen 
was at the edge of an image). 

2.6. Details of CNN application 

We applied the popular GoogLeNet (Szegedy et al., 2015) model to 
learn the visual characteristics of the morphotypes in the prepared 
specimen crops in each training dataset. Implementations of the model 
that support processing using Tensorflow (Abadi et al., 2016) were used. 
A pre-trained model was not used, as the input image resolution of 
existing models is typically much higher (e.g. ImageNet has an input 
resolution of 299 × 299 pixels; Deng et al., 2009). This would have 
required the application of large scaling factors to many of the crops, 
which could have introduced image artefacts affecting the classification 
process. Data augmentation procedures were applied to the crops in the 
training datasets to produce additional data by rotating, translating, and 
filtering (via Gaussian blur) each crop, to aid in producing a robust 
model while reducing overfitting. The models were trained using a 
Nvidia Quadro M6000 24 GB graphical processing unit and run for 240 
epochs (the number of passes of the training data through the model). 
The trained model assigned a predicted morphotype (known as ‘label’ in 
computer vision nomenclature) to each specimen in each validation set. 
All programming code was produced using Python 2.7.12 (Rossum, 
1995), NumPy 1.14.3 (Oliphant, 2018), and Tensorflow 1.2.1 (Abadi 
et al., 2016). 

2.7. CNN performance evaluation metrics 

2.7.1. Computer vision metrics of classification 
Classification performance was measured through machine learning 

metrics: recall, precision, and the F1-score. A specimen was classified 
correctly if the morphotype classification predicted by the CNN matched 
the classification given by the gold standard. 

Recall = tp/(tp + fn) (1)  

Precision = tp/(tp + fp) (2)  

F1 score = 2(Precision × Recall)/(Precision+Recall) (3)  

where tp is the number of true positives (e.g. specimens of morphotype 1 
in the gold standard data that the CNN predicted as morphotype 1), fn is 
the number of false negatives (e.g. specimens of morphotype 1 predicted 
as another morphotype), and fp is the number of false positives (speci
mens of another morphotype predicted as morphotype 1). Recall, pre
cision and F1 score were computed per morphotype. Recall (Eq. (1)), 
also known as ‘sensitivity’, indicates the ability of the model to correctly 
classify specimens of a particular morphotype, as designated by the gold 
standard. The F1 score (Eq. (3)) provides an indication of how well a 
model is able to both correctly classify specimens within a morphotype 
and also how well it can differentiate between specimens from other 
classes using the harmonic mean as a single metric. Comparisons of 
results for different training dataset sizes were assessed in Scenario 1 
(that is, 5 training dataset sizes, with 10 replicates each). In Scenario 2, 
similar comparisons were made between validation datasets sizes (that 
is, 5 validation dataset sizes, with 5 randomly selected sample units 
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each). These comparisons were made using Mood’s median test and post 
hoc testing in R using the RVAideMemoire (Hervé, 2020) and rcom
panion (Mangiafico, 2020) packages, with p-value adjustment by the 
Benjamini and Hochberg (1995) method. Boxplots present the median 
within a box of the interquartile range. Upper and lower whiskers 
indicate the largest and smallest values no further than 1.5 × inter
quartile range from each hinge. Outliers (i.e., values beyond whiskers) 
are presented as points. 

2.7.2. Ecological metrics 
Hill’s indices (Nq, morphotype richness, q = 0; exponential of the 

Shannon index, q = 1; inverse of Simpson’s index, q = 2) (Magurran, 
2013), and rarefied morphotype richness (to 300 specimens, EM300) 
were calculated as measures of diversity (all with units of number of 
morphotypes; Chao et al., 2014). Comparisons of results for different 
training and validation dataset sizes were assessed using ANOVA, with 
post hoc testing using Tukey’s honest significant difference method. 

Numerical densities of morphotypes were derived from counts and 
the calculated seabed area of each tile within a sample unit. Differences 
in apparent community composition between training dataset sizes and 
the corresponding gold standard were assessed using multivariate sta
tistics (Bray-Curtis dissimilarity measure and 2-dimensional non-metric 
multidimensional scaling ordination). Numerical densities (individuals 
ha− 1) were subject to several transformations (none, square root, and 
log[x + 1]) prior to the calculation of dissimilarity measures to assess 
different aspects of training dataset size variations, giving greater (log[x 
+ 1] transformation) and lesser (no transformation) weight to rare 
morphotypes; these comparisons were tested using ANOSIM and 
SIMPER routines (Clarke, 1993). 

The precision of univariate diversity measure estimates was quanti
fied as the coefficient of variation. Measurement bias in the diversity 
measures was assessed as the percentage difference from the corre
sponding gold standard-derived value. Relative precision in community 
composition was quantified as multivariate dispersion (Anderson, 2006) 
among community composition data derived from the CNN results at 
different training set sizes. Bias and variance in community composition 
in comparison to the gold standard were computed as the distances 
between the centroids and the areas of the 2-dimensional non-metric 
multidimensional scaling ordinations, respectively. All ecological met
rics were calculated using the vegan package in R (Oksanen et al., 2012). 

3. Results 

3.1. Scenario 1: Effects of training dataset size on resulting classified data 

3.1.1. Computer vision metrics 
The fraction of all specimens that were classified correctly by the 

CNN ranged from 0.66 to 0.96, and significantly increased with larger 
training dataset sizes (χ2[4] = 40, p < 0.001). It was at least 0.94 in all 
model runs for the two largest training dataset sizes. Median recall per 
training dataset size ranged from 0.67 to 0.95, and was significantly 
different between training dataset sizes (χ2[4] = 88, p < 0.001; Fig. 2). 
Post hoc testing showed no significant differences in the largest three 
training datasets. Median precision and F1-score per training dataset 
size from 0.44 to 0.98 and from 0.52 to 0.91, respectively, and was 
significantly different between training dataset sizes (χ2[4] = 158, p <
0.001 and χ2[4] = 185, p < 0.001). Post hoc testing showed no signif
icant differences in precision or F1-score in the largest two training 
datasets. 

The classification success of two common morphotypes, Ophiuroidea 
and Iosactis vagabunda (111 and 308 specimens in the validation dataset, 
respectively; Table S1), increased as the overall training dataset size was 
increased, in terms of recall (χ2[4] = 40, p < 0.001 in both cases), 
precision (χ2[4] = 16, p < 0.01; χ2[4] = 17.6, p < 0.01; respectively), 
and F1 score (χ2[4] = 40, p < 0.001 in both cases). The recall for these 
morphotypes reached 0.97 and 0.98, respectively, in the largest two 

training dataset sizes. The number of training specimens increased as the 
overall training dataset size increased for these morphotypes (Table S1). 
Posthoc testing showed no difference between the two largest training 
dataset sizes for recall in Ophiuroidea, and for F1-score in both 
Ophiuroidea and I. vagabunda. 

By contrast, for two uncommon morphotypes, Porcupinella sp. and 
Psychropotes longicauda (5 and 4 specimens in the validation dataset, 
respectively), aspects of classification success improved with increased 
training dataset sizes, despite the number of training specimens for these 
morphotypes remaining essentially constant across the training dataset 
sizes. The classification of Porcupinella sp. significantly increased with 
overall training dataset size (recall χ2[4] = 28, p < 0.001; precision 
χ2[4] = 24.8, p < 0.001; F1-score χ2[4] = 31.6, p < 0.001), as did the 
precision of classification of Psychropotes longicauda (precision χ2[4] =
20, p < 0.001). 

Cnidaria sp.9 provides a case between these extremes, as a moder
ately common morphotype (21 specimens in the validation dataset), for 
which the number of training specimens was identical to those of 
Ophiuroidea and Iosactis vagabunda in the smallest three training dataset 
sizes, but then remained constant at a lesser value for the largest training 
dataset sizes. The classification of Cnidaria sp.9 was significantly 
improved by the increase in training dataset size in the latter two 
training dataset sizes (recall χ2[4] = 36.7, p < 0.001; precision χ2[4] =
40, p < 0.001; F1-score χ2[4] = 40, p < 0.001). Post hoc testing indi
cated that there was no significant difference in recall or F1-score be
tween the two largest training dataset sizes. 

Fig. 2. Scenario 1. Variation in (a) precision, (b) recall and (c) F1-score across 
all specimens in the CNN-generated classifications by morphotype, with 
increasing training dataset size (number of training specimens listed). 
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3.1.2. Ecological metrics – diversity 
The total number of morphotypes recorded in the data derived from 

the CNNs ranged from 22 to 24, while the gold standard contained 25 
morphotypes. Morphotype richness (N0) varied significantly (F[4,45] =
3.0, p < 0.05; Fig. 3) and increased with training dataset size. Hill’s 
diversity numbers N1 and N2 varied significantly (F[4,45] = 54.1, p <
0.001; F[4,45] = 38.9, p < 0.001, respectively) and decreased with 
increased training dataset size, but were not significantly different be
tween the three largest training datasets. Rarefied morphotype richness 
(EM300) was significantly different between training dataset sizes (F 
[4,45] = 11.5, p < 0.001). 

As training dataset size increased, the coefficients of variation in the 
Hill’s numbers decreased (Fig. 4), and bias in their values from gold 
standard reduced (Fig. 4). Similarly, the coefficient of variation in 
rarefied morphotype richness (EM300) decreased with increase in 
training dataset size, and the bias over the gold standard value became 
smaller in magnitude, though it was near-identical in the three largest 
training dataset sizes. 

3.1.3. Ecological metrics – faunal composition 
Apparent community composition was significantly different among 

training dataset sizes for all transformations (ANOSIM log[x + 1] R =
0.51, p = 0.001; square root R = 0.52, p = 0.001; no transform R = 0.50, 
p = 0.001; Fig. 5). Community similarity to the gold standard increased 
with training dataset size, as reduced bias and variance (Fig. 5d). Dif
ferences in multivariate dispersion of community composition between 
training dataset sizes were significant regardless of the transformation 
(log[x + 1]-transformed data: ANOVA F[4,45] = 35.7, p < 0.001; square 
root-transformed data: F[4,45] = 35.9, p < 0.001; untransformed data: F 
[4,45] = 35.7, p < 0.001). Post hoc testing revealed no significant dif
ference in multivariate dispersion between the largest three training 
dataset sizes. 

Density-driven variations in community composition were detected. 
Two morphotypes contributed the most to the dissimilarity between 
successively larger training dataset sizes (untransformed density data): 
Iosactis vagabunda (contributing 12–18%) and Ophiuroidea. These two 
morphotypes also contributed substantially to the dissimilarity between 
the untransformed results from the CNNs and the gold standard, with 

Fig. 3. Scenario 1. Variation in diversity metrics in CNN-generated classifica
tions with training dataset size (number of training specimens listed) by sample 
unit: (a–c) Hill’s indices (q = 0, 1, 2), (d) rarefied morphotype richness (n =
300). Dotted lines represent values from the expert-generated gold standard. 

Fig. 4. Scenario 1. Variation in precision (coefficient of variation = CV%; black 
squares) and bias (mean and range of percentage difference; boxplots) in (a–c) 
Hill’s diversity indices (units are number of morphotypes) and (d) rarefied 
morphotype richness (EM300) computed per sample unit using CNN-generated 
classifications with respect to those computed from an expert-generated gold 
standard with increasing training dataset size (expressed as number of 
training specimens). 
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I. vagabunda contributing most to the dissimilarity (23–29%) in all 
training dataset sizes except the largest, where Ophiuroidea contributed 
most to dissimilarity (22%). 

3.2. Scenario 2: Effects of varying validation dataset size 

3.2.1. Computer vision metrics 
Recall, precision and F1-scores were not significantly different 

among validation dataset sizes (all p > 0.05). Median recall per vali
dation dataset size ranged from 0.93 to 0.99, median precision from 0.99 
to 1.0, and median F1-score from 0.92 to 0.94. Recall and precision of 
Ophiuroidea were significantly different with validation dataset size 
(both χ2[5] = 12.4, p < 0.05), but did not appear to be systematically 
related to increasing validation dataset size. None of the computer vision 
metrics was significantly different with validation dataset size for the 
remaining morphotypes of interest in Scenario 1: Iosactis vagabunda, 
Psychropotes longicauda or Porcupinella sp. (all p > 0.05). 

3.2.2. Ecological metrics – diversity 
Rarefied richness (EM300) in the CNN-generated data was not 

significantly different between the validation dataset sizes (Figure S1), 
nor from the gold standard. Diversity indices (N0, N1, N2) were not 
significantly different between validation dataset sizes (all p > 0.05), 
nor different from the gold standard. Neither the coefficients of variation 
in rarefied richness, the Hill’s numbers, nor the bias in these metrics 
with respect to the gold standard values appeared to vary systematically 
with validation dataset size (Figure S2). 

3.2.3. Ecological metrics – faunal composition 
Apparent community composition was not significantly different 

between validation dataset sizes, regardless of the data transformation 
applied (log[x + 1], square root or untransformed; ANOSIM p > 0.05), 
nor were statistically significant differences detected from the gold 
standard (all transformations p > 0.05; Fig. 6). Dispersion of community 
composition was not significantly different between validation dataset 
sizes (all data transformations p > 0.05). 

3.3. Effects of class imbalance in training dataset 

3.3.1. Computer vision metrics 
The overall classification success in the comparison data from Sce

nario 1 (near-balanced training data) was 0.95, and ranged from 0.94 to 
0.97 in Scenario 2 (training specimens proportional to the community 
composition). In general, recall, precision and F1-scores in Scenario 1 
were at least as great as the corresponding values in Scenario 2, with 
greater discrepancies for the less common morphotypes of interest 
(Psychropotes longicauda and Porcupinella sp.; Fig. 7a–c). Differences in 
the computer vision metrics were slight, with values appearing to be 
potentially reduced in Scenario 1, for the two common morphotypes 
(Iosactis vagabunda and Ophiuroidea). 

3.3.2. Ecological metrics 
Bias in morphotype richness over the gold standard was generally 

negative in Scenarios 1 and 2 (Fig. 7d). Bias in the Hill’s numbers (N1 
and N2) over the gold standard was apparently generally higher and 

Fig. 5. Scenario 1. Two-dimensional non-metric multidimensional scaling ordination plots of community composition in the CNN-generated classifications by sample 
unit illustrating variation with training dataset size, and the corresponding expert-generated gold standard: (a) log [x + 1]-transformed, (b) square root-transformed 
and (c) un-transformed data, and (d) bias (as centroid distance) and variance (as point spread) in community composition from a–c. 
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positive in Scenario 1, and either negative or neutral in Scenario 2. That 
is, the results of Scenario 1 overestimated N1 and N2, while Scenario 2 
underestimated N1. Dissimilarity in community composition from the 
gold standard was very low in Scenario 1, and higher in Scenario 2. It 
was highest in the log(x + 1) transformed data, where the relative 
abundances of less common morphotypes were given greater weight. 

4. Discussion 

Our study of the application of a CNN classifier to a large expert 
annotated photographic dataset revealed that: (i) a large training data
set size was key to model performance as assessed by both computer 
vision and ecological metrics, and (ii) the model results were little 
affected by increasing the validation dataset size. These latter results, 
which held for validation datasets across an order of magnitude 
(1965–20250 specimens), give confidence that validation could be 
successfully achieved with a relatively small dataset, while the model 
was applied to a much larger dataset without the results being impacted. 
This is noteworthy given that ecological metrics from expert-generated 
annotation diverged in the same large photo dataset (Durden et al., 
2016a). Note that the minimum validation dataset size needed to 
facilitate effective evaluation of an AI application with ecological met
rics requires sufficient annotated images to produce multiple replicates 
(Section 2.3), each of which is representative of the sample population 
(Durden et al., 2016b). The largest validation dataset employed in this 

study was slightly (8%) larger in size (number of specimens) than the 
training dataset, suggesting that the model could successfully be applied 
to datasets at least equivalent in size to an appropriate training dataset; 
that is, at a 50:50 training to validation or operational dataset ratio, 
provided the training dataset was sufficiently large. 

The appropriate size of the training dataset selected in Scenario 1 
(18752 specimens), with which the model achieved 94% correctly 
classified specimens and precision in ecological metrics, is substantially 
larger than those tested in other studies. In this training dataset, the 
morphotypes with the most specimens had almost four times as many 
specimens as the maximum number tested by Piechaud et al. (2019; 
1000 specimens per morphotype), and the total number of training 
specimens was approximately double that of Piechaud et al. (2019). The 
training dataset used by Schoening et al. (2012) was similar in size to the 
smallest of the training datasets used in the present contribution. The 
training dataset selected in Scenario 1 was even larger than the numbers 
of specimens annotated in two recent large photographic datasets 
(Benoist et al., 2019; Simon-Lledó et al., 2019b). This is not to suggest a 
specific appropriate training size for other datasets, since appropriate 
size is related to many factors including model type and community 
structure, but provides some context of scale. In the present study, 
similar numbers of specimens to the maximum used in Piechaud et al 
(2019; i.e. ≥ 947 per morphotype) were allocated to six morphotypes in 
three training dataset sizes (n = 9376, 18752, 28128); average recall for 
these specimens increased from 0.90 to 0.94 with increased training 

Fig. 6. Scenario 2. Two-dimensional non-metric multidimensional scaling ordination plots of community composition in the CNN-generated classifications by sample 
unit illustrating variation with validation dataset size, and the corresponding expert-generated gold standard: (a) log[x + 1]-transformed, (b) square root-transformed 
and (c) un-transformed data, and (d) bias (as centroid distance) and variance (as point spread) in community composition from a–c. 
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dataset size, significantly higher than the recall achieved in the Piechaud 
et al. (2019) study. At these training dataset sizes, the resulting diversity 
metrics had relatively high precision and low bias over the gold standard 
(Fig. 4), and community composition also converged near the gold 
standard (Fig. 5). This suggests that much larger training dataset sizes 
may be required for automated classification of benthic communities 
than previously anticipated, requiring more human annotation to 
generate these data prior to AI application. 

Increases in the precision of diversity metrics and community 
composition, and reductions in biases in the same parameters are related 
to accuracy and recall, as the misclassification of particular morpho
types influences these ecological metrics. From the community compo
sition data in Scenario 1, differences in dispersion between training 
dataset sizes (Fig. 5) were related to both the identities and numerical 
densities of the misclassified morphotypes. Recall of the most common 
morphotypes, Iosactis vagabunda and Ophiuroidea, increased 20% and 
42% with increased training dataset size, from 0.81 and 0.69 with the 
smallest training dataset, to 0.97 and 0.98 in the largest training dataset. 
These two morphotypes contributed most to community dissimilarity 
between successively larger training dataset sizes, and to differences 
from the gold standard. 

The increase in recall with training dataset size was not limited to 

morphotypes with increased numbers of training specimens as the 
overall training dataset size increased. Classification of morphotypes for 
which the number of training specimens was fewer and remained con
stant was also improved with increased number of training specimens 
from other more numerous morphotypes. This benefit to increasing the 
training dataset size, even for unbalanced communities, suggests that it 
may be reasonable to include less common morphotypes in automated 
classification provided that the overall training dataset size is suffi
ciently large. The inclusion of less common morphotypes can cause 
increased false positives in the more common morphotypes, reflected in 
lower precision. However, any elevated false positives in the commonest 
morphotypes may have been compensated for by the increase in training 
specimens in the larger training datasets. For example, as the precision 
of Iosactis vagabunda and Ophiuroidea significantly increased with 
training dataset size, reaching 1.0 and 0.93 with the largest training 
dataset size. Further improvements to these results may be possible by 
addressing the class imbalance, for example by applying data augmen
tation to training specimens non-linearly or through over- or under
sampling (Langenkämper et al., 2019; Qin et al., 2016). More balanced 
classes in the training data resulted in higher recall, precision and F1- 
scores for less common morphotypes, minimal bias in diversity met
rics over the gold standard, and low dissimilarity from the gold standard. 

Fig. 7. Comparison of results of differing methods of addressing class imbalance in training dataset, with near-balance in Scenario 1, and proportional to the natural 
community composition in Scenario 2, with respect to the expert-generated gold standard: (a–c) Recall, precision and F1-score across specimens for four morphotypes 
of interest (two common: Iosactis vagabunda and Ophiuroidea; two uncommon: Psychropotes longicauda and Porcupinella sp.); (d) bias in diversity metrics per sample 
unit; and (e) non-metric multidimensional dissimilarity in community composition. 
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By contrast, training data that approximated the community composi
tion (a relatively unbalanced training dataset) resulted in reduced recall, 
precision and F1-scores for less common morphotypes, underestimation 
of diversity metrics, and greater dissimilarity from the gold standard. 
This suggests that efforts to reduce class imbalance in the training 
dataset may improve the quality of the ecological results. 

Differences in the resulting ecological metrics between the model- 
generated data and the gold standard became small in the largest 
training dataset sizes; however, they remained detectable regardless of 
validation dataset size. This bias appears to be related to the under 
recording of morphotype richeness (i.e., N0 and EM300). While the 
model-generated results in Scenario 2 were not significantly different 
from one another regardless of validation dataset size, the modest bias in 
these results with respect to the gold standard data may be important to 
consider, in terms of the ecological conclusions and for potential model 
improvements. 

Demand for machine vision and artificial intelligence methods for 
the assessment of marine ecosystems is likely to grow across a wide 
range of applications, from spatial and temporal studies at individual 
locations to extensive, autonomous ocean observing systems (Levin 
et al., 2019). Effective and cost-efficient monitoring of environmental 
impacts from industrial activities, such as deep-sea mining (Simon-Lledó 
et al., 2019a), fishing (Huvenne et al., 2016) and litter (Pham et al., 
2014), and corresponding environmental management measures 
(Benoist et al., 2019; Huvenne et al., 2016) are certain to depend on 
machine classification in marine imagery from autonomous platforms. 
Such systems may be employed to automate the classification of the 
environment (Zelada Leon et al., 2020) and its wildlife (Schneider et al., 
2020) to establish baseline conditions or monitor change. Thus, it is 
timely to develop both machine vision techniques and the methods for 
their performance assessment in ecosystem applications. 

As a developing method, the quantification of bias and precision are 
important to the interpretation of results generated by it to discern the 
true biological trend. Continued evaluation of the method will be 
important as camera technologies and artificial intelligence techniques 
develop, and particularly in applications to environmental monitoring 
(Aguzzi et al., 2019), where faunal change over time will be important to 
detect. Such faunal change may be represented by shifts in the abun
dances of previously recorded taxa (e.g., Aguzzi et al., 2012; Billett et al., 
2010) or involve previously unrecorded taxa, as a result of processes 
such as biogeographic range shifts or invasions (e.g., Pinsky et al., 
2020). It would also impact the selection of training and validation sets, 
linked to our comments on rare taxa and class imbalance. Thus, the 
development of artificial intelligence techniques for extraction of 
ecological data, and the evaluation of such techniques, will require a 
close collaboration between the computer vision, marine ecology, and 
environmental policy communities. 

5. Conclusions 

Our results show that the selection of an appropriate training dataset 
size is key to ensuring robust CNN-generated classifications of mega
fauna in seabed photographs, and that an appropriate training dataset 
size may be very large (e.g., tens of thousands of specimens). We also 
show that once an appropriate training dataset size is achieved, the 
model may be applied to an operational dataset of at least equal size to 
the training dataset, with consistent results. Importantly, these conclu
sions hold for ecological metrics as well as computer vision metrics. 
Thus, validation may be conducted on a relatively small dataset, pro
vided that it is large enough to contain multiple appropriately-sized 
ecological sample units, with confidence that similar results will be 
obtained in a larger operational dataset. We show that automated 
classification of less common morphotypes may be feasible, provided 
that the overall training dataset size is sufficiently large. In addition, we 
note that tactics for reducing class imbalance in training datasets may 
result in improvements to the resulting ecological metrics. 
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