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A B S T R A C T

Optimizing ship operational performance has generated considerable research interest recently to reduce fuel
consumption and its associated cost and emissions. One of the key factors to optimize ship design and operation
is an accurate prediction of ship speed due to its significant influence on the ship operational efficiency.
Traditional methods of ship speed estimation include theoretical calculations, numerical modeling, simulation,
or experimental work which can be expensive, time-consuming, have limitations and uncertainties, or it cannot
be applied to ships under different operational conditions. Therefore, in this study, a data-driven machine
learning approach is investigated for ship speed prediction through regression utilizing a high-quality publicly-
accessible ship operational dataset of the ‘M/S Smyril’ ferry. Employed regression algorithms include linear
regression, regression trees with different sizes, regression trees ensembles, Gaussian process regression, and
support vector machines using different covariance functions implemented in MATLAB and compared in terms
of speed prediction accuracy. A comprehensive data preprocessing pipeline of operational features selection,
extraction, engineering and scaling is also proposed. Moreover, cross validation, sensitivity analyses, correlation
analyses, and numerical simulations are performed. It has been demonstrated that the proposed approach
can provide accurate prediction of ship speed under real operational conditions and help in optimizing ship
operational parameters.
1. Introduction

With more than 80% of the world trade handled by shipping,
more stringent regulations are introduced by the International Maritime
Organization (IMO) to improve ships operational efficiency and reduce
its greenhouse gas (GHG) emissions. However, in spite of implementing
stricter regulations, the total GHG emissions from ships as well as the
shipping share percentage to the global emissions have increased by
9.6% and 4.7% respectively between 2012 and 2018 according to the
latest IMO GHG study (Faber et al., 2020). Therefore, in order to control
and reduce these emissions, IMO has adopted mandatory operational
and technical measures which include the Energy Efficiency Design
Index (EEDI) for new ship design and the Ship Energy Efficiency Man-
agement Plan (SEEMP) for all ships. The EEDI targets a minimum CO2
emissions per cargo carried for newly built ships through implementing
design-based solutions. Meanwhile, the SEEMP seeks to improve the
operational energy efficiency of ships using operational strategies and
practices of ship management (Rehmatulla et al., 2017; Bazari and
Longva, 2011).
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Among the various EEDI and SEEMP measures available, the speed
based measures are increasing in popularity for improving ships energy
efficiency and reducing GHG emissions (Capezza et al., 2019). This is
mainly due to the fact that, a small speed adjustment can result in
a significant improvement to the ship fuel consumption and energy
efficiency (Smith et al., 2011). Moreover, applying speed based EEDI
and SEEMP measures such as speed optimization, voyage execution,
or speed reduction for new and existing ships does not require an
upfront capital or investment costs and payback periods. However, it
should be noted that altering ship speed can impact the voyage duration
and associated costs which affects the ship productivity and total
income (Capezza et al., 2019; Smith et al., 2011). Therefore, predicting
ship speed in design stage and during operation is an essential element
in evaluating the efficiency of EEDI and SEEMP measures.

Ship speed prediction is of significant importance in the decision
making processes and has many implementations in the maritime in-
dustry. For example, for more accurate fuel consumption and emissions
calculations, ship speed is the most principal operational parameter to
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be determined (Bialystocki and Konovessis, 2016). In addition, it has
been shown that ship operating speed is a trend key driver of emissions
and its growth rate (Faber et al., 2020). Moreover, in ship routing and
voyage planning problems, an accurate ship speed prediction is essen-
tial to estimate the ship expected time of arrival (ETA) and satisfy the
calling ports time windows constrains (Zis et al., 2020). Also, ship speed
is a key factor in developing and operating ship trajectory planning and
collision avoidance strategies for safer navigation especially in narrow
channels or heavy traffic areas (Cockcroft and Lameijer, 2003).

The overall concept of the ship energy system can be explained as
the fuel energy is converted into useful thrust by the propeller through
the propulsive machinery to overcome the ship total resistance at a
specific ship speed. Therefore, ship speed prediction and calculation
depend on the characteristics of the ship hull, propulsion machinery,
propeller, and the surrounding environment (Molland et al., 2011;
Journée, 1976). This issue can be approached in different ways; exper-
imentally using ship model tests or full scale ship speed trails (ITTC,
2014a,b), numerically by modeling the flow field around the ship hull
using various computational fluid dynamic (CFD) techniques (Choi
et al., 2009), from in-service propeller shaft measurements (Dalheim
and Steen, 2021), or statistically using for example regression based
methods to learn and estimate the relations between ship speed/power
and other hull, operational, and environmental parameters. Measure-
ments of these parameters can be obtained from model and full scale
tests as in Holtrop work (Holtrop, 1984) or recorded during normal
ship operation over a period of time using measuring instruments (Mao
et al., 2016).

The recent advancement in sensor technologies, data acquisitions
and storage systems enables the monitoring of ship operational perfor-
mance to be more efficient and reliable owing to the higher data quality
and integrity (Shenoi et al., 2015). The proper processing and analysis
of this data can provide a deeper insight into the ship operational
performance, extract valuable information from it, and uncover the cor-
relation and patterns between the measured data. For these purposes,
machine learning and statistical approaches have gained substantial
momentum in shipping industry in the recent decades (Petersen et al.,
2012a; Soner et al., 2019). This is because statistical and data-driven
models can deal with high-dimensional and non-linear data such as the
ship operational data without a priori knowledge of the ship underlying
basic physics (Coraddu et al., 2017, 2015). Also, due to their nature,
statistical and machine learning approaches have more prediction ro-
bustness and easier information extraction from sensor data compared
to theoretical and parametric approaches (Coraddu et al., 2015; Soner
et al., 2019).

The literature review in the area of ship operational performance
monitoring through data analysis is dominated by modeling, predicting,
and optimizing of the ship fuel consumption for economic as well
as environmental reasons (Soner et al., 2018; Gkerekos et al., 2019;
Uyanık et al., 2020; Parkes et al., 2018); however, there have been a
few studies that investigated ship speed prediction based on available
ship operational data. For monitoring and analyzing the operational
performance of a ferry in terms of ship speed and fuel consumption,
Gaussian Processes (GP) and neural network models were compared
in Petersen et al. (2012a). Based on the same dataset, the Ridge and
LASSO regression models were also compared in Soner et al. (2019).
Moreover, tree based regression models were proposed in Soner et al.
(2018) for the same ship showing a comparable performance with the
aforementioned models. Meanwhile, the operational performance of a
containership was modeled in terms of ship speed and engine power
using GP model in Yoo and Kim (2019). In another study for speed
prediction of a container ship, a preliminary investigation of the linear
regression, autoregressive and the mixed effects models was conducted
in Mao et al. (2016) using a limited amount of operational data.
Linear regression was also compared to the generalized additive and
projection pursuit regression models for speed prediction in Brandsæter
2

and Vanem (2018). Furthermore, speed prediction through regression
Table 1
Specifications of the M/S Smyril ferry.
Parameter Value

Length 123 m
Breadth 22.7 m
Draft 5.6 m
Passenger capacity 975
Car capacity 970 m/200 cars
Service speed 21 kn
Main engines 4 * MAN B&W 7L32/40

was proposed for weather routing optimization study in Krata and
Szlapczynska (2018), for modeling ship maneuverability in Wang et al.
(2015), and for navigation safety and collision avoidance of ice class
ships in Similä and Lensu (2018).

From the above, it can be seen that ship speed prediction is of great
concern for different purposes with different approaches being con-
sidered. Although ship speed can be predicted mathematically during
design stage or be measured directly during operation using satellite
based technologies such as global positioning or automatic identifica-
tion systems, the purpose of this work is to predict ship speed based
on measured real ship operational data as inputs to a machine learning
model. This can be extended to provide deeper insights into the relation
between ship speed and other ship operational parameters which is
essential for operational optimization and decision support purposes.
As a result, helping decisions makers and shipping companies to move
towards more efficient operation environmentally and economically.

Much of the current literature utilizes different ship types and
datasets, with different data acquisition systems, processing techniques,
and data scaling methods. Therefore, due to this inconsistency, it is
inconclusive which model is more accurate in terms of ship speed
prediction. To remedy this gap, the aim of this work is to train and
validate various conventional regression models to examine and com-
pare their prediction accuracy of ship speed using a high quality ship
operational dataset. The studied machine learning regression models in-
clude Multiple Linear Regression (MLR), Regression trees with different
sizes, Ensembles of trees using both bagging and boosting techniques,
Gaussian Process Regression (GPR), and Support Vector Machine (SVM)
models using different covariance functions and kernels. These algo-
rithms are the most commonly used and they are chosen for their
robustness, efficiency, power, and accuracy. Also, sensitivity analysis of
different data preprocessing methods (Data scaling) as well as different
number of data splits for cross validation are performed to assess its
effect on the statistical performance of different regression models.
Furthermore, a correlation analysis and computational experiments are
conducted to study and examine the relation between ship speed and
other ship operational parameters.

The paper is organized as follow; Section 2 introduces the ex-
amined ship and dataset preprocessing. Section 3 describes the used
methodology, the studied regression models, and their validation and
evaluation. Meanwhile, Section 4 shows the results and discussion.
Finally, Section 5 presents the work conclusions, recommendation, and
future work.

2. Ship & data description

This work utilizes the existing publicly available sensor data from
the domestic ferry the ’M/S Smyril’ operating around the Faroe Islands.
The ferry’s specification is provided in Table 1. An automated on-
board data acquisition system recorded for the ferry’s two or three
trips per day over a period of nearly two months from February 16th
to April 21th 2010 completing, approximately 250 trips (Propulsion
modelling, 2021; Petersen et al., 2012b). To improve the quality and
representation of the collected dataset, the following data preprocessing
has been undertaken as part of this study.
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Table 2
Correlation of ship speed to other operational variables.

Variables Linear correlation Distance correlation

Port propeller pitch 0.9067 0.8832
Starboard propeller pitch 0.8862 0.8632
Port rudder angle 0.6689 0.7212
Headwind 0.1370 0.1904
Crosswind −0.0003 0.0921
Starboard rudder angle −0.2020 0.6099
Trim angle −0.2392 0.3108
Draft −0.4609 0.4011

2.1. Data preprocessing

2.1.1. Feature selection & extraction
One of the most commonly used data preprocessing technique is fea-

ture selection which is used to identify the important variables within
the dataset and remove the unnecessary features. This, consequently,
results in reducing the data dimensionality and the modeling com-
putational cost, and improving the model performance. Therefore, a
correlation analysis is performed to show the interrelation between the
ship speed as the independent variable and other operational variables
as presented in Table 2. Linear correlation is usually used to express
the relationship between variables as in Uyanık et al. (2020), Gkerekos
et al. (2019) and Brandsæter and Vanem (2018). However, a nonlin-
ear relationship may exist and not be captured. Therefore, distance
correlation is also deployed to test the nonlinear correlation between
various variables. The linear coefficient value ranges between 1 and
−1, while distance correlation coefficient ranges from 0 to 1. For both
coefficients, a value of 0 indicates no correlation between variables and
a value close to 1 implies a strong relationship. Meanwhile, the linear
correlation sign indicates the direction of the correlation trend.

According to Table 2, the port and starboard propeller pitch as well
as the port and starboard rudder angle have significant effect on the
ship operational speed. This is due to the fact that varying the propeller
pitch varies the provided propeller thrust and ship speed while the
altering the rudder angle affects the ship resistance and, accordingly,
the ship speed. As can be noticed in Table 2, the dependence power
between the ship speed and starboard rudder angle is detected by
the distance correlation more than the linear correlation due to its
nonlinearity nature. Moreover, the ship trim angle and draft have a
high impact on the ship speed since it can affect the ship resistance
and consequently the ship operational performance. Therefore, a trim
optimization at different draft conditions can be conducted to further
improve the ship operational efficiency. Likewise, for reducing the load
on the engine bearings and shafting system, the impact of optimizing
the propeller controllable pitch on the ship speed can be examined for
decision support. On the contrary, headwind and crosswind variables
show insignificant correlation, which is mostly due to the fact that
the utilized dataset covers about two months of operation alternating
within a narrow range.

Measurements of the selected operational variables, which are used
to train the ship speed prediction models, were carried out as fol-
lows: the ship speed measured using a Doppler speed log, trim angle
measured using an inclinometer, port and starboard water level mea-
surements measured using two radars placed on the ship sides, port and
starboard propeller pitch, port and starboard rudder angle, wind angle
and direction as presented in Table 3. These variables have the most
significant effect on ship speed and operational performance (Soner
et al., 2018; Yoo and Kim, 2019).

The selected parameters were firstly extracted from the raw data
and arranged into separate voyages. Then, due to the different sampling
frequencies of the measurements as shown in Table 3, the extracted
data was resampled at an average frequency of 1 Hz and averaged
over 10 min windows or intervals as suggested in Pedersen and Larsen
(2009) and Leifsson et al. (2008). The resulted total data size is 2654
3

observations of each feature for the given dataset. m
Table 3
Selected parameters and measurement frequency (Propulsion modelling, 2021).

Feature Unit Measurement
frequency (Hz)

Ship speed Kn 1
Trim angle degree 3
Port water level measurement m 3
Starboard water level measurement m 3
Port propeller pitch V 1
Starboard propeller pitch V 1
Port rudder angle V 1
Starboard rudder angle V 1
Wind angle degree 0.5
Wind speed m/s 0.5

2.1.2. Feature engineering
In order to improve the performance of machine learning algo-

rithms, new features can be engineered from the raw data to better
represent the ship operational data. For example, the port and starboard
water level measurements were transformed into draft amidships as a
function of the radars heights, angles, and distance from the midship.
Also, the inclinometer readings were corrected to have the real ship
trim angle. Moreover, the wind speed 𝑉𝑤𝑖𝑛𝑑 and angle 𝜃𝑤𝑖𝑛𝑑 measure-
ments were transformed into two new features called the headwind 𝑉ℎ𝑤
nd crosswind 𝑉𝑐𝑤 to eliminate the circular discontinuity issue of the
ind direction when it passes between 0◦ and 360◦ using Eq. (1).

ℎ𝑤 = 𝑉𝑤𝑖𝑛𝑑 . cos(𝜃𝑤𝑖𝑛𝑑 )

𝑉𝑐𝑤 = 𝑉𝑤𝑖𝑛𝑑 . sin(𝜃𝑤𝑖𝑛𝑑 )
(1)

Fig. 1 shows the processed data after features selection, extraction
and engineering against ship speed. As expected and reported in the
literature, there are nonlinear relationships between ship speed and
other ship operational parameters. It can, however, be noted that ship
speed is proportional to the propeller pitch.

As shown in Fig. 1, the ship draft is spread between 5 and 6 m while
the trim angle corresponds to a trim between −1.5 to 1.25 m (Petersen
et al., 2012a; Soner et al., 2019). Regarding the ship speed, its average
value varies mostly between 15 and 20𝐾𝑛 as shown in Fig. 2. This
is due to the fact that the ship slows only at dock while loading and
unloading. Also, the wind speed tends to increase with the ship speed
as shown in Fig. 1 with an average headwind speed of 11 m/s.

2.1.3. Feature scaling
Since different ship operational parameters have different ranges

and units, features scaling is an important preprocessing step. Hence,
different features can be comparable to each other and contribute
equally to the machine learning objective functions. Standardization
and normalization are two common scaling methods and both are
introduced into this study to test their impact on different regression
models. Standardization scales the features data to unit variance and
removes its mean according to Eq. (2). Meanwhile, normalization scales
the features data between 0 and 1 using min–max scaling as in Eq. (3).

𝑥𝑠 =
𝑥 − 𝜇
𝜎

(2)

𝑥𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(3)

here 𝑥𝑠 and 𝑥𝑚 are the dimensionless standardized and normalized
alues of the actual variable 𝑥 respectively. 𝜇 is the mean value of the
ariable 𝑥 entire data, 𝜎 is its standard deviation, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are
he minimum and maximum values of the variable 𝑥 respectively. The
rocessed data is then used to train and validate different predictions
odels as will be discussed in the following sections.
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Fig. 1. Scatter plots of ship speed versus processed ship operational parameter.
3. Prediction models

In reality, ship speed is influenced by many factors including ship
operational conditions (e.g. draft, trim) as well as environmental con-
ditions which makes it difficult to be modeled using conventional
approaches. Therefore, machine learning regression techniques are ap-
plied in this research to predict ship speed as a function of measured
ship operational parameters and surrounding environment conditions.
These parameters are used to train regression models to construct a
mapping function from input variables to infer the output ship speed
variable, and then make prediction for new data. In the following
sections, a diverse set of common regression models are described
which vary in their level of complexity and accuracy. These models
are then employed and compared for ship speed prediction.

3.1. Multiple linear regression (MLR) model

MLR is an extension of linear regression that assumes a linear rela-
tionship between the response variable (𝑦𝑖) and the predictor variables
(𝑥𝑖1 to 𝑥𝑖𝑝) as shown in Eq. (4).

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖 (4)

where (𝛽0) is the constant term in the model, (𝛽1 to 𝛽𝑝) are the
corresponding coefficients of the predictor variables (𝑥𝑖𝑝), and (𝜖) is
the error term of the model. Due to its advantages of simplicity and
ease of interpretation, MLR is one of the most popular parametric
models and it is normally used as a reference to compare other models
performance (Gkerekos et al., 2019).

3.2. Regression trees

Tree-based regression model is one of the advanced and accurate
non-parametric statistical model which is suitable for non-linear param-
eters such as ship operational datasets (Soner et al., 2018). Building a
regression tree for prediction involves two main steps; dividing the pre-
dictor variables into distinct non-overlapping regions (𝑅 to 𝑅 ). Then,
4

1 𝑗
Fig. 2. Average ship speed for each trip.

predictions are made from the mean response values of the training
observations for every observation in different regions 𝑅(1..𝑗) (James
et al., 2013). Meanwhile, the main goal is to find the regions that
minimizes the Residual Sum of Square (RSS) shown in Eq. (5).

RSS =
𝐽
∑

𝑗=1

∑

𝑖𝜖𝑅𝑗

(𝑦𝑖 − �̂�𝑅𝑗
)2 (5)

where �̂�𝑅𝑗
is the training observations mean response within the 𝑗th

region and 𝑗 = 1, 2, .., 𝑝 and 𝑝 represents the number of regions or
leaves of the tree. The number of these regions or leaves defines the
regression tree size and its level of accuracy, flexibility, and robustness.
Whilst a fine regression tree can produce more accurate results, the
overfitting risk increases. In contrast, a coarse regression tree has lower
training accuracy but it is more robust with lower variance (James
et al., 2013). Consequently, choosing the regression tree size is essential
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to have balance between the model complexity, speed, accuracy, and
overfitting risk.

3.3. Ensembles of trees

Despite the advantages of regression tree models, they can suffer
from high variance, bias and overfitting. Therefore, multiple regression
trees can be combined to build an ensemble of trees to improve the
predictive performance of the model (James et al., 2013). Two of the
most popular ensemble techniques to aggregate many regression trees
are bagging and boosting. Bagging or bootstrap aggregating uses mul-
tiple separate training sets from the original training dataset randomly
with replacement to train different regression trees. The predictions
of different trees (𝑓 ∗1(𝑥) to 𝑓 ∗𝐵(𝑥)) are then calculated and averaged
as follows which reduces the variance compared to a single regression
tree (James et al., 2013).

𝑓𝑏𝑎𝑔(𝑥) =
1
𝐵

𝐵
∑

𝑏=1
𝑓 ∗𝑏(𝑥) (6)

where 𝑓𝑏𝑎𝑔(𝑥) is the average prediction of all the regression trees and
𝐵 is the number of the separate training sets and trees. On the other
hand, boosting technique grows the number of trees 𝐵 sequentially
where each tree utilizes a modified version of the whole dataset using
information from the previously grown tree (James et al., 2013). The
learning process improves the prediction performance of each tree from
𝑓 1(𝑥) to 𝑓𝐵(𝑥) by updating the observations’ weights of the training
dataset without bootstrap sampling and the boosted model output
𝑓𝑏𝑜𝑜𝑠𝑡(𝑥) is given as follows.

𝑓𝑏𝑜𝑜𝑠𝑡(𝑥) =
𝐵
∑

𝑏=1
𝜆𝑓 𝑏(𝑥) (7)

where 𝜆 is the shrinkage parameter which controls the rate of the
boosting learning process. The shrinkage parameter and the 𝐵 number
of trees for both bagging and boosting methods are determined by
cross-validation as explained later.

3.4. Gaussian process regression (GPR) models

Implementing a Gaussian process (GP) for regression purposes has
been proposed considerably due to its power, efficiency, and accu-
racy. Also, GP-based regression models can describe the uncertainty
and non-linearity between the dataset parameters through a nonpara-
metric approach (Rasmussen and Williams, 2006). Therefore, GPR
models are proposed for ship operational data analysis and ship speed
prediction (Yoo and Kim, 2019; Petersen et al., 2012a).

A GP is a collection of random variables where any finite collection
of which are described by a joint Gaussian probability distribution.
Whereas in GPR, the function of variables 𝑓 (𝑥) is assumed to be
distributed as a GP which is defined by its mean function 𝑚(𝑥) and
ovariance function 𝑘(𝑥, 𝑥′) as follows.

(𝑥) ∼ 𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (8)

One of the most popular covariance function and commonly used
s the squared exponential (SE) or the radial basis function (RBF) (Ras-
ussen and Williams, 2006; Yuan and Nian, 2018). This covariance

unction 𝑘𝑆𝐸 (𝑟) or 𝑘𝑆𝐸 (𝑥, 𝑥′) is very smooth due to its infinitely differ-
ntiable nature and it can be written as follows.

𝑆𝐸 (𝑟) = exp(− 𝑟2

2𝑙2
) = exp(−

|𝑥 − 𝑥′|2

2𝑙2
) (9)

here 𝑥 and 𝑥′ are the training and testing points pairs respectively
nd 𝑙 defines the characteristic length-scale for the input values. It
hould, however, be noted that the assumed SE smoothness may not be
ealistic to model some physical systems. Therefore, the Matérn class
f Gaussian process is recommended because it includes a parameter
𝜈) that can control the learned function smoothness (Rasmussen and
5

Williams, 2006; Stein, 1999). One type of the Matérn class functions is
the exponential covariance function obtained when 𝜈 = 1/2 which is a
continuous but not differentiable function as the SE function and it can
be defined as follows.

𝑘𝜈=1∕2(𝑟) = exp(− 𝑟
𝑙
) (10)

Both functions, the exponential and squared exponential, are com-
mon and widely used and they are implemented in this study to be
compared in terms of their accuracy of ship speed prediction.

3.5. Support vector machine (SVM) models

Due to its robustness, accuracy, power, and generalization ability,
SVM is one of the most attractive supervised learning model pro-
posed for many fields which can be used for classification and re-
gression (Uyanık et al., 2020; Awad and Khanna, 2015). In regression
problems, SVMs are built as regressors which try to fit a hyperplane or
a function that predicts a continuous target value within a tolerance
margin or a decision boundary based on the training samples. The
objectives of adjusting this margin is to minimize the prediction error
and balance it with the model complexity and robustness.

SVM is also a kernel based technique which extends its function-
ality by using different kernel functions depending on the data type.
Therefore, SVM can be a parametric model using a linear kernel or a
non-parametric model using an RBF kernel. Popular kernel functions
include: linear kernel in Eq. (11), polynomial kernel in Eq. (12), and
Gaussian kernel in Eq. (14).

𝑘(𝑥, 𝑥′) = 𝑥𝑇 𝑥′ (11)

𝑘(𝑥, 𝑥′) = (1 + 𝑥𝑇 𝑥′)𝑑 (12)

𝑘(𝑥, 𝑥′) = exp(−𝛾‖𝑥 − 𝑥′‖2) (13)

where 𝑑 is the polynomial degree of kernel and 𝛾 is the Gaussian
kernel scale hyperparameters which can be adjusted to enhance the
SVM model performance. Therefore, different polynomial degrees and
kernel scales are investigated in this study to find the optimal model
configuration.

3.6. Prediction performance evaluation

In order to examine the predictive accuracy of the employed models
and measure its effectiveness, prediction performance indices can be
used. However, training the prediction models and testing its perfor-
mance using the same dataset can give overoptimistic results (Arlot
et al., 2010). Therefore, a validation scheme is implemented to split
the dataset into a training dataset to train the prediction models,
and a test dataset to validate its performance after training. Then, a
number of performance measures can be used to compare all the models
performance as explained in the following subsections.

3.6.1. Cross validation
Validation reduces the risk of overfitting and ensures the generaliza-

tion capabilities of the trained prediction models and the robustness of
its hyperparameters’ values. However, partitioning the available data
into training and test datasets reduces the available data for training as
well as for validating the models. To address this issue, cross validation
is applied in the form of 𝐾-folding which is widely used and preferred
in the literature (Uyanık et al., 2020; Gkerekos et al., 2019).

In 𝐾-fold cross validation method, the dataset is split into 𝑘 subsets
or folds where (𝐾 − 1) subsets are combined and used to train the
prediction models and the remaining subset is used for validation. This
process is repeated for 𝐾 times where each time, one of the 𝐾 folds is
used as a validation subset. Finally, the average validation error of all
the 𝐾 runs are obtained. By using this technique, most of the data is
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Table 4
Performance measures for different machine learning approaches using 5-fold cross validation.

Raw data Standardized data Normalized data

RMSE 𝑅2 MSE MAE RMSE 𝑅2 MSE MAE RMSE 𝑅2 MSE MAE

Linear 1.17 0.86 1.37 0.92 0.38 0.86 0.142 0.295 0.052 0.86 0.0027 0.0406

Regression trees:
Fine tree 1.19 0.86 1.41 0.87 0.39 0.85 0.154 0.291 0.053 0.85 0.0028 0.0396
Medium tree 1.14 0.87 1.29 0.84 0.37 0.86 0.138 0.278 0.051 0.86 0.0026 0.0383
Coarse tree 1.16 0.86 1.35 0.87 0.38 0.86 0.142 0.285 0.052 0.86 0.0027 0.0395

Trees Ensemble:
Boosted trees 1.31 0.82 1.72 1.04 0.34 0.89 0.115 0.259 0.057 0.83 0.0033 0.0448
Bagged trees 1.06 0.88 1.12 0.78 0.34 0.88 0.117 0.252 0.047 0.86 0.0022 0.0348

GPR:
SE 1.06 0.88 1.11 0.80 0.34 0.89 0.114 0.257 0.046 0.89 0.0022 0.0353
Exponential 0.91 0.91 0.84 0.68 0.29 0.91 0.086 0.220 0.041 0.91 0.0017 0.0305

SVM:
Linear 1.18 0.86 1.38 0.91 0.38 0.86 0.143 0.294 0.052 0.86 0.0027 0.0405
Quadratic 1.14 0.87 1.30 0.85 0.37 0.86 0.136 0.276 0.051 0.86 0.0026 0.0379
Cubic 1.54 0.76 2.37 0.86 0.40 0.84 0.159 0.274 0.061 0.80 0.0037 0.0380
Fine Gaussian 2.17 0.51 4.71 1.25 0.70 0.51 0.492 0.406 0.097 0.51 0.0093 0.0560
Medium Gaussian 1.11 0.87 1.23 0.80 0.36 0.87 0.126 0.256 0.049 0.87 0.0024 0.0354
Coarse Gaussian 1.13 0.87 1.28 0.87 0.36 0.87 0.132 0.280 0.050 0.87 0.0025 0.0386
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used for training as well as for validation which reduces the bias and
variance and gives a good estimation of the predictive accuracy of the
studied models. Nevertheless, different suitable values of K are reported
in the literature including 4 in Uyanık et al. (2020) and Leifsson et al.
(2008), 5 in Yan et al. (2020) and Hu et al. (2019), 10 in Soner
et al. (2018) and Soner et al. (2019), 20, 30, and 50 in Brandsæter
and Vanem (2018) and Coraddu et al. (2017). Therefore, a sensitivity
analysis of different 𝐾 values is made in this study.

.6.2. Coefficient of determination 𝑅2

The coefficient of determination 𝑅2 explains the variation of the
easured response variable 𝑦𝑖 as a function of the response variable
rediction made by the trained model �̂�𝑖 and the average value of the
esponse variable �̄�𝑖 as follows.

2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)
∑𝑛

𝑖=1(𝑦𝑖 − �̄�𝑖)
(14)

where 𝑛 is the number of samples. 𝑅2 value varies normally from 0 to
1 where a higher value means a better fit of the trained model to the
data.

3.6.3. Mean squared error (MSE)
This index measures the mean of the square of all errors between the

predicted and the measured values of the response variable as shown
in the following equation.

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (15)

By squaring the errors, MSE is always positive and it gives more
weight to high errors. The lower the MSE, the better the prediction
model performance.

3.6.4. Root mean square error (RMSE)
RMSE is the most commonly used and easily interpreted statistic,

as it has the same unit of the studied variable that better reflects the
prediction models performance. It is calculated by taking the square
root of the MSE as shown in the following equation.

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

(𝑦𝑖 − �̂�𝑖)2 (16)
6

𝑖=1
3.6.5. Mean absolute error (MAE)
This criterion is similar to the RMSE. However, it is more robust and

less sensitive to data outliers compared to the MSE. MAE corresponds to
the average of all the absolute errors and can be calculated as follows.

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (17)

.6.6. Methodology implementation & parameters
The discussed prediction models as well as the examined ferry

ataset are modeled mathematically and implemented in MATLAB
nvironment in order to compare the performance of these models in
erms of its accuracy of predicting the ship speed. First, the dataset
ollected from the ferry ’M/S Smyril’ is loaded into the MATLAB
orkspace, the selected parameters are extracted, resampled, averaged,
nd engineered as explained in 2. Regarding the data scaling, a quanti-
ative analysis is performed to study the sensitivity of various prediction
odels to different scaling techniques. Therefore, the examined regres-

ion models are trained with the raw, standardized, and normalized
ersions of the ferry dataset to show its impact on the performance and
esults of different models. These datasets are then split into training
nd testing datasets to validate the prediction models according to
he 𝐾-fold cross validation method where 𝐾 values of 5, 10, 30, and
0 are used to study the effect of this parameter on the performance
f different models. Moreover, to get more consistent results, models
raining is repeated 10 times as suggested in Gkerekos et al. (2019) and
esults are averaged. Finally, the performance metrics are computed to
valuate and compare different models in terms of prediction accuracy
f ship speed.

For the tree-based regression model, three different regression tree
izes are studied to investigate the trade-off between the tree model
ccuracy and complexity. A minimum leaf size, that indicates the
umber of variable observations in a tree leaf, of 4, 12, and 36 are
sed which corresponds to fine, medium, and coarse regression trees
espectively as suggested in MATLAB. For the ensembles of trees model,
he two most popular techniques of aggregating regression trees, which
re bagging and boosting, are investigated with a shrinkage parameter
r learning rate of 0.1 and a minimum leaf size of 8 as recommended
n MATLAB. Regarding the SVM regression model hyperparameters, the
olynomial kernel degree 𝑑 is set to 2 and 3 for the quadratic and
he cubic SVM models respectively which are compared to the linear
VM model. For the SVM Gaussian kernel scale, 𝛾 is set to

√

𝑃∕4,
√

𝑃 , and 4
√

𝑃 which correspond to fine, medium, and coarse Gaussian
SVM models respectively where P is the number of the trained model
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Fig. 3. Predicted ship speed versus actual ship speed measurements for different machine learning approaches using raw data and 5-fold cross validation.
predictors (MATLAB). The aforementioned models are integrated in the
’Regression Learner App’ of MATLAB’s Statistics and machine learning
toolbox. In this study, MATLAB R2019b is used on a desktop computer
(Intel Core i7, 3.4 GHz, Memory 16 GB).

4. Results & analysis

As shown in Table 4, the GPR model with the Matérn class or
exponential kernel yields the best results with an 𝑅2 of 0.91 and RMSE
of 0.91 𝑘𝑛 utilizing the raw dataset. This indicates that controlling the
smoothness behavior of the stochastic processes realization as in the
Matérn class can be beneficial for modeling realistic physical systems.
The GPR model with the squared exponential kernel and the bagged
trees ensemble model provide accurate results with an 𝑅2 of 0.88. On
the other hand, the SVM model using a fine Gaussian kernel performs
the lowest estimation with an 𝑅2 of 0.51 due to its small-scale kernel
function. It follows that a rapid variations in the SVM response function
7

which causes the model to overfit and does not perform accurately in
the low ship speed region as illustrated in Fig. 3. By increasing the
Gaussian kernel scale value 𝛾, a less complicated SVM model can be
obtained with better prediction performance as demonstrated by the
medium Gaussian SVM model. However, the prediction errors start to
increase again for large 𝛾 value which results in a rigid SVM response
function with higher probability of underfitting as shown in Table 4
and Fig. 3 for the coarse Gaussian SVM model.

In the same way, the medium regression tree model performs better
than the fine and coarse tree models as shown in Table 4. This is due
to the fact that there is a trade-off between the regression tree size
and the model performance. Therefore, a coarse regression tree with
fewer large leaves results in spreading the speed predictions over fewer
large regions compared to the medium and fine tree models as shown
in Fig. 3. Meanwhile, a very leafy fine tree can result in overfitting and
lower its generalization capability. It should be also mentioned that
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Fig. 4. RMSE index value percentage of different machine learning approaches change from the base value using 5-fold cross validation.
the studied prediction models also perform similarly to Fig. 3 when
utilizing the standardized and normalized versions of the dataset.

Regarding the ensemble of trees models, the bagging technique
provides better results than the boosting technique using the raw and
normalized datasets as detailed in Table 4. Meanwhile, by standardiz-
ing the dataset before training, the boosted trees model performance
gets better and provides comparable performance to the bagged trees
model. This can be explained by the fact that data standardization
improves the data consistency which enhances the sequential learning
process of the boosted trees model. Therefore, this indicates that the
boosted trees model is more sensitive to the dataset variables range
and feature scaling than the bagged trees model.

In order to study the sensitivity of other regression models to
the dataset scale and appropriately compare their performance, the
RMSE value index is calculated for different models using the raw,
standardized, and normalized versions of the dataset. The value index
number is calculated as a percentage of the RMSE of different models
compared to the lowest RMSE as a base value as shown in Fig. 4.

Since the exponential GPR model achieves the lowest RMSE, it is
used as a baseline with a value index of 100%. As can be found in
Fig. 4, algorithms such as the boosted trees and the SVM model with
cubic kernel are more sensitive to the range of their input values than
other models. Accordingly, standardizing the dataset before training
the boosted tree instead of using the raw dataset can reduce the
RMSE value index by 20%. Meanwhile, normalizing the dataset before
training the cubic kernel SVM can reduce the RMSE value index by 8%
compared with using the raw dataset as well. Regarding other models,
a slight accuracy improvement can be achieved by suitably processing
the dataset before training the regression models.

The statistical performance of regression models can also be affected
by the size of the training and test dataset which is decided by the 𝑘-
fold cross validation. Therefore, different values of 𝐾 is used to split the
dataset into 𝐾 folds to train and validate different regression models to
study the impact of this parameter on their accuracy in terms of RMSE
as shown in Fig. 5.

As indicated in Fig. 5, increasing the number of folds 𝐾 reduces
the calculated RMSE of different machine learning approaches. This
is because, as explained earlier, using higher values of 𝐾 increases
the size of the training dataset which improves the models statistical
performance. However, this improvement is more significant for the
cubic and fine Gaussian SVM models which their RMSE are reduced
by 11% and 3% respectively by increasing 𝐾 from 5 to 50. For other
approaches, increasing the number of folds 𝐾 results in a RMSE re-
duction of less than 3%. Nonetheless, longer training time and higher
8

Table 5
Required training time for different machine learning approaches with 𝐾 values of 5,
10, 30, and 50.

Training time (min)

𝐾 = 5 𝐾 = 10 𝐾 = 30 𝐾 = 50

Linear <1 <1 <1 <1

Regression trees
Fine tree <1 <1 <1 <1
Medium tree <1 <1 <1 <1
Coarse tree <1 <1 <1 <1

Trees Ensemble
Boosted trees <1 <1 <1 <1
Bagged trees <1 <1 <1 <1

GPR
SE 1.3 2.4 6.4 9.7
Exponential 1.8 3.3 8.7 12.9

SVM
Linear <1 <1 <1 <1
Quadratic <1 <1 1.2 1.9
Cubic 2.8 5.2 16.6 27
Fine Gaussian <1 <1 <1 <1
Medium Gaussian <1 <1 <1 <1
Coarse Gaussian <1 <1 <1 <1

computational cost are required by hard interpretability models such
as GPR, quadratic and cubic SVM models as a result of increasing the
number of data splits as detailed in Table 5. Therefore, a 𝐾 value of 10
can be considered in further studies to manage the trade-off between
the models predictive quality and computational complexity.

4.1. Computational experiments

In order to demonstrate the functionality of the proposed method-
ology in the optimization and decision-making processes, different
computational experiments are conducted to estimate the impacts of
changing significant operational parameters on the ship speed. Oper-
ational parameters such as the propellers pitch and ship drafts are
used as inputs to the trained exponential GPR model, due to their
significant effect on the ship speed, and the results are compared with
the model predicted speed using the real ship operational data and the
real measured ship speed.

In the first case, two propellers pitch values of 95% and 70%
are used instead of the real propellers pitch values while using other
real operational data of trim, draft, rudders angles, and environmental
conditions. As shown in Fig. 6, increasing the propellers pitch value
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Fig. 5. RMSE of different machine learning approaches using the standardized data with 𝐾 values of 5, 10, 30, and 50.
Fig. 6. Real vs predicted ship speed at different values of propellers pitch using the exponential GPR model with 5-fold cross validation.
results in higher ship speed. However, the propeller and engine rota-
tional speeds should be taken into consideration while selecting the
propeller pitch for higher operational efficiency of the ship propellers
and engines.

In the second case, two different values of ship draft of 5 m and
6.5 m are simulated while using other real ship operational data of
trim, propellers pitch, rudders angle, and environmental conditions. As
shown in Fig. 7, increasing the ship draft reduces the ship speed as a
result of increasing the ship resistance, and correspondingly higher ship
speed are obtained at relatively small ship draft of 5 m. On the other
hand, lighter ship drafts may increase ship resistance at inappropriate
trim angles. Therefore, optimization of ship draft/trim combination
should be made for more efficient ship operation.

Another case to further test the generalization capability of the
developed ship speed prediction model is conducted by adapting a new
unseen test case where multiple operational parameters are changed. It
is assumed that the ship is loaded to a draft of 6 m sailing in a headwind
of 20 m/s with an average trim angle of 0.05 degree aft. As a result, a
reduced propellers pitch of 75% is selected for more efficient shipping
operation by properly loading the main engines without having to
increase its speed or heavily running the propellers. Then, it is assumed
that the wind speed is changed during sailing to 5 m/s headwind
which allows the propellers pitch to be increased to 90% gradually
to avoid any operational delays. The predicted ship speed for this
9

case is presented in Fig. 8 using the exponential GPR model with the
propellers pitch change given in the top plot. However, no real data
is available to validate this scenario. Therefore, the exponential GPR
model performance is validated with respect to the prediction of one
accurate model of each regression algorithm type as illustrated in Fig. 8
which also shows the response of different models to the input signals
of propeller pitch, wind speed, and rudder angle.

According to the obtained results, the developed methodology can
help ship operators and decision makers with evaluating the effect of
changing the operational parameters on the ship speed. Consequently,
it can help in creating more advanced models of voyage tracking and
monitoring or optimization of different ship operational parameters.

5. Conclusions

In recent years there has been a growing interest in monitoring
and optimizing ship operation for better sustainability and profitability
which requires accurate speed prediction. Among different approaches
of ship speed prediction, machine learning and statistical methods
have gained substantial momentum in shipping industry driven by
the advances in computer power and the increasing operational data
availability. This allows data-driven models based on machine learning
to raise its responsiveness, analytical and prediction capabilities with
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Fig. 7. Real vs predicted ship speed at different values of ship draft using the exponential GPR model with 5-fold cross validation.
Fig. 8. Predicted ship speed for the test case using the exponential GPR model with 5-fold cross validation compared to other regression models.
more accuracy by extracting hidden information from the collected
datasets.

A performance comparison of the most commonly used machine
learning regression algorithms in terms of their prediction accuracy
of ship speed in real operational conditions utilizing a high quality
operational dataset of a ferry has been presented in this paper. For
this, a framework for data preprocessing is provided which includes the
selection and extraction of the operational features having significant
influence on the ship speed. Moreover, new features have been engi-
neered as well for better statistical performance of the studied models.
Features transformation and scaling have been also made before train-
ing the machine learning regression algorithms. Then, cross validation
has been made to avoid overfitting and assess the models generalization
capability to new data. This paper also provides useful insights into the
effect of different data scaling techniques on the prediction accuracy
of the regression models. Also, a sensitivity analysis of different folds
number and data splits for the cross validation has been made. Further-
more, the effect of changing different operational parameters on the
10
ship speed is investigated through a correlation analysis using different
techniques. The main findings can be summarized as follows:

• The studied regression models can accurately predict the ship
speed with good accuracy except for the SVM with fine Gaussian
kernel which had only 𝑅2 of 0.51.

• The GPR method with the Matérn kernel function outperformed
all other models in predicting ship speed with an 𝑅2 of 0.91 but
with more required training time.

• Multiple linear regression which is a considerably simpler algo-
rithm has provided comparable accurate results.

• Regression trees and trees ensemble models have yielded accurate
ship speed prediction with lower computational time. It should,
however, be noted that the ensemble boosted trees was sensi-
tive to the data scaling technique which affected its prediction
accuracy.

• The performed sensitivity analysis showed that the SVM algo-
rithms can be sensitive to the data scaling technique as well as
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the cross validation number of folds depending on the used co-
variance function. An accuracy increase of 11% and 3% has been
achieved in the RMSE of the cubic and fine Gaussian SVM models
respectively by increasing the cross validation fold number from
5 to 50.

• Other model performance has not improved noticeably by chang-
ing the fold number. Therefore, a 10-fold cross validation can be
recommended for computationally efficient model performance in
terms of prediction accuracy and complexity.

• Computational experiments have been conducted using the pro-
posed methodology to manage the ship operational parameters
and evaluate its effect on the ship speed where the simulation
results were rational.

By accurately predicting ship speed, the outcomes of this paper can
elp ship management companies in creating further advanced models
or the purposes of route optimization, ship tracking, voyage planning,
tc. Also, the proposed methodology can be applied without difficulty
o any ship type at different operational conditions or to predict or
ptimize other important operational parameters such as ship trim
r propeller controllable pitch which can be part of the future work.
erformance comparison with artificial neural networks should be also
ade in future studies considering the suitable network architecture,
umber of layers, neurons, etc.
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