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Abstract

Mechanisms promoting coexistence between closely related species are fundamental for

maintaining species diversity. Mechanisms of niche differentiation include allochrony which

offsets the peak timing of resource utilisation between species. Many studies focus on spa-

tial and temporal niche partitioning during the breeding season, few have investigated the

role allochrony plays in influencing interspecific segregation of foraging distribution and ecol-

ogy between congeneric species during the non-breeding season. We investigated the non-

breeding migrations of Snares (Eudyptes robustus) and Fiordland penguins (Eudyptes

pachyrhynchus), closely related species breeding between 100–350 km apart whose migra-

tion phenology differs by two months. Using light geolocation tracking, we examined the

degree of overlap given the observed allochrony and a hypothetical scenario where the spe-

cies commence migration simultaneously. We found that Fiordland penguins migrated to

the Sub-Antarctic Frontal Zone and Polar Frontal Zone in the austral autumn whereas

Snares penguins disperse westwards staying north of the Sub-Tropical Front in the austral

winter. Our results suggest that allochrony is likely to be at the root of segregation because

the relative profitability of the different water masses that the penguins forage in changes

seasonally which results in the two species utilising different areas over their core non-

breeding periods. Furthermore, allochrony reduces relatively higher levels of spatiotemporal
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overlap during the departure and arrival periods, when the close proximity of the two spe-

cies’ colonies would cause the birds to congregate in similar areas, resulting in high inter-

specific competition just before the breeding season. Available evidence from other studies

suggests that the shift in phenology between these species has arisen from adaptive radia-

tion and phenological matching to the seasonality of local resource availability during the

breeding season and reduced competitive overlap over the non-breeding season is likely to

be an incidental outcome.

Introduction

A key problem in ecological theory is understanding how species diversity arises and how it is

maintained over time [1, 2]. The mechanisms that promote coexistence between closely related

species are central to understanding influences of interspecific interactions, community orga-

nisation and the evolutionary processes [3, 4] which contribute to forming the global scale pat-

terns of species richness and distribution. However, the mechanisms underpinning

coexistence between individuals and species within an ecological community are still poorly

understood [5–7].

Morphologically similar species that share an area provide a useful model for understand-

ing mechanisms that allow coexistence. According to the theory of phylogenetic niche conser-

vatism, closely related species are expected to be similar in terms of their ecological niches [8]

but when they exploit a common, limiting resource, interspecific competition will arise that

prevents their stable coexistence [9]. To reduce this theoretical competition, niche theory

implies that one of the species will need to switch the resource that is utilised (dietary partition-

ing) or exploit the same resource along different temporal or spatial axes (conditional parti-

tioning) [10–12]. However, competition is not the only mechanism that results in niche

differentiation. Niche differentiation may have evolved between closely related species that

have adapted to different environmental conditions during geographically isolated speciation

and maintain those differences after secondary contact [13].

Spatial segregation involves using similar resources at similar times in different locations.

Temporal segregation includes allochrony, which offsets the peak timing of resource utilisation

between sympatric species [14] that feed on similar prey, allowing them to utilise the same

areas but at different times. Theoretically, for coexistence to occur, competing species need to

find a balance between matching their biological needs with the timing of the environmental

drivers responsible for promoting the abundance of a shared resource and the amount of inter-

specific competition for that resource [15–17]. While there have been many studies which

have focused on both spatial and temporal partitioning in the reduction of niche overlap dur-

ing the breeding season, few have investigated the role allochrony plays in influencing inter-

specific differences in the non-breeding foraging distributions between ecologically similar

species [14, 18, 19].

Marine predators, such as seabirds, face different constraints during the breeding and non-

breeding seasons. Most seabirds breed in colonies and foraging is confined to a restricted

radius around this central place owing to the need to return to the nest to care for offspring,

which may lead to high intra- and interspecific competition between individuals and species

[20, 21]. Once breeding is over and central place constraints are relaxed one would expect sym-

patric species with similar resource requirements to disperse into the wider environment at

low densities and intermix as resource limitation and competition will be reduced.
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Nonetheless, evidence suggests that spatial segregation can continue during this period [22,

23], which may be due to competition or differences in habitat preference that evolved during

periods when the species were in isolation.

Penguins of the genus Eudyptes occupy broadly similar ecological niches, feeding primarily

on swarming crustaceans and myctophid fish [24] within the top 13–60 m of the water column

[25]. Several eudyptids breed in sympatry and exhibit allochrony such as Macaroni penguins

(Eudyptes chrysolophus) and Eastern rockhopper penguins (Eudyptes chrysocome filholi) at

Marion Island [26], Royal penguins (Eudyptes schlegeli) and Eastern rockhopper penguins at

Macquarie Island [27], and Erect-crested penguins and Eastern Rockhopper penguins on

Antipodes Island [28]. Additionally, they show strong stage-specific central place constraints

[29–31]. Eudyptes penguins are therefore good models to study niche partitioning and coexis-

tence in relation to allochrony.

In this study we investigated two Eudyptes penguins endemic to the New Zealand region,

Snares penguins (Eudyptes robustus) and Fiordland penguins/tawaki (Eudyptes pachyr-
hynchus). These two species have diverged recently and are still morphologically very similar

[32] and breed within 100–350 km of each other. Consequently, while not strictly sympatric,

their movements during the non-breeding season are sufficiently large relative to the geo-

graphic separation of their colonies to allow substantial spatial overlap in non-breeding forag-

ing areas.

Snares and Fiordland penguins both have stable population trends and are similar in many

life history traits but show a marked difference in the timing of their annual cycles. As is typical

of most Eudyptes penguin species, the post-moult non-breeding period of Snares penguins

occurs during the austral winter, whereas that of Fiordland penguins starts two months earlier,

with the majority of their post-moult non-breeding period taking place in the austral autumn

[33, 34]. Seabirds have evolved different strategies to cope with the seasonal variation in pro-

ductivity in polar regions [14, 22] which may play a role in the habitat selection, spatial distri-

bution and hence niche partitioning between Snares and Fiordland penguins.

We studied the post-moult migrations of Snares and Fiordland penguins to determine the

relative importance of spatial and temporal niche partitioning of their non-breeding distribu-

tion. Our aims were to: (1) quantify spatial and temporal overlap during the post-moult migra-

tions under the observed level of allochrony and (2) examine how segregation patterns change

in a scenario where both species initiate their non-breeding migrations simultaneously. We

use these comparisons to infer the relative importance of differences in habitat selection and

allochrony in separating the distributions of the non-breeding seasons of the two species.

Methods

Field work and geolocation

Tagging work at Snares Island was conducted under permit issued by the New Zealand

Department of Conservation (Wildlife Act Authority 35682-FAU) and was approved by the

animal ethics committee at the National Institute of Water and Atmospheric Research in New

Zealand. Tagging work of Fiordland penguins was conducted under permit issued by the New

Zealand Department of Conservation (permit number RES-38882) and was approved by the

animal ethics committee at the University of Otago in New Zealand (AEC-04/14). The dura-

tion of handling times of all penguins lasted less than 10 minutes and all field team members

involved were experienced and minimised stress to the animals during tag deployment and

retrieval.

The differences in the phenology of the two species are consistent through time and an

accepted aspect of their natural history [33, 34]. Migration periods are consistently offset
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between the species. Once Eudyptes penguins finish their breeding season, they go on a pre-

moult trip which lasts between four to eight weeks. They return ashore to perform what is

known as a catastrophic moult, when they moult all their feathers at once. The moult takes

places over three to four weeks during which the penguins have no waterproofing and cannot

go to sea. Once the birds have moulted, they embark on their post-moult migration and will

not return ashore again until the following breeding season.

Around half of the pre-moult trip of Snares penguins overlaps with the first part of the

post-moult migration of Fiordland penguins. We could therefore expect some overlap between

them during these periods as both species are likely to be near their colonies. Unfortunately,

we do not have pre-moult data for Snares penguins and so could not include this in our study.

The post-moult migrations are the focus of this study and will be referred as the non-breeding

season (Fig 1).

Fieldwork on Snares penguins was conducted on North-East Island (48.016˚ S, 166.533˚ E)

in April 2013 and on Fiordland penguins at Jackson Head (45.863˚ S, 170.553˚ E), Harrison

Cove (44.674˚ S, 167.923˚ E) and Codfish Island (45.862˚ S, 170.552˚ E) in September 2017.

Devices were deployed on Snares penguins at the end of the moult in April and retrieved when

the penguins returned to breed the following September, thus only spanning the non-breeding

period. For Fiordland penguins, devices were deployed at the beginning of the breeding season

in August and were left on the birds for a year. While tags were deployed at the end of 2017,

the data spanning the non-breeding season the following year (2018) was used.

Sampling occurred in different years. If changes in oceanography over time alter the distri-

butions of the species among years, it would compromise our comparisons of spatio-temporal

overlap. However, we expect that the changes in distribution within species across years will be

smaller than the differences between species within years. This is because we know that other

Eudyptes penguins from the same colonies have consistent migration routes and foraging habi-

tats during their non-breeding season across multiple years [35–37]. Further, the non-breed-

ing distribution of Fiordland penguins are consist across the pre-moult and post-moult

dispersals across multiple years [38, 39]. Finally, there was little difference in the locations of

the oceanic fronts between the two years which suggests that the major oceanographic features

such as frontal zones and eddies which might influence penguin distribution did not differ

greatly between the two years (S1 Fig).

Geolocation devices were deployed on 52 Fiordland penguins and 44 Snares penguins

(MK3005 Biotrack Ltd., Wareham, UK, 16 × 14 × 6 mm and 2.5 g). These devices recorded

light level, time, sea temperature and activity by means of salt-water immersion (wet vs dry

state: e.g. Mattern et al. [40]). Birds were captured at their nests and sexed using bill length and

depth measurements [33, 34]. For both species, tags were attached to their legs using encased

cable ties [41]. The devices deployed on Snares penguins failed to record temperature accu-

rately, so SST adjustments were not possible for their tracks.

The tag data were processed using the R packages SGAT and BAStag [42, 43]. We used a

threshold method that defines twilights as times when light levels have passed a certain thresh-

old. The solar elevation (zenith of the sun at the colony) relates this threshold to the sun’s

angle relative to the earth at the horizon for both sunrise and sunset, which then infers geo-

graphic positions from algorithms. Initially, the times of the twilights are recognised in BAStag,

which automatically detects when the threshold is crossed and allows the user to adjust times

to account for obvious shading events. Thereafter, location estimates are provided based on

times of twilights inferred from the light data and three priors. The first prior is a gamma dis-

tribution of penguin swimming speeds to restrict the distances between consecutive locations.

The second prior was a beta distribution of errors of the estimated times of twilight. The third

prior was a Gaussian distribution of water temperatures recorded by the tag which was used to
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Fig 1. Phenology of Snares penguins and Fiordland penguins, highlighting the post-moult non-breeding seasons. As is typical of Eudyptes species, Snares

penguins (purple) begin their non-breeding season at the end of April while Fiordland penguins (turquoise) begin their non-breeding season around 8 weeks

before, at the end of February.

https://doi.org/10.1371/journal.pone.0262901.g001
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constrain potential locations by comparison to remotely sensed sea surface temperature (SST)

obtained from The National Oceanic and Atmospheric Administration (https://psl.noaa.gov).

This is useful for constraining latitude during the equinoxes, when daylength is uniform across

the globe. This third prior was not included in the analysis of the Snares penguin data because

a fault in the temperature chip in their batch of tags meant no SST data were collected. This

had little impact on the quality of the tracks as the migration period of the species does not

overlap with the solar equinoxes. Latitude is calculated from day length and longitude is calcu-

lated from the time of midday and midnight relative to Coordinated Universal Time. So, the

latitude estimation of positions for the Snares tracks from light alone was sufficiently accurate

without SST priors.

Movement parameters

We calculated two sets of location outputs: one corresponding to the mean location at the time

instant of each twilight (S2 Fig) and another encompassing all potential locations for the ani-

mal during the inter-twilight periods (S3 Fig), given uncertainties in its movement rate and

trajectory between each known twilight location. Geolocation estimates have a low precision

(50–80 km for non-flying marine animals) [44], so it is important to retain the uncertainty in

distribution and overlap metrics. The posterior distribution provides the full range of location

estimates between each sunrise and sunset from 4 Bayesian Markov Monte Carlo chains of

3,000 iterations each–a total of 12,000 potential location estimates between each twilight (rep-

resenting an approximate 12-hour period). This second output was used to calculate spatial

distribution and utilisation distributions as it best represents the relative importance in a unit

of space with uncertainty; the former output was used to calculate trip metrics.

We derived a two-dimensional Kernel Density Estimate, using the “kde” method in SGAT,

using all intermediate location estimates across all individuals and chains and then binned

these full posterior distribution estimates into percentiles to represent the core and the periph-

eral areas of use of the animals. To produce the distribution estimate that represented the 50%

utilisation distribution (UD), we split the full posterior distribution estimates by the 50th per-

centile. We then enclosed this top 50th percentile of data with a polygon to produce an isopleth

that encompassed the area where 50% of the distribution estimates were located. The same was

done for the 90th percentile to produce the 90% UD. In this way, we preserved all location esti-

mates per location for each point in between the fixed twilights. For ease of reference, these

will be referred to as the 50% UD and the 90% UD. The data for the mainland and Codfish

Island colonies of the Fiordland penguins were pooled for the purposes of this study as the

UDs were sufficiently similar (S4 Fig) for inter-species comparison.

The proportion of locations found within the distinct inter-Oceanic frontal zones was cal-

culated using the full range of posterior location outputs for the full migration and dynamic

sea surface height extracted from the Copernicus Marine Environment Monitoring Service

(marine.copernicus.eu). To determine the usage of the seas in terms of different frontal zones,

we calculated the proportion of locations within each of the frontal zones as a percentage of

the full posterior distribution locations within the 90% UD. The locations of the fronts were

calculated by using the southern extents of the fronts defined by sea surface height contours

following Venables et al. [45]. The southern extent of the Sub-Tropical Front [46] and the Sub-

Antarctic Front were defined as 0.5 dyn cm and 0.128 dyn cm, respectively, and the Polar

Front and Southern Antarctic Circumpolar Current Front as -0.634 dyn cm and -1.09 dyn cm,

respectively [45]. This approach allows the annual and seasonal location of ocean fronts to be

determined [47]. To calculate the front locations for the periods over which the birds were

tracked, we used one mean dynamic height value for each front for February—June 2018 for
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Fiordland penguins and April—September 2013 for Snares. Finally, bathymetry used in all

maps was extracted from the GEBCO_08 Grid (http://www.gebco.net).

We used the mean coordinates for each twilight (rather than the full posterior of intermedi-

ate locations) for calculation of trip metrics. As penguins do not come ashore over the duration

of their non-breeding season, we considered the birds to have departed the colony once the

activity data registered 24 hours of being fully immersed (used to calculate mean departure

date) and similarly, they were considered to have returned to their breeding colony once the

activity data registered 24 hrs of being dry (use to calculate mean return date). The furthest dis-

tance from the colony and the cumulative distance travelled during the non-breeding season

were calculated using the great circle route. We related trip metrics to species and sex using

GLMs with model selection by Akaike’s information criterion (AICc).

To distinguish periods of increased time spent per sector from periods of intense travelling,

we calculated mean monthly speed anomalies. Monthly time periods were used to be compara-

ble with other Eudyptes studies [35, 48] as well as corroborate with the monthly maps pro-

duced (see further on). Mean speed per month was calculated by using displacement over

time. The anomalies of the monthly speeds from the average across the whole migration period

were then calculated, and the two months of the lowest speed anomalies were taken as the “res-

ident” months. The months representative of travelling speeds are called “migratory” months.

Quantifying spatio-temporal overlaps

To visualise the degree of spatial separation due to allochrony, we simulated a scenario in

which allochrony was absent by delaying the departure date of Fiordland penguins by two

months to give the same median departure dates as Snares penguins. This method provides a

mechanism to disentangle the degree to which allochrony and space use separate the observed

migration distributions. Monthly usage maps were produced using the posterior estimates, by

summing all possible locations within a month, among all the individuals for each species.

This allowed us to produce estimated usage maps incorporating all the information from the

estimation process. The greater the usage of an area by multiple animals within a species (i.e.
the number of putative locations in a pixel), the higher the relative importance of that pixel for

that species. We plotted the monthly 50% and 90% UDs (using the percentile method

described above).

To quantify the degree of spatial separation due to allochrony, we used the weekly overlap

statistics to evaluate spatial overlap at a finer scale (than monthly). We used utilisation distri-

bution overlapping statistics for the two scenarios (observed and synchronous) across the

number of weeks that spanned the non-breeding periods (30 weeks for the observed migra-

tions and 22 weeks for the synchronous migrations); and calculated the area under the curve

(AUC) for each. To make the periods of time comparable we converted the weeks to a percent-

age of the relative migration time. Utilisation distribution overlapping statistics (as a measure

between 0- no overlap- and 1- full overlap: y-axis) were plotted against the relative migration

time (x-axis). The differences in the AUC provides an index of the reduction in overlap that

arises from allochrony [18]. This was done for both the 50% and 90% UDs.

Results

Of the 52 devices deployed on Fiordland penguins 28 (54%) were recovered, compared to 34

of the 44 devices (77%) for Snares penguins. Snares penguins breed in large colonies of up to

1,300 nests, whereas Fiordland penguins breed singly or in small groups in dense forest, mak-

ing recovering devices from birds far more difficult for the latter. The number of devices that

had sufficient data to fully estimate locations for the complete non-breeding season was 27 for
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both Snares and Fiordland penguins (13 for the mainland and 14 for Codfish Island). The

poor performance of the Snares tags was due to a manufacturing defect that caused premature

battery expiry.

Overview of spatial use patterns

Both Snares penguins and Fiordland penguins showed consistent, directed migrations of simi-

lar extents to the west of New Zealand in oceanic waters with depths of over 3,500 m (Fig 2).

However, Snares movements were oriented more to the WNW, in relation to their colony,

such that they remained mostly north of the Sub-Tropical Front (STF). The Fiordland pen-

guins’ outbound migration was orientated to the WSW, in relation to their colonies, crossing

three fronts and making use of the Sub-Antarctic Frontal Zone (SAFZ), Polar Frontal Zone

(PFZ) and Southern Antarctic Circumpolar Current Frontal Zone (SACCFZ) (Fig 2). They

returned to their colonies via a more northerly orientation, using the waters north of the STF

for their inbound trip.

The water mass north of the Sub-Tropical Front and three inter-frontal zones were used by

the two species within the 90% UDs. Snares penguins were located mainly North of the STF

(77.5%), returning to their breeding colony via the SAFZ (15.3%) and PFZ (7.01%; Fig 3). The

percentage of posterior location estimates for Fiordland penguins located North of the STF

was 48.2%; with the other 51.8% of locations in the SAFZ (20.6%) and PFZ (21.9%) and, to a

lesser extent, the SACCFZ (9.3%).

Fig 2. Distribution of Fiordland and Snares penguins during the post-moult non-breeding season. Coloured fill indicates

50% (core usage; darker) and 90% (peripheral distribution; paler) utilisation distributions for Fiordland penguins (turquoise)

and Snares penguins (purple). The orange stars indicate the Fiordland breeding colonies along the New Zealand mainland

coast of Southwestland and Fiordland and on Codfish Island off the south of New Zealand and the yellow star indicates the

Snares Islands where Snares penguins breed. North of STF = North of the Sub-Tropical Front, SAFZ = Sub-Antarctic Frontal

Zone, PFZ = Polar Frontal Zone and SACCFZ = Southern Antarctic Circumpolar Current Frontal Zone. Grey lines represent

bathymetric contours with 1000 m interval.

https://doi.org/10.1371/journal.pone.0262901.g002
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Trip metrics

Both species were at sea for approximately four and a half months (139 ± 11 days and 136 ± 8

days for Fiordland penguins and Snares penguins, respectively). Broadly, trip characteristics

were similar in terms of their duration and the cumulative distances travelled, with expected

marked differences in the timing of migration (Tables 1 and 2). Unexpectedly, there were

Fig 3. Usage of the different water masses by Fiordland penguins and Snares penguins during the non-breeding season. Water masses are: North of

STF = north of the Sub-Tropical Front, SAFZ = Sub-Antarctic Frontal Zone, PFZ = Polar Frontal Zone and SACCFZ = Southern Antarctic Circumpolar

Current Frontal Zone.

https://doi.org/10.1371/journal.pone.0262901.g003

Table 1. Summary of track statistics (±SD) for Fiordland penguins and Snares penguins tracked during the post-moult dispersal period using light based

geolocators.

Species N mean departure date mean return date days at sea cumulative distance travelled (km) max distance from colony (km)

Fiordland All 27 27 Feb ± 6 days 16 July ± 8 days 139 ± 11 6, 069 ± 969 1, 876 ± 523

Female 14 26 Feb ± 1 day 22 July ± 6 days 146 ± 7 6, 359 ± 992 1, 903 ± 621

Male 13 28 Feb ± 1 day 10 July ± 6 days 132 ± 9 5, 756 ± 875 1, 847 ± 412

Snares All 27 25 April ± 4 days 8 Sept ± 7 days 136 ± 8 6, 443 ± 1, 153 2, 221 ± 599

Female 14 24 April ± 1 day 10 Sept ± 3 days 139 ± 8 6, 707 ± 1, 003 2, 244 ± 601

Male 13 26 April ± 1 day 5 Sept ± 3 days 132 ± 6 6, 135 ± 1, 282 2, 193 ± 621

N denotes sample size.

https://doi.org/10.1371/journal.pone.0262901.t001
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differences between the maximum distances swum from the colonies for the two species

(Table 2), with Snares penguins travelling slightly further distances than Fiordland penguins

(Table 1). Reflecting the typical biology of Eudyptes penguins, females from both species

returned ashore after males, which is reflected in the females accumulating longer swimming

distances over the non-breeding season than males.

Fiordland penguins had the slowest speeds during the months of April and May, and Snares

penguins during the months of June and July (Fig 4). These are considered the resident peri-

ods. Overall, mean travel speeds were 0.57 ± 0.4 m.s-1 and 0.63 ± 0.4 m.s-1 for Fiordland pen-

guins and Snares penguins, respectively while those during the resident period were 0.46 ± 0.1

m.s-1 and 0.45 ± 0.2 m.s-1, respectively. Speeds were significantly lower during the resident

period compared to the migratory period for Fiordland penguins (Student’s t-test, t16080 =

19.5, p = .01), but not for Snares penguins (Student’s t-test, t17304 = 4.7, p = .09).

Spatio-temporal overlaps

The Fiordland penguins move rapidly at the start of their migration so that when the Snares

penguins set out in April, there is very little overlap in their distributions (Fig 5). There could

be some unquantified overlap with Snares penguins on pre-moult trips at the end of February

and during March when Fiordland penguins commence migration, but this will decline to

zero by April when Snares penguins are moulting ashore. During May, the two species’ paths

cross: Fiordland penguins are in one of their resident months and Snares penguins are out-

bound towards their resident wintering area (Fig 5: May). There is very little or no overlap for

the months of June and July when the crossover of the two species’ return and outbound paths

are completed. Then, there is again an increase in spatial overlap at the end of August when

the Snares penguins are travelling back to their breeding island, congregating with Fiordland

penguins that are foraging in the vicinity of their colonies.

When quantifying the spatial overlap across the migration, there is no overlap for the

first 30% of the migration (not accounting for the Snares pre-moult trip; Fig 6A: grey

Table 2. Backwards elimination step-wise models of differences for trip characteristics between Fiordland pen-

guins and Snares penguins tracked during the post-moult dispersal period.

Model Term AIC ΔAIC

departure date ~ Species�Sex departure ~ Species 388.64 0

departure ~ Species: Sex 389.58 0.94

departure ~ Sex 455.74 67.1

return date ~ Species�Sex return ~ Species 686.7 0

return ~ Species: Sex 690.4 3.7

return ~ Sex 713.83 27.13

days at sea ~ Species�Sex days ~ Species: Sex 218.5 0

days ~ Sex 219.23 0.73

days ~ Species 241.41 22.91

cumulative distance travelled (km) ~ Species�Sex dist ~ Sex 736.28 0

dist ~ Species: Sex 738.03 1.75

dist ~ Species 739.9 3.62

max range from colony (km) ~ Species�Sex max range ~ Species 669.22 0

max range ~ Species: Sex 672.89 3.67

max range ~ Sex 676.07 6.85

Species:Sex in the Term column refers to the interactions between Species and Sex.

https://doi.org/10.1371/journal.pone.0262901.t002
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rectangle). There is a steep rise in overlap between the two species between 40–55% into

the migration, reaching a peak overlap index of 0.48 (Fig 6A). This coincides with the mid-

dle two weeks of May. This peak falls steeply afterwards, maintaining low overlap indices,

of less than 0.05 in the peripheral area, from 60 to 87% (with the highest overlap indices

being 0.02 in the core area and 0.05 in the peripheral area). This period is during the mid-

dle of the Snares non-breeding season and the end of the Fiordland penguin migration.

The last 15% of the migration reaches a peak overlap index of 0.16 at the end of August

and beginning of September.

If the two species migrated in synchrony, spatial overlap would be present throughout

the non-breeding season (Figs 6B and 7). When viewed at a weekly timescale, overlap

under this scenario occurs more consistently through the season compared to the observed

situation with allochrony (Fig 6A vs 6B). At the onset of the synchronous migrations, there

would initially be an increase in spatial overlap (Fig 6B: 0–25%) in the area south-west of

New Zealand (Fig 7) when both species would be departing their colonies after the moult.

As Fiordland penguins have a more southerly distribution, the utilization distributions

diverge and the overlap indices decline. This period of relatively low overlap accounts for

just 20% of the relative migration period (from 25–45%). From 60% into the migration,

the overlap steadily increases to an overlap index of 0.3 (core area) and 0.42 (peripheral

area) at the end of the migration, when the birds would all be gathering around their

breeding colonies (Figs 6B and 7).

Comparing the AUC values of Fig 6A and 6B quantifies the reduction in overlap in seasonal

Snares and Fiordland penguins’ utilisation distributions that arise from allochrony. If the pen-

guins were to start their migrations synchronously, overlap would increase by 36.60% and

29.58% in the core area and peripheral area, respectively, over the entire non-breeding season.

Fig 4. Monthly anomalies from trip speed for tracked Fiordland penguins and Snares penguins over the non-breeding season. The Fiordland

penguin migration takes place from February to July, while the Snares penguin migration takes place from April to September. Mean individual travelling

speeds were 0.57 ± 0.4 m.s-1 and 0.63 ± 0.4 m.s-1 for Fiordland penguins and Snares penguins, respectively. Fiordland penguins had the slowest speeds

during the months of April and May, and Snares penguins during the months of June and July.

https://doi.org/10.1371/journal.pone.0262901.g004
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Discussion

The migrations paths of the Fiordland penguins tracked in this study were similar in orienta-

tion and distance to Mattern et al. [39] and Thiebot et al. [38] who tracked Fiordland penguins

Fig 5. The core (50% UD) and peripheral (90% UD) non-breeding distributions for Snares (purple) and Fiordland (turquoise) penguins. February

(the month when the Fiordland penguins first set out) and September (when the Snares penguins return to their colonies) were excluded as they only

represented one week of data each.

https://doi.org/10.1371/journal.pone.0262901.g005
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Fig 6. Weekly Utilisation distribution overlapping statistics and area under the curve comparisons between observed and synchronous migrations.

Overlap indices for the core area (50% isopleth; dark grey) and the peripheral utilisation distributions (90% isopleth; light grey) for a) the observed and b)

the synchronous migrations for Snares and Fiordland penguins during their non-breeding season presented with the relative percentage of time lapsed
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during the pre-moult trip and post-moult migrations. This provides support for the migration

paths of Fiordland penguins being consistent across years, which provides confidence that

comparisons of tracks with congeners during different years are valid. These are the first pub-

lished migration tracks for Snares penguins, providing the opportunity to describe spatio-tem-

poral partitioning between these two closely related species and the factors that may influence

this.

Both species showed directed migrations of similar extents westwards of New Zealand, but

Snares penguins migrate west and stay north of the STF whilst Fiordland penguins head

south-westerly, reaching as far as the SACCFZ and then returning to their colony by crossing

across the non-breeding season. The period of time in a) runs from the start of the Fiordland penguin migration (at the end of February) to the end of the

Snares migration (which ends at the beginning of September). At the start of the observed migrations Fiordland penguins embark on their migrations. After

8 weeks, the Snares first start their migration (indicated by the arrow). The dark grey rectangle (a) represents the period when the Snares penguins would

still be on their pre-moult trip (overlapping with the post-moult migration of the Fiordland penguins). During the synchronous migrations (b), Snares and

Fiordland penguins were assumed to leave and return simultaneously.

https://doi.org/10.1371/journal.pone.0262901.g006

Fig 7. The synchronous core (50% UD) and peripheral (90% UD) non-breeding distributions for Snares (purple) and Fiordland (turquoise) penguins.

The start of the Fiordland penguins migration was shifted later in time by two months to coincide with the start of the Snares penguins migration (i.e. the

Fiordland penguin distribution for March was shifted to May, etc.). February (the month when the Fiordland penguins first set out) and September were

excluded as they only represented one week of data each.

https://doi.org/10.1371/journal.pone.0262901.g007
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back over the STF. Niche conservatism between the breeding and non-breeding seasons is a

common strategy for seabirds [49, 50]. Snares penguins exhibit a niche conservatism strategy

[18], where animals remain in similar habitats during their non-breeding season to those they

utilise during the breeding season, comparable to that of austral winter migrating Macaroni

penguins at Kerguelen [50]. In comparison, Fiordland penguins adopt a hybrid strategy

involving niche switching [18] by foraging in water masses at higher latitude, than those sur-

rounding their breeding colonies, during their outbound migration and resident period, then

a niche conservatism strategy on the return journey to their colony across the STF.

Allochrony usually evolves between species that breed in sympatry and show high character

displacement, as in the case of MacGillivray’s prions (Pachyptila macgillivrayi) and broad-

billed prions (P. vittata) from Gough Island that show a high spatial overlap between migra-

tion distributions in the absence of allochrony [14]. In contrast, our findings are more similar

to those of Quillfeldt et al. [22] who found contrasting migration strategies between three spe-

cies of sympatric Procellariidae that also exhibit both allochrony and low spatial overlap in

non-breeding distributions. Quillfeldt et al. [22] hypothesize that competition may not be the

selective pressure that resulted in the phenology and migration strategies differing between

sympatric and closely related species that show contrasting migration strategies, but rather

these aspects evolved to exploit different peaks in food availability. By attempting to separate

the spatial and temporal components of segregation, we aimed to ascertain the mechanisms

behind niche differentiation between the Snares and Fiordland penguins. When hypothetically

assuming the two species migrate synchronously, overlaps increase, but not to high levels as

the niche switching strategy of Fiordland penguins lead their utilisation distributions to be fur-

ther south during the outbound and resident phases. Segregation then arises from the species

using different areas as well as using the same areas at different times which may suggest, simi-

lar to Quillfeldt et al. [22] findings, there are other factors than inter-specific competition play-

ing a role in coexistence [51] between these two species.

Drivers and consequences of niche differentiation

The conflict between resource demand and availability in the winter has lead to different strat-

egies between seabirds that over-winter in high latitudes to meet the energy demands of sur-

vival [14, 52]. More specifically diving seabirds, as visual predators, need to balance high

energy requirements needed for thermoregulation and challenging conditions of seasonal lows

in productivity with reduced day light hours to forage at depth in the winter months [53, 54].

The contrasting foraging areas and times of migration of the two penguin species in this study

have allowed these species to effectively bypass the worst of the challenges of foraging during

winter in the higher latitudes of the Southern Ocean. The earlier migration of Fiordland pen-

guins allows them to exploit the higher productivity and longer day lengths that occur further

south in the SAFZ and PFZ during the austral autumn months compared to the austral winter.

Indeed, over a similar period in the late summer and early autumn months, these colder waters

in the SAFZ/PFZ support large biomasses of marine predators, including other Eudyptes spe-

cies which would be on their pre-moult trip [29, 55, 56]. Thereafter, with the seasonal change

and onset of winter, when the mixed layer depth in the SAFZ/PFZ increases to depths exceed-

ing 500m [57], Fiordland penguins move north and eastwards, and Snares penguins set out on

their migration, with most individuals foraging in the waters north of the STF where mixed

layer depth is substantially shallower and day length is longer.

These same movements used to take advantage of the productive cold waters further south

during the autumn months are reflected in the movements of other Sub-Tropical Frontal Zone

breeding birds. Northern Rockhopper penguins from Amsterdam Island in the Southern
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Indian Ocean move south into higher latitudes during their non-breeding season occupying

the same non-breeding area over the austral autumn as allopatric breeding Eastern Rockhop-

per penguins from Kerguelen do over the austral winter months [23]. MacGillivray’s prions

from Gough Island are also austral autumn migraters which have the majority of their non-

breeding distribution south of the Sub-Tropical Front [14]. It may be that there is a physiologi-

cal cost to a Sub-Tropical Frontal Zone breeding species in foraging further south [58]. This

may explain why it is beneficial for Fiordland penguins to forage earlier in the year and for

Snares penguins to mainly stay north of the STF over the winter months. We hypothesize that

were Snares and Fiordland penguins to migrate synchronously, the increase in overlap that we

estimated would be under-represented as it is likely then that the delay in migration would

make conditions further south unsuitable for Fiordland penguins, resulting in them remaining

north of the STF, as the Snares penguins do, and a higher spatial overlap in resource use. This

is further corroborated by the fact that most of the Fiordland penguins used the water mass

north of the STF when the winter season started.

Snares and Fiordland penguins are likely using different frontal zones to exploit different

prey communities. During the breeding season Fiordland penguins feed primarily on fish and

Arrow squid (Nototodarus sloani) [59] and Snares feed primarily on euphausiid Nyctiphanes
australis [60] that are coastal species unavailable across their observed winter distributions.

Stable isotope studies of the winter diets of Eudyptes penguins elsewhere show that pelagic zoo-

plankton account for>84% of their diets [49]. Composition of large zooplankton communi-

ties in the Southern Ocean differ among the frontal zones [61]. The SAFZ/PFZ used by

Fiordland penguins during their outbound migration and resident period is dominated by

Sub-Antarctic species such as Euphausia lucens, E. vallentini, as well as Thysanoessa gregaria,

Primno macropa, Themisto gaudichaudii [61], the same species found in the diets of Eastern

rockhoppers and Macaroni penguins that forage in these frontal zones [62]. Communities

north of the STF are dominated by E. similis var. armata, E. spinifera and Thysanoessa gregaria
[61, 63] which are likely to form the diets of Snares throughout their non-breeding period, and

Fiordland penguins during their return migration.

Explanations for allochrony

Penguins experience two periods of hyperphagia (or persistent feeding): before the cata-

strophic moult (when penguins moult all their feathers simultaneously) and before the breed-

ing season starts. Penguins fast for three to four weeks ashore throughout the moult [33]. At

the start of the breeding season, penguins again need to fast for up to 40 days during the court-

ship and incubation periods. During these periods of hyperphagia, penguins are particularly

susceptible to intra- and interspecific competition for prey resources. Macaroni penguins have

been shown to experience the highest pressure to forage effectively over the annual cycle

immediately before returning to land to breed [37]. Although not a Spheniscidae, this has also

been found true for the Common guillemot (Uria aalge) as well, a seabird with high wing-load-

ing and similar pursuit diving to penguins [54]. This reveals that contrary to what most

researchers assume, the greatest energy requirements for some seabird species does not take

place during the breeding season, but instead at the end of the non-breeding migration in

preparation for the breeding attempt. Alternatively, birds simply forage more during this time

as it may be that there is decreased prey availability in the area between the resident non-

breeding foraging area and their colonies [37]. Regardless, prior to their return to the colony,

the penguins must be feeding intensively to maintain good body condition to survive the fast-

ing period [34]. Our findings show that during synchronous migrations, Snares and Fiordland

penguins would experience a substantial increase in overlap at the end of the non-breeding

PLOS ONE Allochrony and interspecific differences in foraging distribution between two penguin species

PLOS ONE | https://doi.org/10.1371/journal.pone.0262901 February 9, 2022 16 / 22

https://doi.org/10.1371/journal.pone.0262901


season both in duration and in space when high number of birds would be converging at rela-

tively high density close to the colonies. However, while allochrony has resulted in there being

no spatial overlap around the colonies for returning Fiordland penguins, there is an increase

in spatial overlap when Snares penguins are returning to their colonies. The timing of Snares

penguins returning coincides with Fiordland penguin chick hatching and female Fiordland

penguins foraging in the vicinity of their colonies. Had competition for resources been the

mechanism for allochrony, we would expect that the life cycles would be offset by a few weeks,

as with other sympatric Eudyptes penguins, and not two months, as only one species secures

the benefit of arriving in the absence of the other.

An alternative explanation for allochrony arising due to competition [14], is that allochrony

may arise among congeneric seabirds due to differences in ocean regimes between their colo-

nies that can drive speciation through parapatry or allopatry [64]. Differences north and south

of the Subtropical Convergence drove the speciation of Rockhopper penguins (Eudyptes chry-
socome) breeding in these two areas into the Southern and Northern rockhopper species [65]

roughly 0.9 million years ago [66]. Summer breeding is the dominant strategy employed by

Eudyptes penguins and so, to reduce competition between closely related competitors, we

could expect a shift in phenology which could result in a winter breeding niche. Southern and

Northern rockhopper penguins, like Snares and Fiordland penguins, have distinct mitochon-

drial DNA and also show marked allochrony. However, Northern rockhopper penguins have

evolved to breed in late winter/early spring, 8 weeks before Southern rockhoppers in the

absence of competition from other diving seabird species [67]. Comparably, differences in

ocean regime based on local productivity around breeding colonies may have resulted in the

speciation between Snares and Fiordland penguins which diverged from their common ances-

tor around 0.5–1.4 million years ago [32].

There is considerable evidence that seabird behaviour and performance are driven largely

by food availability [68]. As Snares and Fiordland penguins breed in parapatry and not sym-

patry, it is more likely that niche divergence results from the difference in the locally abundant

prey resources and suitable environmental conditions around their colonies. This explains

why the optimal timing for breeding differs between the two species despite the proximity of

their colonies. The shift in phenology of Fiordland penguins was made possible by the locally

abundant spawning Arrow squid and fish prey resources around the west coast of the South

Island at the end of winter/beginning of spring [34, 69]. When the squid availability decreases

in the summer months [70], Fiordland penguins enter their non-breeding season. They can

then forage in more distant oceanic frontal zones [38, 39] allowing them to track abundant

prey throughout the year by then taking advantage of the tail-end of the summer’s productivity

in the SAFZ/PFZ. The increased productivity of the warm Sub-Tropical waters in the spring

and summer months result in the spring bloom of euphausiids as well as fish and cephalopods

within range of the Snares Islands [71, 72]. The beginning of the breeding season for offshore

foraging Snares penguins is timed to coincide with this bloom.

Reproductive isolation would have evolved between the penguins breeding on Snares

Island, south of New Zealand, and the New Zealand mainland coast of Southwestland via phi-

lopatry and allochrony as the birds shifted their phenology to match different timing of local

prey availability. Due to this, it is less likely that Fiordland penguins adopted earlier breeding

because of interspecific competition with Snares penguins driving temporal niche partitioning.

It may simply be that foraging and/or breeding conditions are better for them in early spring

[70], and allochrony arose from different timings in optimal conditions for breeding at main-

land New Zealand [69] and the Snares Islands [60].
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Conclusion

Niche switching has been hypothesised to be a derived trait compared to niche conservatism

which is considered the primitive state [22] in the evolution of migration patterns. This sug-

gests migrations north of the STF during the non-breeding season is the original migration

strategy, and the foraging ecology of the Fiordland penguins in space and time reflects the plas-

ticity and adaptation to seasonal availability of resources of this species. We found that allo-

chrony underpins segregation of Snares and Fiordland penguins. The earlier departure of

Fiordland penguins results in spatial partitioning due to them switching to higher latitude

niches, and later in the non-breeding season, allochrony results in temporal partitioning north

of the STF when Fiordland penguins and Snares penguins would otherwise congregate around

their colonies. This allochrony is likely due to their phenology being matched to peaks in prey

availability in their breeding seasons, and any reduction in competition that arises to this is an

incidental outcome.
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7. Reif J, Reifová R, Skoracka A, Kuczyński L. Competition-driven niche segregation on a landscape

scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species.

J Anim Ecol. 2018; 87: 774–789. https://doi.org/10.1111/1365-2656.12808 PMID: 29430650

8. Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phyloge-

netic relatedness and ecological similarity among species. Ecol Lett. 2008; 11: 995–1003. https://doi.

org/10.1111/j.1461-0248.2008.01229.x PMID: 18673385

PLOS ONE Allochrony and interspecific differences in foraging distribution between two penguin species

PLOS ONE | https://doi.org/10.1371/journal.pone.0262901 February 9, 2022 19 / 22

https://doi.org/10.2307/5503
https://doi.org/10.2307/5503
https://doi.org/10.1016/j.tree.2003.09.007
http://www.ncbi.nlm.nih.gov/pubmed/16701224
https://doi.org/10.1073/pnas.0905137106
http://www.ncbi.nlm.nih.gov/pubmed/19903876
https://doi.org/10.1111/1365-2656.13346
http://www.ncbi.nlm.nih.gov/pubmed/32965060
https://doi.org/10.1371/journal.pone.0117750
http://www.ncbi.nlm.nih.gov/pubmed/25693176
https://doi.org/10.1002/ece3.4691
http://www.ncbi.nlm.nih.gov/pubmed/30619571
https://doi.org/10.1111/1365-2656.12808
http://www.ncbi.nlm.nih.gov/pubmed/29430650
https://doi.org/10.1111/j.1461-0248.2008.01229.x
https://doi.org/10.1111/j.1461-0248.2008.01229.x
http://www.ncbi.nlm.nih.gov/pubmed/18673385
https://doi.org/10.1371/journal.pone.0262901


9. Hutchinson GE. Cold spring harbor symposium on quantitative biology. Concluding remarks. 1957; 22:

415–427.

10. Trivelpiece WZ, Trivelpiece SG, Volkman NJ. Ecological segregation of Adélie, gentoo, and chinstrap
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