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A B S T R A C T   

Reliable quantification of ecosystem service (ES) provision in agricultural landscapes depends on accurate 
mapping of the spatial configuration of land-use and land cover (LULC). In this paper we explore the benefits of 
enhanced spatial and thematic resolution in LULC mapping in terms of predicting ecosystem services and 
associated natural capital-based land-use policies. Copernicus Sentinel-2 satellite images were processed using 
Google Earth Engine (GEE) to generate a LULC map at 10 m resolution, which was compared to existing datasets 
at 20 m, 25 m, and 100 m resolution in the River Welland catchment (Eastern England). Spatial resolution had a 
significant effect on the abundance and spatial configuration of land cover types. For example, detected 
woodland cover in the finest resolution dataset was 2x that in the coarsest data. Finer spatial resolution also 
allowed small, fragmented patches of woodland and grassland to be identified. ES provision (crop yield, carbon 
storage and pollinator abundance) was estimated from each map using the Integrated Valuation of Ecosystem 
Services and Tradeoffs (InVEST) model. The finest resolution map resulted in 21% lower predicted wheat pro
duction (due to lower estimates of cultivated land cover), 7% higher predicted carbon stocks and 43% higher 
predicted wild bee abundance compared to the coarsest resolution map. The estimated monetary value of ES 
provision increased by 23.2% between the 10 and 100 m dataset. We recommend that a LULC resolution of at 
least 10 m should be employed in agricultural landscapes to accurately capture ES provision. This can be ach
ieved using GEE and could be used as a basis for the development of future natural capital policy.   

1. Introduction 

The intensification of farming practices beginning in the mid-20th 
century dramatically altered the landscape composition of Europe’s 
agricultural regions (Stoate et al., 2009). Increasing intensification is 
often characterised by heavy reliance on machinery, high inputs of 
fertilisers and agrochemicals, increased field sizes, and a reduction in 
the number of crop rotations typically employed. Intensification is 

recognised as a driver of changes to the supply of ecosystem services 
(ES) provided by agricultural landscapes (Mitchell et al., 2014), and a 
likely cause of observed reductions in biodiversity (Baker et al., 2012). 
Managing the environmental impacts of intensive agriculture and 
ensuring a sustainable supply of vital ES are important objectives of land 
use policy (Schulp et al., 2016), with governments and conservation 
organisations increasingly advocating for a natural capital approach to 
achieve this (Curnow, 2019). The natural capital approach recognises 
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the crucial role that habitats and ecosystem functions play in under
pinning ES supply and the consequent benefits we get from the 
environment. 

A monetary or non-monetary value can be attached to the ES that 
landscapes provide. This can help conceptualise the value of natural 
systems and increase society’s motivation to protect them (Bateman 
et al., 2013). A key component of this approach is the characterisation of 
landscape composition and associated ES provision. This can be per
formed with spatially referenced numerical models such as the Integrated 
Valuation of Ecosystem Services and Tradeoffs model (InVEST) (Sharp 
et al., 2020), which predict ES provision from actual or hypothetical 
land-use/land-cover (LULC) configurations. These predictions can then 
be used to help inform land-use policy and communicate ES values (Cord 
et al., 2017). Models can simulate both (i) the physical processes 
occurring in different habitats and landscape features and (ii) the stocks 
associated with the area of different habitats and features to which ES 
quantities or values are related (e.g. carbon stocks under different land- 
covers) (Crossman et al., 2013; Sharps et al., 2017). InVEST is a widely 
used modelling package that currently supports nineteen different ES 
models. InVEST is free to access and its component models are relatively 
simple in design and implementation which facilitates the engagement 
of non-experts and allows them to be run in data poor locations (Vorstius 
and Spray, 2015). However, the simplicity of InVEST’s models may also 
make them sensitive to data resolution effects (Bagstad et al., 2018). 

Predicting the magnitude and direction of these effects is difficult 
(Rioux et al., 2019). For example, Grafius et al., (2016) modelled ES 
provision in urban environments using InVEST and found that moving 
from coarser (25 m) to finer (5 m) resolution datasets increased the 
predicted provision of carbon storage modelled (stocks) while 
decreasing modelled rates of soil erosion, and pollination (processes). In 
comparison Rioux et al., (2019), also modelling an urban environment, 
found that all three ES estimates considered (carbon storage, urban 
cooling and pollination) increased at finer resolutions. Thus, resolution 
effects on ES estimates are not consistent. Further research is, therefore, 
needed in a variety of environments and for a range ES in order to better 
understand how these effects might influence model outputs and asso
ciated decisions. 

The effects of spatial resolution on modelled ES principally relate to 
its influence on landscape composition and associated landscape metrics 
(spatial statistics such as the number, size, shape and distribution of 
habitat patches (Fichera, Modica and Pollino, 2012; McGarigal, 1995). 
Previous studies have linked LULC spatial resolution with variation in 
landscape metrics (Saura, 2004; Wu et al., 2002) and estimations of 
supply and flow of ES (Rioux et al., 2019). Such issues are of concern to 
modellers and policy makers, as many ES are affected by both the 
abundance and configuration of habitats across the landscape (Gardner 
et al., 2019; Thomas et al., 2020; Santana et al., 2017). Accurately 
representing on-the-ground landscape composition within LULC data
sets is, therefore, a crucial potential control over ES model performance. 

Until relatively recently, the spatial resolution of national LULC 
maps was limited by access to sufficient high-quality satellite imagery 
and the computational demands of classifying it (Carrasco et al., 2019). 
These limitations have been addressed to some extent by increased 
availability of high-quality, high-resolution data (e.g. from the European 
Space Agency’s Copernicus Sentinel-2 platform) which can be processed 
using Google Earth Engine (GEE), allowing accurate LULC mapping at 
10 m resolution at national, or even continental scales (Ghorbanian 
et al., 2020; Li et al., 2020). Automated classification algorithms have 
also been developed in GEE; allowing maps to be produced at time in
tervals matching the requirements of environmental monitoring (Mor
ton et al., 2020). These developments have the potential to improve 
land-use decision making and help address some of the more pressing 
environmental issues of our time, such as the conflict between intensive 
agricultural production and the sustainable provision of ES from farmed 
landscapes (Power, 2010). By opening access to a huge repository of 
data and providing the cloud-computing environment to process and 

analyse it, GEE has supported rapid developments in the state-of-the-art 
for LULC mapping, and spatial analysis for environmental science 
(Gorelick et al., 2017; Wang et al., 2020). 

In this paper we explore the influence of spatial resolution in LULC 
data on derived ES. The paper has three main objectives:  

(1) To quantify the effects of improved spatial resolution in LULC 
mapping on five landscape composition metrics: number of 
patches, mean patch area, total patch area, edge length of 
patches, and the proportion of like-adjacencies of patch pixels.  

(2) To compare the effects of LULC spatial resolution on ES predicted 
using InVEST. Specifically, we look at wheat production (an 
example of a provisioning service), pollinator abundance across 
four guilds of wild bee species, and carbon stocks. This bundle of 
ES provides a policy context for the resolution effects explored i. 
e., balancing food security with climate change mitigation and 
biodiversity conservation.  

(3) To make recommendations for LULC datasets used in natural 
capital assessments, specifically focused on balancing the provi
sion of food security with climate change mitigation and biodi
versity conservation. 

Although recent work has explored the effects of spatial resolution on 
estimates of ES supply (Grafius et al., 2016; Rioux et al., 2019), these 
have focussed on urban environments and relied on fine resolution 
satellite data that are not freely accessible, or have artificially degraded 
the resolution of a single fine resolution LULC dataset. Here, we compare 
a new generation of free and open access datasets derived from the 
Sentinel-2 satellite archive against widely available coarser resolution 
datasets, investigating potential resolution effects within an agricultural 
landscape. 

Modellers and policy makers are more likely to choose LULC datasets 
from those that are readily available, particularly where costs are 
limiting. Therefore, a comparison of different available datasets (which 
vary by resolution) may better-inform their utility for future land- 
management policy compared with a specific investigation of resolu
tion effects achieved through degrading the resolution of a single 
dataset. 

2. Materials and methods 

2.1. Study area 

Our study was conducted in the 1,045 km2 Upper Welland Catch
ment, UK (52.6oN, 0.6oW Fig. 1). The land cover is predominantly 
agricultural with 29.7% covered by grazed or cut grassland, 52.9% by 
arable land and 9.1% by woodland (Rayner, 2020). The remainder is 
made up or roads, settlements, and water bodies. 

2.2. LULC maps 

Four gridded LULC datasets were selected for analysis in this study 
ranging in spatial resolution from 10 m to 100 m. One was a bespoke 
LULC dataset created for this study in GEE using Sentinel 2 imagery 
(S2LC2018). This was compared with (i) Land Cover Map 2018 
(LCM2018) produced by the UK Centre for Ecology and Hydrology 
(CEH) (Morton et al., 2020); (ii) Land Cover Map 2015 (LCM2015) also 
produced by CEH (Rowland et al., 2017); (iii) CORINE Land Cover Map 
2018 (CLC2018) produced by the Copernicus Land Monitoring Service. 
Details of each dataset are shown in Table 1. 

S2LC_2018 was produced by a random forest classification of a 
cloud-free mosaic of level 2A (bottom of atmosphere radiance) Sentinel- 
2 imagery collated and processed in GEE (data available via Rayner, 
2020). The training dataset was created in QGIS v3.6.1 by user inter
pretation of the Sentinel-2 mosaic, combined with reference to physical 
crop maps of the region provided by local landowners, and the 2018 
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Crop Map of England produced by the UK Rural Payments Agency. This 
method means that it is possible to account for different crop types 
within the thematic resolution of the final map. 

Random forest classification is a widely used method and provides a 
good balance between classification accuracy and computational de
mand (Breiman, 2001). The mosaic was composed of eight images 
captured between 1st May 2018 and 30th September 2018 which cor
responds with the period in arable crop phenology which most easily 
allows them to be differentiated. The random forest classification was 
based on the fiftieth percentile value of eight bands from the Sentinel-2 
mosaic. The initial classification was then error corrected in QGIS 
v3.6.1. First, the raster was sieved to remove raster polygons less than 
twenty pixels giving an MMA of 0.2 ha. Although this process will 
remove some correctly classified linear landscape features of interest, it 
was deemed a good compromise to reduce the demands of the subse
quent manual correction step. Manual correction of the remaining 
obvious classification errors was completed using the Thematic Raster 
Editor plugin for QGIS (ThRasE v. 20.3.23). S2LC_2018 has an overall 
classification accuracy of 92.1% and κ of 0.91 (Rayner, 2020). The 
classification methods and accuracy assessments of the three compari
son LULC maps are detailed in the Supplementary Information (S1). 

2.3. Landscape metrics 

Five landscape metrics were calculated from each LULC dataset for 
the woodland, grassland, and cultivated area classes (Table 2) in QGIS 
v3.6.1 using Landscape Ecology Statistics (LecoS) v1.9.0 (Jung, 2016), a 
Python plugin based on FRAGSTATS. 

We focus our analysis of landscape composition on three land covers 
common to all four LULC datasets analysed, which are frequently pre
sent in agricultural landscapes: woodlands, grasslands, and cultivated 

(arable) areas. Both woodland and grassland are important habitats for 
wildlife, providing materials and processes that support many ecological 
functions and associated ES, such as pollination, pest control (Mitchell 
et al., 2014), hydrological ES (Thomas et al., 2020), and the provision of 
biodiversity (Gardner et al., 2019). Cultivated areas cover 27% of the 
UK’s land surface (Rae, 2017), are a vital resource in maintaining food 
security, and are a significant contributor to the UK’s economy. 

2.4. Crop production model 

Each LULC map was used in separate runs of the InVEST v3.9.0 
carbon storage, crop production, and pollinator abundance models 
(Sharp et al., 2020). InVEST’s crop production model is stock-based and 
empirical, built on observed global crop yields data for 175 crops. It 
relates crop cover in the user’s LULC map to global data from Monfreda, 
Ramankutty and Foley (2008) via a lookup table. S2LC_2018 differen
tiates between five crop types (cereals, field beans, oilseed rape, maize, 
and potatoes). However, the LCM2015, LCM2018 and CLC2018 datasets 
group all cultivated areas into a single class. To allow for a more direct 
comparison between the datasets we collated all crop types from 
S2LC_2018 into a single class and used this version alongside the other 
datasets. We modelled the cultivated area class as only growing winter 

Fig. 1. The location and boundary of the Upper Welland Catchment (outlined in black) within the United Kingdom (UK). The River Welland follows the southern 
border of the catchment, with Rutland Water, the UK’s largest artificial reservoir, occupying the middle of the catchment. 

Table 1 
Technical details of the raster format LULC datasets included in the analysis. 
Note that LCM2018 has a minimum mapping area equal to its pixel size; as there 
are no post classification steps to filter map artefacts by a minimum size.  

LULC 
dataset 

Spatial resolution 
(m) 

Minimum mapping area 
(MMA) 

Sensors utilised 

S2LC_2018 10 0.2 ha Sentinel-2 
LCM2018 20 0.04 ha Sentinel-2 
LCM2015 25 0.5 ha Landsat-8 
CLC2018 100 25 ha Sentinel-2 and 

Landsat-8  

Table 2 
Descriptions of the landscape metrics calculated.  

Landscape 
metric 

Unit Description 

Number of 
patches 

Count of 
individual 
patches 

The total number of patches of each 
landcover class. A ‘patch’ is an individual 
raster polygon and cannot be smaller than 
the MMA of the dataset. 

Land cover Square kilometres The total area of landscape covered by each 
landcover class. 

Mean patch 
area 

Hectares The total area of each landcover class 
divided by the total number of patches. 

Edge length Kilometres The total length of the outside edges of all 
habitat patches. Larger values, when 
comparing the same landcover class between 
datasets, indicate greater levels of 
fragmentation. 

Like 
adjacencies 

Percentage of 
class PIXELS 

The proportion of cell adjacencies within a 
landcover class that are “like” adjacencies i. 
e., pixels adjacent to those of the same 
landcover class. Lower values indicate less 
aggregation of the landcover class.  
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wheat (Triticum aestiyum: the most common arable crop grown in the 
region), using this as a proxy for all other crops. 

InVEST’s directory contains a global climate map and a climate 
percentile yield table. First the model clips the climate map to the extent 
of the LULC map supplied by the user and reclassifies it using data from 
the percentile yield table to produce four raster maps of percentile crop 
yields (25th, 50th, 75th and 95th percentile). These are then interpo
lated to the same resolution as the LULC map. LULC classes indicated as 
not growing the crop of interest from the landcover to crop lookup table 
are masked out. The yield values are then summed and tabulated. 

Model accuracy was assessed by comparing predicted yields of wheat 
with UK averages for 2018 (DEFRA, 2019). This was deemed sufficient 
to check the model was predicting realistic yields. The economic value of 
modelled wheat yields was estimated using the mean price index of 
London wheat for 2018 obtained from the Agriculture and Horticulture 
Development Board website (AHDB, 2021). 

2.5. Carbon storage model 

InVEST’s carbon storage model is the second stock-based model 
assessed in this study. The model is, again, empirically-based and relates 
each LULC class to a lookup table containing carbon values in Mg ha− 1 

for four pools of carbon: above ground (plant biomass), below ground 
(live root biomass), soil organic carbon and dead organic matter (dead 
surface biomass). The model calculates total carbon stocks based on 
these values and the total area of each LULC class within the dataset. 
Carbon values for the LULC classes were taken from Sharps et al., 
(2017), who collated values for UK landcovers based on a review of 
published figures. Carbon stores for above and below ground live 
biomass in cultivated areas were set to zero, as they do not remain in the 
landscape long enough to be considered a stock. The carbon pool values 
we used were validated by Sharps et al., (2017) against field data 
collected in the UK (Glanville et al., 2017; Smart et al., 2017). Although 
they were found to exceed measured values by 51%, they were of the 
same order of magnitude (Sharps et al., 2017). Since this study is pri
marily focussed on understanding the relative differences between LULC 
datasets rather than on predicting absolute amounts, these values were, 
therefore, considered adequate. 

The InVEST carbon model cannot calculate sequestration rates unless 
two LULC maps are entered into the model representing an earlier and 
later date. We could not do this when modelling a single year. Instead, 
we predicted a monetary value for the carbon sequestered by the land
scape’s woodland in one year. We based this on (i) the avoided value of 
removing 1 Mg of carbon by other means in 2018 (£69 Mg− 1) published 
by the Office for National Statistics (2020), (ii) average carbon seques
tration rates by woodlands in England assessed under the Woodland 
Carbon Code (Forestry Commission, 2019), (iii) and the area of wood
land present in each of the four LULC datasets we modelled. 

The Woodland Carbon Code is a set of standards by which UK 
woodlands are judged based on sequestration rates and other measures, 
and feeds into natural capital accounting methods such as Office for 
National Statistics (2020). We took projected sequestration rates for the 
27 verified projects in England (to better match climatic conditions and 
species assemblages of our study area) and divided this figure by the 
total area of those projects, to estimate an annual sequestration rate per 
hectare (5.77 Mg C ha year− 1). 

2.6. Pollinator abundance model 

The InVEST pollinator abundance model is process-based and sim
ulates the nesting and foraging behaviours of wild bee populations 
across the landscape to produce an index of pollinator abundance. The 
model is fully described in Lonsdorf et al., (2009) but it is useful to 
include an overview here. 

The model works on the assumption that for wild bee populations to 
persist in the landscape they require adequate nesting sites, and food 

(floral resources) within foraging distance of those nesting sites. The 
model first calculates an index of pollinator supply for each guild, and 
for every cell, indicating where in the landscape pollinators are likely to 
originate from. The index is based on the nesting resources in that cell, 
the floral resources within foraging range, and the relative abundance of 
each guild across the landscape. The index of supply is then used to 
calculate an index of abundance, which indicates where pollinators are 
active across the landscape. The index of abundance is a product of the 
index of supply and available floral resources in each season, weighted 
by each guild’s relative activity during that season. 

In this study, we follow Gardner et al., (2020) and model four guilds 
of wild bees: ground nesting solitary bees, cavity nesting solitary bees, 
ground nesting bumblebees and tree nesting bumblebees. The indices for 
each guild and landcover within the guild table and landcover bio
physical table were taken from “expert opinion” values used in Gardner 
et al., (2020). We were able to set specific floral resources and nesting 
availability scores for the crop classes in S2LC_2018 as this dataset dif
ferentiates between several arable crop types. For the aggregate crop 
classes in the other LULC datasets we determined a best estimate based 
on the mix of crop types across the region and the range of expert 
opinion scores for these crop types given by Gardner et al., (2020). 
Relative abundance values were taken from the relative abundance of 
each guild within the national survey reported by Gardner et al., (2020). 

3. Results 

3.1. Landscape metrics 

The total estimated landcover proportion of woodland is substan
tially lower in the coarser spatial resolution datasets. More than double 
the amount of woodland is estimated using the S2LC_2018 and 
LCM2018 datasets than in the CLC2018 data, with 9.1% at 10 m, 8.9% at 
20 m, 7.1% at 25 m and 4.1% at 100 m resolution (Fig. 2a). Grassland 
cover estimates also decreased at 100 m resolution (29.8% at 10 m, 
30.2% at 20 m, 29.2% at 25 m and 21.1% at 100 m Fig. 2b). As the 
spatial resolution degrades, large areas of woodland and grassland are 
aggregated into the cultivated area classes with estimated cultivated 
area increasing from 52.8% at 10 m to 67.1% at 100 m (Fig. 2c). 

The number of patches of all three LULC classes decreases at coarser 
spatial resolutions (Fig. 2d, e and f), except in the case of LCM2018 
which has a much higher number of patches of each habitat type. Patch 
numbers in LCM2018 far exceed the next highest from S2LC_2018, these 
high values are explained by the number of single pixel patches present 
across the landscape in LCM2018 (Fig. 3). This is also reflected in the 
mean patch areas for each LULC class, with LCM2018 at 20 m resolution 
consistently having the lowest values (Fig. 2g–i). 

Spatial resolution effects were also observed for LULC-class config
uration. Woodland, grassland, and cultivated areas become more 
dispersed at finer resolutions, with LCM2018 exhibiting the greatest 
levels of dispersion in all three classes (Fig. 4). Comparing metrics be
tween LCM2018 and CLC2018 highlights this dispersion effect. Esti
mated edge lengths of woodland, grassland, and cultivated areas 
indicate that the LULC patches are significantly less aggregated in 
LCM2018 (Fig. 4a–c). The contrast between the two datasets is greatest 
in woodland, as this is the LULC class that is present in smaller, less 
regularly shaped patches in the real landscape. The proportion of like- 
adjacencies also increases with coarser spatial resolution, highlighting 
how pixels of woodland, grassland and cultivated areas are more likely 
to be present in larger, more aggregated patches in the coarser resolu
tion datasets (Fig. 4d–f). Woodland is the most dispersed class across all 
four LULC datasets followed by grassland and cultivated areas. 

3.2. Predicted ecosystem services provision 

The predicted supply of regulating services (pollinator abundance 
and carbon storage) is higher when using the finer resolution datasets 
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and decreases as the resolution degrades. Conversely, the supply of 
provisioning services (wheat production) increases as the resolution 
degrades (Fig. 5). 

Estimates of carbon stocks were far lower at 100 m resolution 
compared with the other three LULC datasets. However, estimates of 
carbon stocks at 20 and 25 m were marginally higher than at 10 m, 
despite higher woodland cover in the latter dataset. 

Predicted wheat production increased significantly with coarser 
resolution datasets (Fig. 5). We compared modelled values to average 
national yields from 2018 of 7.8 Mg ha− 1 (DEFRA, 2019) and found that 
the 95th percentile values were the closest fit. We estimated monetary 
values for 95th percentile wheat production, and carbon sequestration 
by the catchment’s woodlands (Table 3). 

The estimated monetary value of wheat production increased by 
27.1% between the 10 m and 100 m resolution datasets, while the 
estimated monetary value of carbon sequestration decreased by 55.1% 
between the same resolutions. In total, the estimated monetary value of 
the ES increased by 23.2% between the 10 and 100 m datasets. 

The predicted mean abundance of all wild bees decreased by 1.47 
individuals ha− 1 as the spatial resolution degraded from 10 m to 100 m 
(Fig. 5). When scaled across the region this equates to a difference of 

approximately 150,000 individuals. Ground nesting bumblebees were 
the most abundant predicted guild, followed by ground nesting solitary 
bees (Fig. 6b), tree nesting bumblebees, and cavity nesting solitary bees 
(Fig. 6a). Degrading the resolution from 25 m to 100 m had less of an 
impact on modelled abundance for all four guilds, compared with the 
degradation from 10 m to 25 m. 

While averages are useful for assessing the overall effect of resolution 
on modelled pollinator abundance, comparison of spatial patterns more 
effectively communicates the impact of different spatial resolutions and 
associated landscape composition on the abundance of the four guilds 
across the landscape (Fig. 7). The ability to differentiate crop covers in 
S2LC_2018 means that crops with better floral resources, such as oilseed 
rape or field beans, can be accounted for explicitly in the model, creating 
regions of higher predicted abundance relative to the other datasets 
(Fig. 7a). The presence of smaller woodland and grassland patches 
spread across the landscape in S2LC_2018 and LCM2018 (Fig. 7a and b) 
also helps create areas of higher abundance. These features are missing 
in LCM2015 and CLC2018 (Fig. 7c and d). 

Fig. 2. Landscape metrics relating to the abundance of woodland, grassland, and cultivated areas across the four LULC datasets with different spatial resolution.  
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Fig. 3. Zoomed area maps of a sample region of the study area as represented by (a) S2LC_2018, (b) LCM2018, (c) LCM2015 and (d) CLC2018 highlighting the 
variation in landscape composition and thematic resolution between the different datasets. 

Fig. 4. Landscape metrics values for the fragmentation of woodland, grassland, and cultivated areas across the four LULC datasets.  
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4. Discussion 

4.1. Resolution effects on LULC mapping and ecosystem service 
assessment 

Our analysis of the effects of spatial resolution on landscape metrics 
has, perhaps unsurprisingly, shown that the finer resolution LULC maps 
produced from Sentinel-2 imagery characterise the landscape very 
differently to coarser resolution LULC maps in terms of the abundance of 
different land covers, but also in terms of their distribution across the 
landscape. As resolution degrades the dominant land covers increase in 
proportion while the less abundant, more fragmented land covers 
decrease in proportion. Most striking was the substantial difference in 
predicted areas of woodland and cultivated land between the finest and 
coarsest resolution maps. This is due to the way that the classification is 

aggregated by larger MMUs in LCM2015 and CLC2018, meaning that 
smaller, more linear woodland patches are the first features to be dis
solved from the dataset as land covers are aggregated. These differences 
are primarily due to the use of finer resolution Sentinel-2 imagery in the 
GEE-derived datasets, which capture smaller landscape features in the 
classified maps (Li et al., 2020). Rioux et al., (2019) reported similar 
effects in an urban environment when the resolution of a single LULC 
dataset was degraded in increments from 1 to 15 m, with impervious 
surfaces increasing in proportion (+10% in residential zones and + 6% 
in commercial zones) while the proportion of vegetated land covers 
decreased (-15% in residential zones and − 46% in commercial zones). 

4.2. Stock-based ecosystem service models 

The 100% increase in woodland and ≈20% decrease in cultivated 
area between the coarsest and finest LULC maps significantly affected 
the stock-based ES model outputs (carbon storage and wheat produc
tion). Grafius et al., (2016) found similar resolution effects on InVEST’s 
carbon storage model in urban environments when comparing just two 
spatial resolutions, with higher carbon storage values predicted at 5 m 
resolution (9.32 kg C m− 2) compared with 25 m (7.17 kg C m− 2). Rioux 
et al. (2019) also found that carbon storage decreased as they degraded 
the original resolution of their LULC dataset. In urban environments, 
this pattern is explained by the greater landscape detail captured in 
residential areas at finer resolutions which better identifies garden land 
covers and, hence, increases estimated carbon storage. In our study, the 
ability to better-characterise land covers at finer resolutions was also the 
main cause of differences in modelled carbon stores. However, the land 
covers of importance and the way they were aggregated at the various 
resolutions differed in our agricultural region, compared with those 
from urban environments. 

For the same soil type, woodland and long-term grassland tend to 
have substantially higher soil organic carbon concentrations compared 
with long-term arable rotations (Guo and Gifford, 2002). This reflects a 
higher annual return of photosynthate to the soil, and a lower rate of 
mineralisation in grassland and woodland systems due to reduced 
physical disturbance and aeration. In agricultural landscapes, the 
woodland and grassland patches that exist within the matrix of culti
vated areas represent a major store of carbon across the landscape. 
However, despite our 10 m dataset having the greatest area of wood
land, the 20 m and 25 m datasets had marginally higher values of total 
carbon storage. For LCM2018 (20 m) this can be explained by the larger 
number of grassland patches which were predicted across the landscape. 
Some of these patches were single pixels within the middle of patches of 
cultivation, many which are likely to be artefacts. In contrast, the post 

Fig. 5. Resolution effects on ecosystem services modelled. Wild bee abundance 
is given as the mean combined abundance per hectare of all four modelled 
guilds. Wheat production shows the 95th percentile of modelled yields. 

Table 3 
Estimated monetary value of wheat production, and carbon sequestration by the 
catchment’s woodlands.  

LULC dataset Wheat production Carbon sequestration Total value 

S2LC_2018 £75.84 million £3.79 million £79.63 million 
LCM2018 £77.11 million £3.69 million £80.80 million 
LCM2015 £83.36 million £2.93 million £86.29 million 
LCM2018 £96.37 million £1.70 million £98.07 million  

Fig. 6. Mean predicted abundance per hectare of the four guilds of wild bees for each LULC dataset: Cavity nesting solitary bees (CNSB), tree nesting bumblebees 
(TNBB), ground nesting solitary bees (GNSB), and ground nesting bumblebees (GNBB). 
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classification processing of S2LC_2018 (10 m) meant that these single 
pixel features were removed from the final map, and replaced with 
pixels of the crop type from adjacent fields. In the case of LCM2015 (25 
m), the relatively high value for carbon storage can be explained by a 
lower predicted area of urban, suburban, and industrial land covers 
compared with S2LC_2018 (39 km2 in S2LC_2018 and 54 km2 in 
LCM2015). Much of the extra area of these land covers identified by 
S2LC_2018 was in the form of isolated agricultural buildings and hard 
standings, as well as major transport infrastructure (roads and railway 
lines). These features (which are assigned zero carbon storage in the 
model’s lookup table) were either too small in area, or too linear in 
shape to be captured in the LCM2015 data. Roads, railway lines, and 
isolated rural buildings were mostly replaced with grassland and culti
vated area land covers in this dataset. 

The aggregation of woodland and grassland classes into cultivated 
areas accounts for the higher values of total wheat production modelled 
at coarser resolutions. Unlike carbon storage, modelled wheat produc
tion consistently increased with coarser spatial resolution because its 
supply is dependent on a single LULC class that is dominant across the 
landscape, in large, continuous areas. Carbon storage values were 
affected by multiple LULC classes, present across the landscape in a 
larger variety of configurations and abundances, which interacted more 
subtly as spatial resolution decreased. The large differences in estimates 
of crop production between the four resolutions highlight the potential 
to overvalue this ES when estimates are based on coarse resolution 
datasets. 

4.3. Process-based ecosystem service models 

Resolution effects on estimates of ES are not consistent and can vary 
depending on the landscape of interest, and the scale at which resolu
tions are compared. We found that predicted pollinator abundance 
consistently decreased with reduced spatial resolution, in line with 
previously reported results from urban environments (Rioux et al., 
2019). Grafius et al., (2016) found the opposite relationship for 

InVEST’s index of pollinator supply in an urban environment, with 9% 
of habitat at 25 m resolution exhibiting index values > 0.25 compared 
with 6% at 5 m resolution. 

InVEST’s pollinator model is sensitive to the configuration of land- 
covers across the landscape, not just their total areas, unlike the stock- 
based models (such as for carbon storage), which would always return 
the same result for any number of randomly generated landscapes with 
the same proportions of land cover. The indices of supply and abundance 
are influenced by the assigned scores of nesting and floral resources for 
each LULC class. In addition, these indices are weighted by distance, 
with near resources being given greater weight than those further away. 
As such, hot-spots of floral and nesting resources (and, therefore, 
abundance) can be created where land-covers with high scores in these 
indices are proximal. 

Our parameterisation of the model assigned high nesting and floral 
resource value to woodland, grassland, and suburban land-covers (with 
slight variations between the four guilds modelled), and lower values to 
the cultivated land-covers. The exception was S2LC_2018 which differ
entiates between five different crop types. In this case, higher floral and 
nesting resource scores were assigned to some crop types that are known 
to provide such resources for the wild-bee guilds we modelled (e.g. oil 
seed rape, Brassica napus, which flowers in spring). For the remaining 
LULC datasets, we had to set lower scores for cultivated areas, because 
specific crop types were not explicitly identified, showing that for some 
ES models the thematic resolution of the map is as important as the 
spatial resolution for overall model performance. 

The smaller woodland, grassland and suburban features that were 
present across the landscape in the S2LC_2018 and LCM2018 data 
created “hot spots” of high pollinator abundance within the dominant 
low abundance areas of cultivation. The linear nature of many of these 
features helped create corridors between hot spots, distributing the 
benefits of pollinator abundance more widely across the landscape. The 
inclusion of more “pollinator-friendly” crop types in S2LC_2018 ampli
fied this effect. 

After the resolution had degraded beyond a certain point the 

Fig. 7. Spatial output of the InVEST pollinator abundance model showing abundance per hectare of ground nesting bumblebees (GNBB)modelled from (a) 
S2LC_2018, (b) LCM2018, (c) LCM2015, and (d) CLC2018. 
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predicted effect on pollinator abundance lessened, with only a small 
reduction in modelled abundance between LCM2015 at 25 m and 
CLC2018 at 100 m. The effects of the spatial scale of management 
intervention on ES supply are not always linear, and may sometimes 
exhibit sigmoidal, exponential or saturation like relationships (Lindborg 
et al., 2017). Degrading spatial resolution is analogous to investigating 
different scales of management intervention (through changing pro
portions of land-covers), and it is possible that the negative effects of 
degrading resolution on pollinator abundance reach a saturation point 
at a level between 25 and 100 m resolution. Beyond these resolutions, it 
is possible that changes to land cover composition occur at scales greater 
than the foraging and flight distances of the wild bee species we 
modelled. 

4.4. Uncertainty in the valuation of ecosystem service provision 

We estimated monetary values for crop yields in this study because 
crop production easily lends itself to economic valuation. This valuation 
can facilitate the comparison of different ES estimates by framing them 
in understandable and consistent units. However, valuing climate 
regulation based on the component of the carbon budget that InVEST 
models (the static stocks of carbon across the landscape, not seques
tration) introduces substantial uncertainty into the valuation. Terrestrial 
carbon stocks are obviously hugely important for global climate regu
lation, but it can be argued that the actual sequestration of carbon from 
the atmosphere represents the final benefit to society provided by the 
climate regulation ES (Beaumont et al., 2014). This would make 
sequestration the appropriate metric to value, rather than stocks. 
Indeed, when using carbon stocks, there is a risk of overestimating value 
as factors such as temporal and spatial variation in sequestration rate are 
not taken into account (Beaumont et al., 2014). 

Whilst it is possible to estimate carbon sequestration in InVEST, this 
is not possible for a single year. For this reason, we estimated carbon 
sequestration based on the total area of the region’s woodland cover. 
This method has been used previously in similar landscapes (Brainard 
et al., 2009). The monetary value derived was based on the ‘avoided 
costs’ of sequestering carbon by other means (Office for National Sta
tistics, 2020). Another option might have been to use the social cost of 
carbon (Ricke et al., 2018), although this can also be difficult, due to the 
varied impacts of climate change on different countries (Ricke et al., 
2018). 

The results of our monetary valuation raise several considerations for 
policy and decision makers. If ES provision were considered purely in 
monetary terms, it could be argued that the higher values of provision 
modelled in the 100 m dataset are the most beneficial to society. 
However, drawing this conclusion would likely lead to problematic 
trade-offs in the bundle of ES, particularly when balancing climate 
regulation with food security and the protection of biodiversity. The 
value of carbon sequestration fell as resolution degraded, but this was 
masked by greater increases in the value of crop production. The land 
cover changes associated with the 100 m resolution estimates of provi
sion were also associated with reduced pollinator abundance, which 
would likely have additional effects on crop production. Clearly, policy 
and decision makers need to interpret more than just monetary values 
when determining land use interventions as part of natural capital 
programmes. 

5. Conclusion and recommendations 

Agricultural landscapes are becoming crucial areas for policy inter
vention as societies seek to balance food security requirements with 
climate change mitigation and attempt to reverse losses of biodiversity 
(Seddon et al., 2020). Three primary concerns for policy and decision 
makers are (i) the accuracy of spatially explicit models used to estimate 
ES provision, (ii) the costs and availability of data used to populate these 
models, and (iii) the methods or metrics used to quantify or value ES 

provision. 
The accuracy of ES models can be affected by the spatial and the

matic resolution of the LULC datasets. We believe that 10 m is the best 
currently pragmatic scale at which to model agricultural ES supply 
across the landscape. Thanks to the availability of Sentinel-2 data, which 
can be easily processed in the GEE cloud-computing environment, 10 m 
resolution imagery can generate LULC datasets at regional and national 
scales. These data products can capture many of the smaller landscape 
features in agricultural environments that we have identified as 
important sources of ES supply, leading to better estimations from both 
process-based and stock-based ES models, better estimations of associ
ated natural capital and, hence, potentially better-informed policy and 
decision making (DEFRA, 2020). GEE also enables LULC mapping at 
regular time intervals, which will be an important component of 
monitoring policy impact as it will allow for modelling of ecosystem 
service supply at regular intervals. If LULC interventions (e.g. modifi
cations in crop covers or management practices intended to improve ES 
such as soil carbon sequestration or enhanced biodiversity) are modelled 
at the field or single-farm scale, then finer resolutions may be desirable. 
However, such datasets are still limited by significant financial and 
technical barriers. 

We have shown here that thematic resolution can be as important as 
spatial resolution. For example, the ability to differentiate between 
several crop types in S2LC_2018 increased estimates of pollinator 
abundance across the landscape. We, therefore, recommend that ES 
assessments in agricultural environments are based on LULC datasets 
which are able to differentiate between different crop types. 

ES models, such as InVEST, have their limitations. For example, the 
carbon storage model is empirical and cannot currently account for 
dynamic changes in carbon stores reflecting the balance between 
emission and sequestration (resulting, for example, from changes to 
cultivation practices in the same crop type, such as low- or no-till). 
Similarly, the crop production model cannot account for landscape 
factors influencing yield such as slope angle, soil properties, weather, 
nutrient availability or the prevalence of pests and diseases. Despite this, 
we believe these models can still usefully contribute to policy making 
and monitoring because they can assess the approximate magnitude and 
direction of changes in ES supply resulting from proposed policy in
terventions. In addition, their simplicity and limited data requirements 
mean they can be employed with low cost. 

InVEST’s carbon storage model has been validated for the UK 
(Sharps et al., 2017). In addition, InVEST has water quality and water 
balance models, which have also been validated, and could also be 
included in the bundle of ES considered in landscape decision making 
frameworks (Redhead et al., 2016). Future research should aim to 
establish the validity of the remaining InVEST ES models for landscapes 
subject to potential policy interventions (e.g. farm subsidy and incentive 
schemes). 

We believe that it is not always appropriate to frame ES supply solely 
in monetary terms. Natural capital policies are beginning to adopt this 
position too, with intrinsic and cultural values of ES being given greater 
prominence (DEFRA, 2018). Whilst metrics or indices of ES supply will 
almost always be an essential component of natural capital or “payment 
for ecosystem service” policies, we should move away from discussing 
ES supply in purely economic terms. 
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