
RESEARCH ARTICLE

Current ionising radiation doses in the

Chernobyl Exclusion Zone do not directly

impact on soil biological activity

Nicholas A. BeresfordID
1,2☯*, Michael D. Wood2☯, Sergey Gashchak3☯, Catherine

L. Barnett1☯

1 UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom,

2 School of Science, Engineering & Environment, University of Salford, Manchester, United Kingdom,

3 International Radioecology Laboratory, Chornobyl Center for Nuclear Safety, Radioactive Waste &

Radioecology, Slavutych, Kyiv Region, Ukraine

☯ These authors contributed equally to this work.

* nab@ceh.ac.uk

Abstract

Although soil organisms are essential for ecosystem function, the impacts of radiation on

soil biological activity at highly contaminated sites has been relatively poorly studied. In

April-May 2016, we conducted the first largescale deployment of bait lamina to estimate soil

organism (largely soil invertebrate) feeding activity in situ at study plots in the Chernobyl

Exclusion Zone (CEZ). Across our 53 study plots, estimated weighted absorbed dose rates

to soil organisms ranged from 0.7 μGy h-1 to 1753 μGy h-1. There was no significant relation-

ship between soil organism feeding activity and estimated weighted absorbed dose rate.

Soil biological activity did show significant relationships with soil moisture content, bulk den-

sity (used as a proxy for soil organic matter) and pH. At plots in the Red Forest (an area of

coniferous plantation where trees died because of high radiation exposure in 1986) soil bio-

logical activity was low compared to plots elsewhere in the CEZ. It is possible that the lower

biological activity observed in the Red Forest is a residual consequence of what was in effect

an acute high exposure to radiation in 1986.

Introduction

Soil organisms are essential for ecosystem function, playing a vital role in processes such as

organic matter decomposition, nutrient cycling (and availability to plants) and bioturbation

[1]. The effect of various stressors, including pollutants, on soil biological activity has been the

focus of much study [e.g. 2–8]. Although it has been recommended that soil fauna could be

used as radiological biomonitors [9], the effects of ionising radiation on soil biological activity

at radiologically contaminated field sites has been relatively poorly studied. This may, in part,

be the consequence of soil organisms (invertebrate macrofauna, mesofauna and microorgan-

isms) typically being thought to be relatively insensitive to radiation compared to other biota

[10, 11]. Some studies have reported effects on soil fauna at sites with high levels of natural

radionuclides, including uranium mines [12–15]. However, it is likely that chemical toxicity
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rather than radiation dose is the cause of effects observed at such sites. Three months after the

1986 Chernobyl nuclear power plant accident, a 30-fold reduction in forest litter organisms

was recorded at a pine forest site 3 km to the south of the Chernobyl reactor (total absorbed

dose of 29 Gy estimated from thermoluminescent dosimeters placed in soil) compared to a

similar site 70 km south with an estimated dose about 40-fold lower [16, 17]. Within 2–2.5

years after the accident, the biomass of soil fauna at the two sites was similar [16], but Gera-

s’kin et al. [17] suggests that soil species diversity continued to be affected (approximately 20%

reduction) 10 years after the Chernobyl accident.

In the longer-term after the accident, there is a lack of agreement in reported effects of radi-

ation on soil organisms in the Chernobyl Exclusion Zone (CEZ); the CEZ is the approximately

4800 km2 area around the Chernobyl Nuclear Power Plant (ChNPP) that was abandoned fol-

lowing the accident [18]. Mousseau et al. [19] deployed leaf litter bags at sites (forests or aban-

doned farmland reverting to forest) in the CEZ from September 2007 for nine months.

Ambient dose rates ranged from 0.09 to 240 μSv h-1 (as determined by hand-held dosimeter)

and the authors reported a significant reduction (by up to 40%) in leaf litter decomposition

with increasing radiation levels; accounting for potential confounding variables, such as pH

and soil moisture, did not change their conclusion. The authors also stated that the lower leaf

litter decomposition resulted in the accumulation of organic matter in areas with higher radia-

tion levels. Conversely, Bonzom et al. [20] found no negative impact on litter decomposition

measured using litter bags at deciduous and mixed forest sites with ambient dose rates ranging

from 0.22 to 29 μGy h-1 (the authors estimated that this equated to a maximum absorbed dose

rate for litter decomposers of 150 μGy h-1); litter bags were deployed in November 2011 for a

total of 318 d. It should be acknowledged that the maximum ambient dose rate studied by Bon-

zom et al. is about an order of magnitude below that of Mousseau et al. However, the data of

Bonzom et al. suggested an increase in litter mass loss with increasing dose rate at dose rates

where Mousseau et al.’s ‘linear dose-response relationship’ (sic) would predict a reduction in

decomposition. Commenting on the contrasting findings of the Mousseau et al. [19] study and

their own study, Bonzom et al. make the observation that the decomposition rates at some of

the most contaminated sites of Mousseau et al. are comparable to, or higher than, those previ-

ously observed for litter from similar tree species at uncontaminated sites (see references cited

by Bonzom et al.). Other studies considering ecologically important soil organisms within the

CEZ found little or no effect of radiation [21–24].

In this paper we evaluate soil biological activity at sites across an ambient dose rate gradient

of 0.6 to 237 μSv h-1 during spring 2016 (estimated absorbed dose rates to soil organisms 0.7 to

1753 μGy h-1). We used bait lamina [25] to measure soil organism feeding activity in situ. This

approach has been used extensively to assess the impact of various chemical pollutants on soil

biological activity [e.g. 3, 12, 26–28]. Bait lamina have been recommended as an indicator of

soil biodiversity by a European Union working group [29] and as a method for use in ecologi-

cal risk assessment [30]. Subsequently, the International Organization for Standardization

(ISO) published ISO 18311:2016 [31], which defines a robust method for using bait lamina for

field-determination of anthropogenic impacts on soil organism feeding activity.

All underlying data from the study reported here have been made openly available in a data-

set published alongside this paper [32], enabling independent evaluation and reanalysis.

Materials and methods

Study sites

Eighteen study sites were selected, all of which were located within the CEZ. Eight of the sites

were located in the Red Forest, an area of about 4–6 km2 to the west of the Chernobyl nuclear
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power plant where coniferous trees died as a consequence of high radiation exposure in the

immediate aftermath of the accident [33]. At the time of this study, the area had regenerated with

deciduous trees (predominantly Betula spp. (birch)) and generally sparse understorey vegetation

including grasses, sedges, ericaceous species and, at a few sites, young pine saplings (site descrip-

tion notes can be found in the full dataset associated with this paper [32]). The decayed trunks of

pine trees killed by the accident were also still evident on the ground surface. Within the Red For-

est it was possible to select study sites with an approximately twenty-fold variation in ambient

dose rate; the ambient gamma dose rate (μSv h-1) on the soil surface was measured at each study

plot using a beta-shielded ATOMEX AT6130 dosimeter (https://atomtex.com/en/radiation-

monitors/at6130-at6130a-at6130d-radiation-monitors), the reading being taken once the meter

had stabilised. The meter is calibrated annually and has a high precision (difference in measure-

ments of<3% based on repeat readings at sites within the CEZ). Three sites were selected in

mature mixed deciduous woodland to the south of the Red Forest (Fig 1) with ambient dose rates

within the range of those in the Red Forest. At two of these sites there was evidence (i.e. dead

mature pine trunks on the ground surface) suggesting that of the few pine trees previously pres-

ent at these sites some may have been killed by radiation following the accident; ambient dose

rates at these sites were higher than at some of our Red Forest sites and they were located within

the boundaries of the area where the complete death of pine trees was observed in 1986. Two

deciduous woodland sites were also selected to the west of the Red Forest (on the edge of the

‘western trace’ of the initial release from the 1986 accident) with a further two sites in an area of

comparatively low deposition to the north-west of the Red Forest (Fig 1). The deciduous wood-

land sites to the south and north-west were visually different to the Red Forest, having a more

substantial litter layer which was virtually absent at some of the Red Forest sites. The deciduous

woodland sites to the west were more similar to the Red Forest with a general lack of a litter layer

and sparse understorey vegetation (S1 and S2 Figs). Three coniferous woodland sites were also

selected in the area of comparatively low deposition (Fig 1). Although wildfires are common

within the CEZ [18], none of the study sites had been impacted by wildfires (note many of the

Red Forest and nearby deciduous forest sites were impacted by a wildfire in July 2016 after the

study reported here [18]). The locations of all study sites were recorded using a Garmin 64st

Global Positioning System (GPS) with an accuracy of ±3 m.

Permission for research activities and sampling within the Chernobyl Exclusion Zone was

granted to Chornobyl Center by the State Agency of Ukraine for the Exclusion Zone Management.

Bait lamina

The bait lamina strips were obtained from ‘terra protecta GmbH’ (http://www.terra-protecta.

de/en/bait_strips.html). These semi-rigid polyvinyl chloride (PVC) strips (1 mm x 6 mm x 155

mm) have sixteen 1.5 mm apertures located at 5 mm intervals which begin 10 mm from the

pointed lower end (the upper 70 mm of the strip has no apertures) [25, 31]. The apertures

were filled with bait (for soil organisms) comprising 70% cellulose powder, 25% finely ground

wheat bran and 5% activated charcoal.

Field application of the bait lamina followed ISO 18311:2016. At each of the sites, three 1x1

m plots with similar vegetation cover were identified; at a given site the plots were within c. 30

m of each other. At one of the deciduous woodland sites to the west of the Red Forest it was

only possible to have two plots. Sixteen bait lamina strips were inserted into the ground within

each plot (using a 4x4 grid with bait lamina approximately evenly spaced) during the period

17th-19th April 2016. To ensure that the bait lamina would not be damaged during insertion

into the soil, a thin bladed knife of similar dimensions to the bait lamina strip was used to cut a

channel into the soil. The strips were then inserted such that the top aperture was c. 0.5 cm
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below the soil surface. At each plot, an additional strip was inserted and withdrawn to deter-

mine whether soil abrasion would result in loss of bait from any of the 1.5 mm apertures. All

bait lamina were retrieved after approximately 18 days (during 5th-7th May 2016). Soil temper-

ature was measured in each plot at the time of bait lamina insertion and again at removal

using a Eutech Instruments CyberScan pH300 (resolution 0.1˚C ± 0.3˚C).

After gentle wiping with tissue paper to remove adherent soil, the bait lamina sticks were

visually assessed by placing them on an iPad tablet and using LightBox (v1.4) light table app.

Feeding activity was assessed as qualitative feeding (i.e. the number of apertures showing any

degree of bait consumption). A simple ‘pierced’ or ‘unpierced’ scoring system was used, where

pierced was defined as clear evidence of bait removal (removal being distinguished from crack-

ing). The vertical distribution of evidence of feeding was recorded. The bait lamina sticks were

each read blind by two people (i.e. the people reading the strips had no knowledge of where

they had been deployed within the CEZ). For analyses and discussion, results for an individual

plot have been summed across all 16 bait lamina strips.

Soil sampling and analyses

After removal of the bait lamina strips, five 10 cm deep soil cores (2.5 cm diameter) were col-

lected from each plot (one from each corner and one from the middle). The five cores were

Fig 1. Location of sample sites within the Chernobyl Exclusion Zone; deposition decay corrected to 2016. Figure produced by and published with

the permission of the Chornobyl Center.

https://doi.org/10.1371/journal.pone.0263600.g001
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bulked, homogenised and sub-samples taken and sealed in zip-lock plastic bags for subsequent

determination of pH and percentage moisture. The remaining soil sample was dried at 60˚C

prior to radionuclide activity concentration determination. The pH of fresh soil was deter-

mined using the method of Allen [34] and percentage moisture was determined by mass loss

when oven drying a sub-sample to constant mass at 60˚C. Five separate soil samples were also

collected from each plot using a 10 cm deep collector of 250 cm3 volume, which was driven

into the ground until it was level with the surface; this gave a soil sample of known volume

which was subsequently oven dried at 60˚C to enable the estimation of dry mass (DM) bulk

density.

A Canberra-Packard gamma-spectrometer with a high-purity germanium (HPGe) detector

(GC 3019) was used to determine the activity concentration of 137Cs. For calibration a stan-

dard 44Ti, 137Cs and 152Eu source comprising epoxy granules (<1.0 mm) with the density of 1

g cm-3 was used (OISN-1; Applied Ecology Laboratory of Environmental Safety Centre,

Odessa, Ukraine). The minimum detectable activities were 0.18 Bq 137Cs and 0.85 Bq 241Am

per sample with uncertainties of around 10–15% and 20–30% respectively (p = 0.95); sample

mass 5 g in petri dish geometry.

Americium-241 and 238,239,240Pu activity concentrations in soil samples (c. 5 g in Petri dish)

were determined using a high purity germanium detector (Canberra GL0520R) with thin ber-

yllium window (energy range of 5 to 700 keV) using the methodology described by Bondarkov

et al. [35]. The 241Am activity concentration was estimated using the 59.5 keV gamma emis-

sion of its daughter isotope 237Np. The 238,239,240Pu activity concentration was estimated using

measurement of the Lx-radiation (13–23 keV) emitted from excited uranium daughter isotopes

following the α-decay of the Pu-isotopes. Because of absorption of low-energy emissions

within the sample, a correction for self-absorption was used. The absorption correction was

calculated assuming that the absorption ratio of the 13–23 keV U-isotope emission to the 661

keV emission of 137mBa (137Cs daughter) was similar to the absorption the ratio of the 32–37

keV 137mBa emission to the 661 keV emissions of 137mBa. For activity concentrations typically

found at contaminated sites in the CEZ (>10 Bq g-1) results obtained using this method have

been shown to have good agreement with those from standard radiochemical methods (±10–

15%) for both Pu-isotopes and 241Am [35]. To estimate radionuclide activity concentrations,

sample spectra were compared to spectra for 238Pu, 239Pu, 240Pu and 241Am standards. The

GL0520R detector was calibrated using a mixed gamma-standard (OISN-343 137Cs, 152Eu and
241Am epoxy granules (<1.0 mm) with density of 1 g cm-3; Applied Ecology Laboratory of

Environmental Safety Centre, Odessa, Ukraine).

Strontium-90 activity concentrations in soil samples were measured spectrometrically without

radiochemical pretreatment; for a detailed description of the method see Bondarkov et al. [36,

37] and Gaschak et al. [38]. The procedure used a β-spectrometer EXPRESS-01 (Nuclear

Research of National Academy of Science, Ukraine) with a thin-film (0.1 mm) plastic scintillator

detector calibrated using a 90Sr+90Y standard (OISN-3 expoxy granules<1 mm, density of 1 g

cm-3; Applied Ecology Laboratory of Environmental Safety Centre, Odessa, Ukraine). Daily cali-

brations of the spectrometer were conducted; uncertainties were approximately 20% (2 sigma).

All equipment, methods and techniques used in the Chornobyl Center laboratory were offi-

cially certified and calibrated by State Enterprise ‘KievOblDerzhStandard’ (the state metrologi-

cal service).

Estimation of absorbed dose rates

We estimated absorbed weighted dose rates for the three relevant soil organisms which are

available as defaults within the ERICA Tool version 1.2 [39, 40] and the revised ‘R&D128’
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spreadsheet model [41] available from https://wiki.ceh.ac.uk/display/rpemain/Ar+-+Kr+-+Xe

+dose+calculator). The ERICA Tool default radiation weighting factors of 10 for alpha radia-

tion, 3 for low energy beta and 1 for high energy beta and gamma radiation were applied [39].

The ERICA Tool was used to estimate doses to the ‘Annelid’ and ‘Arthropod–detritivorous’

reference organisms, whilst the ‘R&D 128’ spreadsheet model was used to estimate doses for

soil bacteria (it is not possible to model bacteria within the ERICA Tool because of limitations

on organism sizes). The two models have been shown to give reasonably consistent results for

a given organism [42, 43]. To estimate internally incorporated radionuclide concentrations for

annelids, and subsequently internal dose rates, concentration ratios as determined in 2014 for

Lumbricidae species collected from a site at the western edge of the Red Forest were used [44];

the concentration ratio is the ratio between the fresh mass activity concentration of the whole

body of an organism and the dry mass activity concentration of that radionuclide in soil. For

detritivorous arthropods, default concentration ratios from the ERICA Tool were used; there

was no need for concentration ratios for bacteria as all exposure is assumed to be external due

to their small size. The full set of concentration ratios used in this study is presented in the

accompanying dataset [32]. As total Pu activity concentrations in soil were reported, isotopic

ratios from Red Forest soil samples collected in 2014 [44] were used to estimate 238Pu, 239Pu

and 240Pu activity concentrations for inputting into the ERICA Tool. All three organisms were

assumed to have a 100% occupancy within the soil column and hence a 4π exposure geometry.

Measured soil dry mass percentages were used to correct for radiation attenuation within the

soil matrix; percentage DM has a proportional influence on the estimated external dose rate,

so a 10% soil DM would give an estimated external dose rate of 10% of that if soil were

assumed to be 100% dry mass (see discussion in Stark et al. [45]).

Statistical analyses

The Shapiro-Wilk test was used to test for normality of the data prior to subsequent statistical

analyses. Tests included, paired t-tests, Kruskal-Wallis test, General Linear Model (GLM) fit-

ting and regression analyses; all tests were performed using Minitab 18. The Red Forest is, in-

effect, its own unique habitat, being an area where habitat destruction occurred in 1986.

Although there has since been regeneration of deciduous tree species, at the time of this study

the Red Forest was generally of poor habitat quality. We have therefore used three simplified

habitat classifications for some of our data summarisation and subsequent analyses: ‘Red For-

est’, ‘deciduous’ and ‘coniferous’. Given that soil radionuclide activity concentrations at a

given site varied by up to one order of magnitude, we have treated each plot as a separate

observation point within our analyses (n = 53 plots) rather than averaging across the plots at a

given site. Where it was necessary to transform feeding activity data to loge values, feeding

activity recorded as zero was assumed to be 0.1. For one GLM fitting it was necessary to use R

v3.6.1 (see below).

Results and discussion

Soil radionuclide activity concentrations and dose rates

Table 1 summarises radionuclide activity concentrations by simplified habitat (coniferous,

deciduous or Red Forest); data for individual sites and plots can be found in Barnett et al. [32].

Plutonium isotope activity concentrations in 17 of the 53 soil samples were below detection

limits; for subsequent dose calculations, Pu-isotope activity concentrations that were below

detection limits have been assumed to be the minimum detectable activity concentration.

Estimated total absorbed dose rates for annelid, detritivorous arthropods and soil bacteria

are presented by simple habitat type in Table 2 alongside measured ambient dose rate values.
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Internal exposure was estimated to contribute 21±8.5% (mean±SD) of the total annelid dose

rate and 40±9.4% of the total arthropod dose rate; because of their small size internal exposure

of bacteria is assumed to be negligible [41]. There was a significant relationship between ambi-

ent dose rate and the estimated total absorbed dose rates for all three organisms (p<0.001; R2

= 74–89%). However, in all cases, the ambient dose rate was significantly lower that the total

absorbed dose rates (p<0.001; paired t-test) (see Table 2); the differences between ambient

dose rates and total absorbed dose rates were greatest for the soil bacteria and detritivorous

arthropod (for which 137Cs, the dominant component of ambient dose, contributed less to the

overall absorbed dose rate than for annelid). Therefore, whilst ambient dose rate is a good

marker of comparative external exposure between sites, it would be erroneous to fit dose-

response relationships based on ambient dose rate as others have often done for CEZ dose-

Table 1. Radionuclide activity concentrations in soils summarised by simple habitat.

Simple habitat Number of plots Arithmetic mean Arithmetic standard deviation Minimum Maximum

Cs-137 Bq kg-1 (DM) Coniferous 9 5.76E+03 3.51E+03 2.88E+03 1.40E+04

Deciduous 20 1.14E+05 1.30E+05 2.84E+03 4.22E+05

Red Forest 24 4.12E+05 3.32E+05 2.93E+04 1.03E+06

Sr-90 Bq kg-1 (DM) Coniferous 9 1.83E+03 6.83E+02 9.00E+02 2.90E+03

Deciduous 20 9.07E+04 1.73E+05 5.20E+02 7.83E+05

Red Forest 24 1.68E+05 1.85E+05 1.15E+04 8.66E+05

Am-241 Bq kg-1 (DM) Coniferous 9 9.64E+01 2.69E+01 5.40E+01 1.26E+02

Deciduous 20 5.76E+03 8.58E+03 6.30E+01 3.66E+04

Red Forest 24 1.20E+04 9.73E+03 1.23E+03 3.24E+04

Pu-238 Bq kg-1 (DM) Coniferous 9 5.09E+00 2.44E+00 <3.66E+0 1.14E+01

Deciduous 20 5.60E+02 7.83E+02 <2.00E+0 2.90E+03

Red Forest 24 1.87E+03 2.24E+03 9.20E+01 9.49E+03

Pu-239 Bq kg-1 (DM) Coniferous 9 9.57E+00 4.59E+00 <6.89E+0 2.14E+01

Deciduous 20 1.05E+03 1.47E+03 <4.00E+0 5.45E+03

Red Forest 24 3.52E+03 4.21E+03 1.73E+02 1.79E+04

Pu-240 Bq kg-1 (DM) Coniferous 9 9.57E+00 4.59E+00 <6.89E+0 2.14E+01

Deciduous 20 1.05E+03 1.47E+03 <4.00E+0 5.45E+03

Red Forest 24 3.52E+03 4.21E+03 1.73E+02 1.79E+04

https://doi.org/10.1371/journal.pone.0263600.t001

Table 2. Measured ambient dose rate at the soil surface and estimated total weighted absorbed dose rate to selected relevant reference organisms summarised by

simple habitat type.

Simple habitat Number of plots Arithmetic mean Arithmetic standard deviation Minimum Maximum

Ambient dose rate (μSv h-1) Coniferous 9 6.09E-01 5.49E-02 5.00E-01 6.50E-01

Deciduous 20 2.23E+01 2.63E+01 4.10E-01 7.80E+01

Red Forest 24 1.01E+02 7.47E+01 1.23E+01 2.37E+02

Total absorbed dose rate (μGy h-1) Annelid Coniferous 9 1.57E+00 8.00E-01 8.40E-01 3.43E+00

Deciduous 20 4.07E+01 5.00E+01 7.00E-01 1.84E+02

Red Forest 24 1.45E+02 1.19E+02 1.04E+01 3.89E+02

Total absorbed dose rate (μGy h-1) Arthropod Coniferous 9 2.03E+00 9.12E-01 1.10E+00 4.09E+00

Deciduous 20 6.15E+01 8.18E+01 1.00E+00 3.30E+02

Red Forest 24 1.86E+02 1.50E+02 1.46E+01 4.71E+02

Total absorbed dose rate (μGy h-1) Bacteria Coniferous 9 4.28E+00 1.27E+00 2.51E+00 6.56E+00

Deciduous 20 2.16E+02 3.30E+02 2.10E+00 1.41E+03

Red Forest 24 6.03E+02 5.28E+02 4.90E+01 1.75E+03

https://doi.org/10.1371/journal.pone.0263600.t002
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effect studies [e.g. 19, 46–48]. For both the annelid and detritivorous arthropod, the largest

contributor to absorbed dose was generally 137Cs. However, for detritivorous arthropod 241Am

was estimated to contribute a similar percentage of the total dose rate as 137Cs in some cases.

The differences between the dose estimated for annelid and detritivorous arthropod are largely

due to the different concentration ratios used to determine organism activity concentrations

and consequently the internal dose rate. For annelids we used values derived previously in the

Red Forest [44] whereas, for detritivorous arthropod the ERICA Tool (version 1.3) default val-

ues [40] were used. With the exception of Pu, the default detritivorous invertebrate concentra-

tion ratios were higher than the Red Forest annelid values we have used. The choice of

concentration ratio value is acknowledged to be a large contributor to uncertainty in estimated

absorbed dose rates for wildlife [49, 50]. However, given the lack of concentration ratio data

for detritivorous invertebrates in the CEZ, application of the ERICA Tool default values was

necessary.

Unsurprisingly, mean absorbed dose rates (and soil activity concentrations) were, highest

for the Red Forest (Tables 1 and 2). However, 13 of the 14 plots in deciduous woodland to the

south and west of the Red Forest had estimated absorbed dose rates within the range of those

estimated for the Red Forest.

The relative difference in estimated total absorbed dose rate for each of the three organisms

was broadly consistent across plots. Any differences were due to variation in the isotopic ratios

at a given plot. Therefore, in most of the following analyses we present and discuss dose rates

for annelids only as conclusions are the same regardless of the organism; annelids have previ-

ously been shown to significantly contribute to the observed feeding activity on bait lamina

strips [51].

Bait lamina

Although there were some differences in the readings of the bait lamina between the two read-

ers, these were insignificant (p>0.05; paired t-test). Therefore, we have averaged the result of

the two readers for use in statistical analyses (individual readings are presented in Barnett et al.

[32]). Feeding activity was assessed as qualitative feeding (number of apertures showing any

degree of bait consumption (bites)). Utilisation of the bait is summarised by simple habitat

type in Table 3. The additional bait lamina strips used to test if inserting into the soil and with-

drawing caused notable abrasion showed no damage to the bait.

Table 3. Feeding activity summarised by simple habitat.

Simple habitat Number of plots Arithmetic mean Arithmetic standard deviation Minimum Maximum

Apertures 1–16 (complete strip) Coniferous 9 19.9 9.98 2.00 35.0

Deciduous 20 20.8 15.6 2.00 53.0

Red Forest 24 7.73 8.54 0 31.0

Apertures 1–8 (top of strip) Coniferous 9 18.4 9.54 2.00 35.0

Deciduous 20 15.7 11.6 2.00 45.5

Red Forest 24 6.31 6.67 0 23.5

Apertures 9–16 (bottom of strip) Coniferous 9 1.44 1.76 0 5.50

Deciduous 20 5.10 5.39 0 16.5

Red Forest 24 1.42 2.33 0 7.50

Feeding activity has been calculated as the total number of bites across the 16 bait lamina strips at each plot (i.e. a total of 256 apertures per plot). Results are presented

for the complete strip (16 apertures per strip) and separately for the top and bottom eight apertures.

https://doi.org/10.1371/journal.pone.0263600.t003
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The feeding activity overall was relatively low compared to previous studies conducted else-

where at sites of differing habitat types (deciduous woodlands, grasslands and arable land)

across western Europe not impacted by pollutants [e.g. 26, 27, 52–54] with a mean of 6% of

apertures showing evidence of feeding and a maximum for any plot of 21% (the total number

of apertures per plot was 256). Four plots, all within the Red Forest, showed no evidence of

feeding activity. The bait lamina are known to be an indication of soil faunal activity, with

comparatively little contribution of microbial degradation to observed feeding activity [51, 55,

56]. Earthworms have been suggested as contributing significantly to the feeding activity

observed on bait lamina sticks [51]. The soils across all of our sites are acidic (pH 3.9 to 4.9)

and, in the case of the Red Forest sites and the deciduous woodland sites to the west, generally

sandy in nature. Soil conditions such as these are known to result in low earthworm abun-

dance [57] and consequently this is likely to contribute to the low overall utilisation rate of the

bait lamina across all sites. The soil temperature at all plots was well above the lower bound of

temperatures at which feeding on bait lamina has previously been reported [58].

In agreement with previous studies [e.g. 52–54, 59] utilisation of the bait was highest

towards the soil surface (Table 3) with a significant difference in observed feeding activity

between the top eight (c. 0.5 to 4 cm below soil surface) and bottom eight (c. 4.5 to 8 cm below

soil surface) apertures (p<0.001; paired t-test). Given the localisation of soil organic matter in

the uppermost layers of the soils in the CEZ (S1 and S2 Figs), the concentration of feeding

activity in these upper soil layers is unsurprising.

Estimated absorbed dose rate and feeding activity

There was a significant effect of habitat on feeding activity (p = 0.001; Kruskal-Wallis test).

Median feeding activities in the Red Forest plots (3.5 bites) were approaching an order of mag-

nitude below those of the deciduous (p<0.01; 20 bites) and coniferous (p<0.05; 22 bites)

woodland plots (note that the bait lamina data were not normally distributed even when trans-

formed to loge (p>0.2), consequently the GLM fitting was performed using R assuming a

Gamma distribution which allows for tails in the data). This difference in median feeding rate

might be interpreted as suggesting an effect of radiation exposure on feeding activity. How-

ever, a simple linear regression of absorbed dose rate for all three organisms across all 53 plots

showed no significant relationship with feeding activity (p>0.2; R2<0.03) (Fig 2 presents

Fig 2. A comparison of feeding activity (total bites) and estimated absorbed dose rate for annelid.

https://doi.org/10.1371/journal.pone.0263600.g002
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annelid as an example). Repeating the regression using loge transformed total absorbed dose

rate and/or feeding activity data did not improve the significance. There was also no relation-

ship if comparisons were restricted to plots within the same simple habitat type. Furthermore,

feeding activity at the deciduous woodland sites to the south of the Red Forest, where esti-

mated absorbed dose rates for annelids were in the range 28–180 μGy h-1, were generally high

(six of the nine plots being in the upper quartile of all observations) [32]. Conversely, at decid-

uous woodland sites to the west of the Red Forest, which had dose rates in the range 8–21 μGy

h-1, feeding activities were low with�5 bites in four of the five plots [32].

Our absorbed dose rate estimates are in-effect an average over the top 10 cm of the soil.

However, radionuclide activity concentrations are highest in the upper soil layers [35, 60–62],

so the concentration of feeding activity in the upper 4 cm of the soil profile suggests that we

may be underestimating the total absorbed dose rates for the organisms with most feeding

activity (see Beaugelin-Seiller [63] for discussion of heterogenous radionuclide distribution in

soil/sediment profiles).

There are many environmental factors, which affect soil biological activity and which have

previously been observed to influence feeding activity as determined using bait lamina strips.

These include soil moisture, pH, organic matter content and soil temperature [12, 27, 59].

Whilst organic matter content was not determined for our study soils, bulk density was esti-

mated. Harrison & Bocock [64] present a relationship between surface soil bulk density and

organic matter content (the higher the soil bulk density the lower the organic matter content).

Consequently, we can assume our estimated soil bulk densities are proxies for organic matter

content. Soil pH, percentage moisture, bulk density and temperature values for the study plots

are summarised in Table 4; there was no significant difference between April and May soil

temperatures (p>0.3; paired t-test) and consequently Table 4 presents values averaged across

the two measurement times. All measured soil parameters (pH, percentage moisture, bulk

density and temperature) show a significant effect of simple habitat (p<0.003; Kruskal-Wallis

test). Regressions of feeding activity against the soil parameters gave significant relationships

for percent moisture (p<0.001; R2 = 0.36) and soil bulk density (p<0.001; R2 = 0.40) (Fig 3);

the bulk density relationship in-effect implies that feeding activity increased with increasing

soil organic matter content. Whilst the regression of feeding rate against pH was significant,

the amount of variance this explained was poor (p<0.05; R2<0.09). There was no significant

Table 4. Soil pH, percentage moisture, bulk density and temperature summarised by simple habitat.

Simple habitat Number of plots Arithmetic mean Arithmetic standard deviation Minimum Maximum

pH Coniferous 9 3.87a 0.10 3.74 4.05

Deciduous 20 4.33a 0.52 3.52 5.08

Red Forest 24 4.58b 0.25 3.94 4.93

% moisture Coniferous 9 19.3a 5.17 10.6 26.4

Deciduous 20 23.7a 12.7 7.07 49.6

Red Forest 24 9.43b 2.06 4.40 13.6

Soil bulk density (g cm-3) Coniferous 9 0.78a 0.13 0.57 0.92

Deciduous 20 0.86a 0.30 0.39 1.38

Red Forest 24 1.24b 0.08 1.10 1.39

Soil temperature (oC) Coniferous 9 9.52a 0.26 9.05 9.90

Deciduous 20 9.68a 0.81 8.15 11.5

Red Forest 24 10.8b 1.57 9.35 15.5

For a given parameter significant differences (p<0.05; generalised linear model) between habitats are identified by different superscripted letter (a,b).

https://doi.org/10.1371/journal.pone.0263600.t004
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relationship between feeding rate and soil temperature (p>0.1; R2 = 0.04). Soil temperature

may have been in part determined by the time of day when measurements were made; for

both the April and May measurements there is a trend in the data suggesting that soil tempera-

ture increased with time of day (p<0.01; R2 = 0.18–0.50). However, there was no consistent

bias in the time of day at which sites in different habitat classifications were visited. Conse-

quently, we have not considered soil temperature further in our analyses. We note that there is

a general lack of soil parameter data available for the CEZ and hence the data from the present

study (see [32] and Table 4) makes a valuable contribution.

Given there was an effect of habitat/soil parameters on the feeding activity we observed, we

have conducted regression analyses of feeding activity against absorbed dose rate with soil

Fig 3. Relationship between feeding activity (total bites) and soil percentage moisture (top) and soil bulk density

(bottom).

https://doi.org/10.1371/journal.pone.0263600.g003
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moisture, soil pH and soil bulk density included as continuous predictors. The resultant statis-

tics (presented for the example of annelid in Table 5) demonstrate no significant interaction

between feeding rate and dose rate when these other variables were taken into account. A lack

of relationship between feeding activity and absorbed dose rate was also found for the detriti-

vorous arthropod and soil bacteria (p>0.2); by estimating the absorbed dose rates for the

smallest (bacteria) and largest soil organisms (annelids) we should have encompassed the

range of likely dose rates to any organism feeding on the bait lamina (e.g. nematodes, collem-

bola, mites [65]). We repeated the analyses without the soil parameters, but with simple habitat

as a categorical predictor. Again, there was no significant influence of absorbed dose rate on

feeding activity (p>0.3 in the case of the annelid).

Conclusions

Our study did not find any effect of current radiation exposure on soil biological activity as

determined by bait lamina strips. This is in agreement with the leaf litter decomposition study

of Bonzom et al. [20] but disagrees with the conclusion of Mousseau et al. [19] that ‘we have
shown severely depressed levels of litter mass loss in the most contaminated forest areas around
Chernobyl’ (sic). A criticism of the Bonzom et al. study could be that it considered a lower dose

rate range than the work of Mousseau et al. However, the maximum ambient dose rate across

our sites was comparable to that quoted by Mousseau et al. Furthermore, from the map of

study sites presented in Mousseau et al. and their supplementary data table, it would appear

that a number of their sites were in similar locations to those used in our study.

The study presented here is the largest deployment of bait lamina reported to date within

the CEZ. To our knowledge bait lamina have been used in the CEZ twice before in limited

scoping studies. Across four sites Jackson et al. [66] found a decreasing trend in bait lamina

utilisation with increasing ambient dose rate (gamma air kerma ranged from 0.1–0.5 μGy h-1

to 60–138 μGy h-1), the lowest feeding activity being observed in a site referred to as the Red

Forest (the Jackson et al. study was conducted in 2002). Conversely, unreported data by some

of the authors of this paper shows no relationship between feeding activity and soil 137Cs

(range 3–140 kBq kg-1 DM) or 90Sr (range 2–150 kBq kg-1 DM) activity concentrations across

four CEZ sites (including two towards the western end of the Red Forest) in summer 2005. As

these data are unpublished, we have included them within the dataset accompanying this

paper [32] to enable independent consideration.

We acknowledge that the endpoint of bait lamina is a measure of invertebrate feeding activ-

ity whereas litter bags, used by both Mousseau et al. [19]) and Bonzom et al. [20], give an esti-

mation of organic matter decomposition [67] and consequently the two methods likely

predominantly study different organisms. Comparisons between the two approaches differ,

with some authors observing similar trends in the results of the two approaches [67–69] and

others finding different trends [70, 71]. However, Mousseau et al. [19] imply that their results

demonstrated a similar impact of radiation on decomposition by microbial communities and

Table 5. Statistics of regression for annelid.

DF Adjusted sum of squares Adjusted mean squares F-Value P-Value

Regression 45 6.32E+03 1.40E+02 0.33 0.988

Total absorbed dose rate (μGy h-1) Annelid 1 2.62E+01 2.62E+01 0.06 0.810

pH 44 6.06E+03 1.38E+02 0.33 0.989

Error 7 2.94E+03 4.20E+02

Total 52 9.26E+03

https://doi.org/10.1371/journal.pone.0263600.t005
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by detritivorous invertebrates (assessed by comparing the results from fine and coarse mesh

litter bags respectively). In future studies, it is important that authors do not extrapolate their

findings beyond the limits of the method adopted. A more holistic evaluation of the influence

of radiation on soil surface and sub-surface biological activity would be obtained by combining

litter decomposition studies with bait lamina deployment.

Rather than current chronic radiation dose rates, soil biological activity varies with soil

properties (organic matter content (inferred from soil bulk density), moisture content and

pH). These are all well known to influence soil biological activity and feeding activity as deter-

mined using bait lamina strips (e.g. [12, 27]). Our finding is in contrast to that of Mousseau

et al. [19] who state that their litter bag decomposition data showed a linear dose response of

decomposition independent of confounding variables such as pH and soil moisture. The anal-

yses of Mousseau et al. did not appear to consider soil organic matter content as a variable.

However, they state that they observed an accumulation of litter with increasing radiation.

This is in disagreement with our findings that, irrespective of dose rate, soil biological activity

likely increased with increasing soil organic matter content (as inferred for soil bulk density

measurements). Furthermore, as noted above, our sites in the Red Forest visually had a sparse

litter layer and the most contaminated sites of Mousseau et al. must also have been in the Red

Forest (based upon their sample site map). Although our litter layer observation is anecdotal,

and cannot be verified, it is supported by our soil bulk density measurements (Table 4).

Whilst we found no relationship between soil invertebrate feeding activity and absorbed

dose rate, this does not necessarily mean that radiation has had no impact on soil biota within

the CEZ. When analysed by simple habitat category, the Red Forest showed significantly lower

feeding activity than the deciduous or coniferous plots. As discussed in Beresford et al. [72] the

Red Forest is a unique habitat which was altered by radiation in 1986 and which, at the time of

the work reported in this paper, continued to have a relatively poor habitat status. In a review

of the impacts of the 1957 Kyshtym (Russian Urals) accident, Fesenko [73] reports that soil

invertebrate communities had not been restored at a contaminated site (the main contaminant

being 90Sr) c. 30 years after the accident. Fesenko suggested that, in part, continued impacts on

soil invertebrates was due to their low mobility and hence a lack of migration into the area. As

soil invertebrates have low dispersal rates (e.g. of the order of 5–10 m a-1 for earthworms [74])

such a long-term impact of an acute radiation event would seem plausible. Krivolutzkii &

Pokarzhevskii [16] report that young earthworms did not survive or hatch in autumn of 1986

close to the ChNPP due to their greater radiosensitivity compared to adults. Therefore, it is

possible that the lower biological activity observed in the Red Forest is a residual consequence

of what was in effect an acute high exposure to radiation in 1986.

We have estimated total absorbed dose rates for relevant organism types rather than simply

using ambient dose rate as a marker of comparative radiation levels across our study sites. In

agreement with previous observations [44, 75, 76] we demonstrated that ambient dose rate

underestimated total absorbed dose rates to organisms. We recommend that, when relating

observations to radiation exposure, total absorbed dose rates are used. This is not a new sug-

gestion (e.g. see Chesser & Baker [77]) but unfortunately bad practice often seems to persist.

There are two aspects of our paper which we would like to draw attention to and encourage

as good practice. Firstly, the bait lamina sticks were read ‘blind’ by people with no knowledge

of where they had been deployed (again ‘blind’ analysis has been recommended previously for

studies in the CEZ by Chesser & Baker [77]). Where possible (and it is obviously not possible

for observations/measurements made by researchers in the field) blind analysis should be used

in future studies as it reduces the potential for bias, either unintentional or intentional, and

minimises future criticism. Secondly, there is considerable debate in the scientific literature

about the long-term impacts of chronic exposure of wildlife to radiation in the Chernobyl
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Exclusion Zone and now also in the Fukushima impacted areas (see Beresford et al. [78]). This

lack of consensus has a relatively high public profile, with potential impacts on, for instance,

the use of radiation (from medicine to nuclear power) and strategies for remediating areas

contaminated by nuclear accidents. By publishing the complete underlying data for our paper

[32], we give other scientists the ability to confirm our conclusions or indeed refute them

should that be valid. Such an approach of open data publication is the norm in some scientific

areas (e.g. for sequencing data, https://www.ncbi.nlm.nih.gov/sra). A wider willingness to

make radioecological data freely available in this way would greatly aid the scientific commu-

nity reaching much needed consensus on the effects of radiation on wildlife under field

conditions.

Supporting information

S1 Fig. Example profile for the soil CEZ—Plot 18.1 (see Barnett et al. [32]) showing a pro-

file typical for much of the CEZ (including the Red Forest) with little visible organic mat-

ter.

(TIF)

S2 Fig. Example profile for the soil CEZ—Plot 2.1 (see Barnett et al. [32]) soil profile for

site in the deciduous woodland to the south of the Red Forest showing a defined organic

matter layer.

(TIF)
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28. Jänsch S, Scheffczyk A, Römbke J. The bait-lamina earthworm test: a possible addition to the chronic

earthworm toxicity test? Euro-Mediterr. J Environ Integr 2017; 2: 5. https://doi.org/10.1007/s41207-017-

0015-z

29. Bispo A, Cluzeau D, Creamer R, Dombos M, Graefe U, Krogh PH. et al. Indicators for monitoring soil

biodiversity. Integr Environ Assess Manag 2009; 5: 717–719. https://doi.org/10.1897/IEAM-2009-064.1

PMID: 19775193

30. Environment Agency (EA). Guidance on the use of bioassays in Ecological Risk Assessment.

SCO70009/SR2c. Bristol: Environment Agency; 2008.

31. International Organization for Standardization (ISO). Soil quality—Method for testing effects of soil con-

taminants on the feeding activity of soil dwelling organisms—Bait-lamina test. ISO 18311:2016.

Geneva: ISO; 2016. Available from: https://www.iso.org/standard/62102.html.

32. Barnett CL, Gashchak S, Wells C, Maksimenko A, Chaplow J, Wood MD, et al. Soil biological activity in

the Chernobyl Exclusion Zone, Ukraine, September 2006 and spring 2016. NERC Environmental Infor-

mation Data Centre. (Dataset). 2021. https://doi.org/10.5285/19babe1c-b3a3-488c-b4fe-

ebb4ab9237d8

33. Smith J, Beresford NA. Chernobyl Catastrophe and Consequences. Chichester: Praxis Publishing/

Springer; 2005. Available from: https://link.springer.com/book/10.1007/3-540-28079-0.

34. Allen SE. Chemical analysis of ecological materials. Oxford: Blackwell Scientific Publications; 1974.

35. Bondarkov MD, Zheltonozhsky VA, Zheltonozhskaya MV, Kulich NV, Maksimenk AM, Farfán EB, et al.

Vertical migration of radionuclides in the vicinity of the Chernobyl confinement shelter. Hlth Phys 2011a;

101: 362–367. https://doi.org/10.1097/HP.0b013e3182166472 PMID: 21878761

36. Bondarkov MD, Bondarkov DM, Zheltonozhsky VA, Maksimenko AM, Sadovnikov LV, Strilchuk NV. A

method of 90Sr concentration measurement in biological objects and soil samples without radiochemis-

try. Nucl Phys At Energy 2002; 2: 162–167. Russian.

37. Bondarkov MD, Maksimenko AM, Gaschak S, Zheltonozhsky VA, Jannik GT, Farfán EB. Method for

simultaneous 90Sr and 137Cs in-vivo measurements of small animals and other environmental media

developed for the conditions of the Chernobyl exclusion zone. Hlth Phys 2011b; 101: 383–392. https://

doi.org/10.1097/HP.0b013e318224bb2b PMID: 21878764

38. Gaschak SP, Makliuk YA, Maksimenko AM, Bondarkov MD, Chizhevsky I, Caldwell EF. et al. Fre-

quency distributions of 90Sr and 137Cs concentrations in an ecosystem of the ‘Red Forest’ area in the

Chernobyl Exclusion Zone. Hlth Phys 2011; 101: 409–415. https://doi.org/10.1097/HP.

0b013e31821d0b81 PMID: 21878766

39. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G. et al. The ERICA Tool. J Environ
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