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The statistics of intermittent ocean turbulence is the key link between physical understanding of
turbulence and its global implications. The log-normal distribution is the standard but imperfect assumed
distribution for the turbulent kinetic energy dissipation rate. We argue that as turbulence is often generated
by multiple changing sources, a log-skew-normal (LSN) distribution is more appropriate. We show the
LSN distribution agrees excellently and robustly with observations. The heavy tail of the LSN distribution
has important implications for sampling of turbulence in terrestrial and extraterrestrial analogous systems.
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Introduction.—Turbulence induced by breaking waves is
an abundant feature of many terrestrial and extraterrestrial
systems, occurring over a tremendous range of scales.
Shear-induced turbulence leads to efficient mixing of
important properties such as temperature and carbon in
the ocean and atmosphere [1,2]; to the magnetic recon-
nection by which solar wind plasma enters Earth’s mag-
netosphere [3]; to mixing of magnetized plasma in
planetary, solar, or stellar environments [4–9]; and to
homogenization of gases in interstellar media, for example,
in nova explosions [10]. In all these contexts, turbulence is
highly spatiotemporally intermittent. Therefore, sufficient
sampling of such turbulence, to the extent necessary for
quantification of properties of interest such as turbulent
mixing, is difficult and in many cases impossible. Oceanic
wave–induced turbulence is among the better sampled and
studied of the aforementioned applications because of its
critical role in the climate system. In this Letter we draw on
a wide range of oceanic turbulence measurements to
highlight a seeming universality to shear-induced turbu-
lence statistics that we expect is relevant to other physi-
cal media.
Over the past century, there has been significant progress

in our understanding of the physics of wave-induced
turbulent mixing [11] and of the role of small-
scale mixing in large-scale circulation [12]. But there
has arguably been a systematic disconnect between the
fluid-mechanical studies of the former and the physical-

oceanographic studies of the latter because of the high
spatiotemporal intermittency of ocean turbulence. While
effective on global and climatic timescales, mixing occurs
on scales of subcentimeters to tens of meters and is highly
intermittent due to the variable nature of the forcing,
namely the air-sea interaction and the interactions of tides
and geostrophic motions with topography (see Fig. 1 for
associated global patterns). Thus, connecting the micro-
physics of mixing to the ocean circulation is challenging
because of the substantial scale separation, in a fashion
similar to the relevance of cloud microphysics to the
climate system [13]. Apart from deep convection zones
at high latitudes, the ocean interior can sustain an internal
wave field, being mostly stably stratified. However, occa-
sional turbulence bursts due to propagating waves breaking
generate local turbulence patches that mix dense deeper
waters with lighter waters above. These patches are more
frequent closer to ocean boundaries where winds and
topographic interactions generate a strong internal wave
field. Such waves contribute to local breaking due to many
interactions between the waves, eddies, and currents, but
also propagate into the interior, where they can lead to more
intermittent breaking.
Sampling of wave breaking is costly and poses many

technical challenges [17,18], especially in the deep and
abyssal ocean. Nonetheless, the data from 14 major field
programs that sampled ocean turbulence over shallow and
deep regions using microstructure profilers [Fig. 1(a),
Table I] have been compiled at [19]; data description
and relevant references may be found in [20]. Together,
they contain ca. 186 000 turbulent samples (with 10 m
vertical resolution) spanning the globe, ocean depths, and
various turbulence regimes. While no such dataset can be a
truly comprehensive representation of ocean turbulence,
this is a sufficiently large and diverse sample set to provide
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the statistics required to make a connection between the
physics of small scale turbulence and the role of mixing in a
bulk regional or global sense. The dataset contains values
for the rate of dissipation of kinetic energy ε inferred from
profiled measurements of microscale shear. ε is used as a

proxy of ocean turbulent mixing M and is related to it
through M ≈ κN2 ≈ Γε, where N2 ¼ −ðg=ρ0Þ∂zρ repre-
sents the density stratification, g is the gravitational con-
stant, and ρ0 is a reference density [21]. The turbulent
diffusivity κ is a necessary parameter in climate models to
represent unresolved turbulent mixing. Γ is a coefficient at
the heart of connecting ε and M and is highly varia-
ble [22,23] with appreciable consequences [24–26]. While
the assumptions underlying the derivation of this mixing
equation are limiting [21,22,27], operationally this equa-
tion with Γ ¼ 0.2 is used in observational inferences and
computational representations of mixing.
To better understand the limitations of the underlying

assumptions in this equation, better parametrize Γ, connect
localized inferences of mixing to coarse resolution grids of
ocean models, and ultimately more accurately quantify the
role of ocean mixing in the climate system, the intermit-
tency of ocean turbulence and its statistics must be much
better understood. In this Letter we employ the database in
Table I and show that the discrepancy between the observed
ε distribution(s) and the conventional paradigm of a log-
normal ε distribution is resolved by a generalization that
considers turbulence to be generated by multiple or
changing sources. While the log-normal paradigm has
been challenged in the past (e.g., [28]), we provide a
simple explanation for a generalization that fits not only the

FIG. 1. (a) Ocean bathymetry overlain by location of the field
programs listed in Table I. (b) Primary sources of generation of
internal waves through interaction of geostrophic motions with
topography [14]. (c) Surface winds [15]. (d) Tide-topography
interaction [16].

TABLE I. Kuiper’s statistic (V) for log-normal (LN) and log-
skew-normal (LSN) fits to the total turbulent dissipation rate (ε)
dataset, the dataset normalized by buoyancy frequency (N2), the
total dataset above and below 2000 m, and data from each
individual cruise, as well as their log-mean (μ), log-standard
deviation (σ), and log-skewness (θ) of the log10-transformed data.
n.b. there are fewer ε=N2 values because some ε values come
from samples where N2 ≈ 0.

Data n=103 VLN VLSN μ σ θ

All 186 0.123 0.020 −9.75 0.73 0.64
z < 2 km 116 0.129 0.021 −9.58 0.73 0.62
z > 2 km 70 0.145 0.034 −10.04 0.63 0.63
1. BBTRE96 32 0.158 0.025 −9.88 0.57 0.88
2. BBTRE97 39 0.087 0.026 −9.70 0.69 0.71
3. DIMES 3 0.209 0.035 −9.45 0.58 0.93
4. DIMES-Pac. 16 0.118 0.016 −9.98 0.26 0.90
5. Fieberling 11 0.079 0.069 −9.15 0.82 0.90
6. GEOTRACES 7 0.130 0.039 −10.10 0.69 0.88
7. GRAVILUCK 2 0.092 0.054 −9.02 0.61 0.80
8. HOME 4 0.204 0.019 −7.90 0.57 0.90
9. LADDER 9 0.210 0.031 −9.94 0.31 0.88
10. NATRE 27 0.074 0.021 −9.83 0.55 0.62
11. SOFINE 11 0.174 0.042 −9.22 0.59 0.89
12. TOTO 4 0.184 0.021 −9.54 0.57 0.58
13. RIDGEMIX 7 0.202 0.044 −9.97 0.65 0.91
14. DOMORE 13 0.156 0.015 −10.47 0.62 0.93

All, ϵ=N2 132 0.085 0.012 −4.24 0.75 0.58
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totality of this extensive global dataset but also individual
datasets with different primary turbulence generation
processes.
Log-skew-normality.—Fluctuations in the turbulent dis-

sipation rate ε are typically parametrized as log-normal;
originally Gurvich and Yaglom [29] argued for this based on
multistage subdivisions of an initial flux for 3D homo-
geneous isotropic turbulence (following Kolmogorov’s
theory), but an analogous argument has also been proposed
for larger-scale quasigeostrophic turbulence [30]. It has long
been recognized that ε varies over orders of magnitude and
has a unimodally distributed logarithm, but also only
approximately, qualitatively consistent with a log-normal
description [31]. The lack of quantitative agreement has led
to an under-reporting of the statistics of turbulence mea-
surements, and has substantial consequences for the total
turbulent dissipation because of the heavy-tailed nature of
the distribution [32]. These quantitative differences have
been attributed to measurement artifacts [33] or to self-
similarity–based arguments for multifractality (e.g., [34]) but
the log-normal distribution remains popular and argued for
in the ocean turbulence literature (e.g., [35]). The key
assumption to derive a log-normal ε distribution is that
individual instances are derived from a single statistically
steady source [36]; consistent with this, the log-normal tends
to match ε data from locations where, e.g., single wave
breakings in otherwise nearly quiescent environments can
lead to isolated shear instabilities that dissipate separately
[37,38]. However, total turbulent dissipation is typically the
result of a combination of multiple turbulent processes, for
which the log-normal distribution is not an appropriate
model. As stated by Caldwell and Moum [39], “a log-
normal distribution should not be expected when turbulence
production is due to more than one source, or to a changing
source”—though what distribution to expect instead is
unclear. This suggests that generally for energetic ocean
turbulent zones we should expect ε to be the sum of log-
normal variables, as several interactive turbulence processes
are at play.
Sums of log-normals occur frequently in communica-

tions problems when one is interested in total interference;
in this case it has been shown that sums of log-normal
random variables, even correlated ones, are excellently
approximated by a log-skew-normal distribution [40–43]:
fðε; ξ; ω; αÞ ¼ ð2=ωεÞϕðlog ε − ξ=ωÞφ½αðlog ε − ξ=ωÞ�,
where f is a probability density function and ϕ and φ,
respectively, are the probability and cumulative density
functions of a standard Gaussian random variable. (Here
and throughout this Letter we consistently refer to log10
rather than loge when we discuss log-transformation,
log-moments, etc.) This is a generalization of the
log-normal distribution where the relationship between
the log-skewness (θ) of the distribution and the additional
shape parameter α is one to one. The parameters (ξ, ω, α)
are related to the log-mean, log-standard deviation,

and log-skewness (μ, σ, θ) of a log-skew-normal random
variable according to the equations μ ¼ ξþ ffiffiffiffiffiffiffiffi

2=π
p

ωδ,

where δ ¼ α=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

; σ ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð2=πÞδ2
p

; and
θ ¼ ð4 − πÞð ffiffiffiffiffiffiffiffi

2=π
p

δÞ3=f2½1 − ð2=πÞδ2�3=2g. As the impli-
cations of these log-moments’ magnitudes (μ, σ, θ) are
more intuitive and the parameters (ξ, ω, α) can be easily
found by backtransforming these equations, we focus on
the log-moments. θ (and hence α) is positively related to
the number of log-normals being summed over and the
variance in the log-variances of these distributions—that is,
summing over more log-normal random variables or log-
normal random variables with more differing log-variances
will produce more positively skewed distributions—and is
also influenced by the correlation structure of the random
variables being summed over [41,43]. In Ref. [44] we have
provided an example script that builds intuition as to how
log-skew-normality emerges from summing log-normals,
and how the log-skew-normal’s log-moments and param-
eters depend on the parameters and the number of the
underlying log-normal distributions.
Given that total ε is determined by a combination of

turbulence-generating processes for which log-normal
arguments may be individually valid, and that ε data tend
to appear qualitatively similar to a log-normal but often are
skewed after log transformation, one might expect these to
be excellently described as log-skew-normal. By analogy
with the log-skew-normal’s use in communications, an
individual ε value will be the sum of multiple log-normally
varying power inputs. We show this is indeed the case, and
discuss the implications for the importance of extreme
values and for connecting bulk turbulence budgets to
individual processes.
Results.—We fit a log-skew-normal distribution to the

cruise data described above, by finding the parameter
combinations that minimize Kuiper’s statistic [45]:
Vh ¼ max½FðεÞ − FhðεÞ� þmax½FhðεÞ − FðεÞ�, where F
is the cumulative distribution function (CDF) of the ε data
and Fh is a hypothesized distribution such as a log-skew-
normal; hence smaller Vs indicate better fits. We do the
same for a log-normal distribution. Kuiper’s statistic V is
preferred to the more standard Kolmogorov-Smirnov sta-
tistic, as it weights all data equally, rather than weighting
toward the median [45,46]. We fit the full dataset, then split
it into “upper”and “lower” halves of the ocean (split at
2 km, marking the approximate mean depth of ocean
ridges: separating at 200 m, 500 m, and 1 km yielded
similar results) which are separately influenced by surface
and bottom-generated turbulent processes. We also fit to
individual cruises’ data. Finally, we also fit the ratio of
ε=N2 for the global dataset, since it has been shown that
global distribution of ε scales very well in depth with
density stratification [47].
We find the log-skew-normal distribution agrees very

well with the full dataset, both for ε and even more so for
ε=N2 (Fig. 2). For multiple reasons including the very large
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sample size, it is difficult to translate these goodness-of-fit
values into meaningful probabilities (i.e., p values, [48]), it
is visually evident that the fits are excellent in both cases.
Furthermore, the log-skew-normal also vastly outperforms
the log-normal, as would be expected from these data
having log-skewnesses of θ ∼ 1.
Table I summarizes the results from the totality as well

as different subsets of the dataset. We find the log-skew-
normal to be an improvement over the log-normal in every
case (necessarily), and a substantial improvement in almost
all cases, with a median difference VLN of 0.108 as
compared to a median VLSN of 0.025. Unsurprisingly,

more skewed samples have larger differences in goodness-
of-fit; log-skewness θ is correlated with VLN and with
VLN − VLSN (p < 0.01, Spearman’s rank correlation).
Sample size is also significantly anticorrelated with VLSN
(p ¼ 0.049, Spearman’s rank correlation) indicating poorer
fits may be due in part to limited sample sizes. As seen in
Fig. 2, the better log-skew-normal fit to ε=N2 than to ε is
due to the former having a broader peak, which is
unsurprising given that it is the quotient of random
variables. Log-skewness and log-kurtosis of the ε distri-
butions are also very tightly related (ρ > 0.99, Pearson
correlation), further indicating that the log-skew-normal is
a satisfactory description of these data, as they are fully
characterized by these three log-moments.
The devil is in the tail.—The positive log-skewness of the

ε distributions also has key consequences for the impor-
tance of extreme ε values to total dissipation. This can be
concisely summarized in terms of the “80=20” rule: for the
log-skew-normal distribution with parameters chosen to
match the total ε dataset, 94% of total turbulent dissipation
is contained in the largest 6% of the measurements
(Table I; Fig. 3). (For the measurements themselves,
93% of the total turbulent dissipation is contained in the
largest 7% of the measurements; small discrepancies in
exact values are sensitive to the magnitudes of the few very
largest measurements.) By contrast, the best fit log-normal
distribution has a very different tail importance, with 80%
of the total turbulent dissipation contained in the largest
20% of the measurements. Thus a log-skew-normal of
these data suggests much more strongly that extreme ε
values are responsible for nearly all of the total turbulent
dissipation than a log-normal conceptualization would
suggest. This also indicates both that the extremely high
ε values occasionally observed are likely real, and not
erroneous or anomalous, and also that with a finite number
of observations even if the exact shape of the distribution is
captured it will be difficult to determine total dissipation
because this will be very sensitive to the exact values this
distribution’s (uncertain) parameters, especially the param-
eter controlling the heavy tail, i.e., θ (or α).
Climate models are often fed with total turbulent dis-

sipation over a large volume (call this E), such as a model

FIG. 2. Cumulative distribution functions (CDFs) of turbulent
dissipation measurements (top: ε [m2 s−3]) and normalized by
buoyancy frequency (bottom: ε=N2 [m2 s−2]) in the dataset
described in the text and log-skew-normal (LSN) fit. Insets show
corresponding probability density functions and differences
between data and LSN CDFs. The purple lines in the top insets
are the best fit log-normal distributions for comparison. The pink
point in the top figure is 94th percentile; ε values larger than this
account for 94% of the total turbulent dissipation in the dataset.

FIG. 3. Cumulative contribution to total ε versus percentile for
the total dataset.
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grid cell, from the power inputs of various turbulence-
generating processes [Figs. 1(b)–1(d)], then rely on bulk
parametrizations of Γ to convert E to, e.g., the mixing of
interest [26]. In contrast to this coarse conversion, knowl-
edge of ε or ε=N2’s probability distribution in a given
volume is a critical piece in the rigorous calculation of the
ocean mixing occurring within that volume. From this
distribution and total E for a volume, one can infer the
distribution of turbulent patches within a given volume and
infer their mixing characteristics (such as its efficiency and
the effective turbulent diffusivity) through our mechanistic
and fluid mechanical understanding of mixing. In Ref. [44]
we have provided an example script that converts the total
dissipation in the volume of an energetic ocean zone
[corresponding to DIMES (experiment 3 in Table I)] into
a log-skew-normal volume distribution of ε=N2 values,
which can then be directly input into a mixing scheme.
Altogether, the log-skew-normal distribution is a sub-

stantially improved description of rate of dissipation of
kinetic energy. Log-skew-normality arises because mea-
sured dissipation rates are generated by multiple and/or
time-varying sources. We note that while skewed distribu-
tions of ε have been previously reported for oceanic
applications (e.g., see [28] and references therein), we
offer a new distribution, and more importantly, one that we
can understand on physical grounds. Furthermore, we use
an extensive collection of oceanic data (for the purposes of
our topic) to show that our reasoning holds for turbulence
generated by many different processes from the winds at
the ocean surface to by tides and other processes in the
abyssal ocean and in between.
Since log-skew-normal distributions have significantly

heavier tails in the strong turbulent regime, it implies the
need for higher sampling rates to capture the extreme
values that make a disproportionately larger contribution to
turbulent properties such as mixing. In the oceanic context,
we are most often significantly undersampling turbulence.
The sampling issue is even graver for extraterrestrial
applications. But the seeming universality of distribution
of ε provides a practical way toward interpretation of sparse
data. One can, for instance, estimate log-skew-normal
distribution parameters (with uncertainties) from a sample
set, and use that distribution’s mean and its uncertainty in
place of the sample mean and its uncertainty, thereby more
effectively using the total dataset to constrain the mean,
rather than essentially just the few largest values.
The rate of dissipation of turbulent kinetic energy and

velocity shear are universal properties of all turbulent
flows. Where wave-induced turbulence plays an important
role, the seeming universality of distribution of ε, which
solely relies on existence of various wave-generating
processes and interaction among them, likely transcends
the oceanic applications and can potentially help interpret
hardly sought yet sparse observations in planetary physics
and astronomy. This expectation is further reinforced by the

similarity of the mathematically analogous magneto-hydro-
dynamics physics in planetary, stellar, and astrophysical
contexts and the density stratified turbulence in the ocean:
in the former, the magnetic field provides a stratification
that induces, suppresses, and in return gets mixed by wave-
induced turbulence, while in the ocean and atmosphere, the
gravitational field of Earth facilitates similar dynamics.

All code will be made available [44].
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