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Abstract: The newly developed WRF-Hydro model is a fully coupled atmospheric and hydrological
processes model suitable for studying the intertwined atmospheric hydrological processes. This study
utilizes the WRF-Hydro system on the Three-River source region. The Nash-Sutcliffe efficiency for
the runoff simulation is 0.55 compared against the observed daily discharge amount of three stations.
The coupled WRF-Hydro simulations are better than WRF in terms of six ground meteorological
elements and turbulent heat flux, compared to the data from 14 meteorological stations located in
the plateau residential area and two flux stations located around the lake. Although WRF-Hydro
overestimates soil moisture, higher anomaly correlation coefficient scores (0.955 versus 0.941) were
achieved. The time series of the basin average demonstrates that the hydrological module of WRF-
hydro functions during the unfrozen period. The rainfall intensity and frequency simulated by
WRF-Hydro are closer to global precipitation mission (GPM) data, attributed to higher convective
available potential energy (CAPE) simulated by WRF-Hydro. The results emphasized the necessity
of a fully coupled atmospheric-hydrological model when investigating land-atmosphere interactions
on a complex topography and hydrology region.

Keywords: WRF-Hydro model; runoff; precipitation; three river source region

1. Introduction

The hydrological processes at the surface-atmosphere interface are a key process in the
terrestrial water cycle and impact weather systems [1–3]. Soil moisture change, transpira-
tion, and runoff are the three main components which affect water resources management,
agriculture, ecology, and flood prediction [4–7]. Such hydrological processes are becoming
increasingly detailed and precise in regional climate models [8–11], especially as recent
studies have pointed out that even with inadequate hyper-resolution meteorological and
surface data, it is worthwhile to integrate lateral flow dynamics in hyper-resolution land
surface models that have a resolution on the order of 100 m at continental scales [12] to
better reflect water and energy heterogeneity [13]. Moreover, several numerical models
incorporating lateral flow have been developed [14–16].

The Tibetan Plateau (TP) is the highest landform globally, with an average elevation
exceeding 4000 m above sea level [17], and is located in the area where the East Asia mon-
soon and the South Asian monsoon interact. The TP acts as a strong ‘dynamic pump’ [18],
attracting moist air from low latitudes during the warm season. The intense surface radia-
tion and topographic lifting of TP provides a favorable condition for convection [19,20].
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Summer precipitation is about 60% of annual precipitation [21]. In addition, the thermal
forcing convective cloud system in the TP usually moves downstream into eastern China,
contributing to heavy rain and severe convective storms in China [22–26]. Precipitation in
winter is stored in solid form as snow and ice and released as meltwater when the tempera-
ture rises during spring and summer [27]. The huge number of glaciers, snow-packs, lakes,
rivers, and a large amount of water storage in TP serves as ‘the world’s water tower’ [20].

The source region of the Three River basins (SRTR), located in the TP, is the source
region of the three largest rivers in China, i.e., the Yangtze, Lancang, and Yellow River.
The region is suitable for performing the coupled atmospheric-hydrological modeling
due to its vital geographic location and essential hydrological functions [28]. Based on
meteorological observations and ice core records, the intensified global water cycle [29],
especially precipitation and evaporation, might be enhanced in TP because TP is more
sensitive to climate change due to high altitudes [30]. Rapid warming in TP [31] could
lead to notable changes in the phase and intensity of surface precipitation, which impacts
evapotranspiration and runoff generation [32].

Numerical models are powerful tools for studying the hydrology of the SRST, and each
of the models has its advantages [33]. There are many models that focus either on the
hydrology or on land-atmosphere interactions only. For example, the soil and water
assessment tool (SWAT) is a conceptual, distributed parameter model [34], suitable for
long-term runoff and pollution transfer simulation in large river basins. Variable infiltra-
tion capacity (VIC) is a physically-based macroscale hydrological model, developed to
solve water and energy balances [35]. The community land model (CLM) [36] robustly
simulates the exchange of water, energy and carbon and nitrogen between the land and
the atmosphere. The community Noah land surface model with multi-parameterization
options (Noah-MP) [37] is an enhanced version of Noah similar to CLM, but more oriented
to applications in regional climate models. These models have been instrumental in the
study of the hydrology and atmosphere of SRTR [38–42]. However, due to the design ori-
entation, SWAT and VIC cannot be coupled directly to the atmospheric model. At the same
time, the physical processes of lateral terrestrial water flow are absent in the CLM, Noah,
and Noah-MP models. As a result, the impacts of the coupled hydrology and atmosphere
processes are still less investigated in the SRTR.

The hydrologically enhanced version of the weather research and forecasting mod-
eling system (WRF-Hydro) [43] is a high-resolution model that explicitly describes the
surface overland flow. And it is a fully coupled atmospheric-hydrological model, since the
hydrological processes are added in the WRF model (using Noah-MP as the land surface
module). WRF-Hydro contains physical processes including the re-infiltration, surface
overland flow and lateral flow of water within the soil layers [11]. The changes in soil
moisture due to lateral flow are fed back to the atmosphere. Therefore, the precipitation sim-
ulation is different from that of WRF [44–46]. Besides, the accuracy of turbulent heat fluxes
increased in Germany using WRF-Hydro [1]. The WRF-Hydro revealed good performance
in simulating the diurnal cycle of land surface states and fluxes during the North American
monsoon [47]. Coupled WRF-Hydro slightly outperforms the WRF stand-alone concerning
sensible and ground heat flux, near-surface mixing ratio and temperature, boundary layer
profiles of temperature [1]. The hydrologically enhanced process of WRF-Hydro showed an
increased precipitation recycling rate in the inland area of China [48] but decreased slightly
in East Africa [49]. In addition, streamflow corresponds with observations at monthly
timescales on the south side of the Himalayas [50].

In this paper, the fully coupled WRF-Hydro is chosen to carry out modeling experi-
ments of SRTR. The aim of this work is (1) to validate the applicability of WRF-Hydro in the
runoff simulation in the SRTR, (2) in order to investigate the effects of lateral flow on soil
moisture and near-surface meteorological variables in a coupled atmospheric-hydrological
model, (3) to investigate the effects of coupled atmospheric-hydrological processes versus
the uncoupled ones on the boundary layer and regional precipitation.
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2. Study Area, Model Description and the Numerical Experiment Design
2.1. Study Area

The SRTR is located northeast of the TP, with an altitude average of 4510 m and
ranging from 2600 m to 6500 m a.s.l. (Figure 1). It is an adjacent area consists of the source
region of the Yellow River basin (YRB, 1.22× 105 km2), the Yangtze River basin (YARB,
1.37× 105 km2), and the Lancang River basin (LRB, 5.3× 104 km2). The SRST is mainly
covered by grassland [51], and the soil type is loam. The YRB contributes about 35% of
the river flow [52]. Glacier cover fractions of YARB and YRB are 0.95% and 0.11% [33],
respectively. The proportion of melt contributing to runoff ranges from 3.9 to 6% in four sub-
basins of the YARB [42]. During 1956–2012, the annual runoff in LRB and YARB increased,
while YRB slightly decreased [53]. Under the impact of climate change, frozen ground
degradation increased the groundwater discharge rate in winter [54]. Direct snowmelt
runoff coefficients are mainly controlled by the air temperature freezing index [55].
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Figure 1. Geographic locations of the observational stations and source region of Three River basins (SRTR) include the
Yellow River basin (YRB), the Yangtze River basin (YARB) and the Lancang River basin (LRB). The coordinates of streamflow
stations, flux towers and meteorological stations are shown in Table 1.

2.2. Model Description
2.2.1. WRF-ARW and NOAH-MP

The WRF-ARW model [56] is a time-split non-hydrostatic atmospheric model. It is
widely used in the study of land-atmosphere interactions [6], dynamic downscaling [57,58],
weather and climate research [59,60]. The ability of WRF to resolve strongly nonlinear
small-scale phenomena such as stratiform precipitation and convective precipitation makes
it suitable for the coupling study of atmospheric and hydrological processes.

Noah-MP [37] is an enhanced version of the Noah land surface model, and introduces
a framework for multiple schemes. Due to the enhancement of biophysical and soil freeze-
thaw processes, the Noah-MP has been widely used in the TRSR [41,61,62]. Noah-MP can
be selected as the land surface process module of the WRF model.
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2.2.2. WRF-Hydro

WRF-Hydro is a modeling framework to facilitate the coupling of WRF and hydro-
logical models. The interactions between hydrological and land surface processes are
calculated as follows [43]. Land surface states and fluxes computed by Noah-MP are disag-
gregated to the high-resolution terrain routing grid. Then the physical hydrologic process
is calculated on the routing grid. After that, land surface states and fluxes aggregated from
the routing grid are updated to the Noah-MP model grid. Therefore, it can be used as a
land surface model offline or fully coupled to the WRF model. The uncoupled WRF-Hydro
model is good at spin-up, model calibration, and data assimilation. In contrast, the coupled
WRF-Hydro model is used for hydrology-atmosphere coupling research.

There are five major parts in the hydrologic processes of WRF-Hydro [43], namely
subsurface flow, overland flow, channel, lake, and a conceptual base flow module. The sub-
surface flow process calculates subsurface lateral flow [63] and exfiltration from a su-
persaturated soil column. During overland flow, the infiltration excess and exfiltration
calculated in the previous step flow into the river by solving the diffusive wave formula [64].
The channel process simulates the flow in the river network by either fine grid routing us-
ing a diffusive wave equation or on a vectorized network of channel reaches by solving the
Muskingum or Muskingum-Cunge equation [65]. Besides, WRF-Hydro provides a simple
mass balance, a level-pool lake/reservoir routing module, and a conceptual exponential
bucket base flow module [43].

2.3. Numerical Experiment Design

To investigate the performance of WRF-Hydro, uncoupled and coupled simulations
were performed over SRST. The first is a WRF-Hydro uncoupled experiment (WRF-H-UP,
hereafter), used to find out the calibrated hydrological parameters and test the simulation
performance of runoff generation. Secondly, a group of coupled WRF-Hydro (WRF-H,
hereafter) and WRF-ARW experiments (WRF-S, hereafter) were conducted to test the effects
of hydrological processes on the atmosphere simulation.

2.3.1. Model Calibration

A WRF-Hydro simulation is set up in offline mode (WRF-H-UP) for parameter calibra-
tion and runoff simulation. Since it is still a challenge to reproduce daily runoff using fully
coupled models [48], only runoff from the uncoupled simulation is analyzed in the study.
The domain of WRF-H-UP corresponds to the area of the inner domain (d02) used by the
subsequent coupling run, shown in Figure 2. The simulations of WRF-ARW drive the WRF-
H-UP to verify the forecasting ability of WRF-Hydro on the runoff discharge. The runoff
simulations are produced after the parameters have been calibrated. Because WRF-Hydro
includes many parameterized nonlinear physical processes, the default parameters given
by WRF-Hydro are only valid over a small region; calibration of related model parameters
is often required to use in the new domain [66].

The parameters are calibrated manually in this study. Most of the parameters are
insensitive during the calibration, except those that control base flow (maximum depth,
Zmax). By increasing the Zmax from 10 to 50, WRF-Hydro can calibrate errors caused by
overestimated precipitation by storing water in conceptual groundwater buckets. Other
parameters involved in the calibration process include the control of water movement
in the soil, such as reference infiltration factor (REFKDT), soil evaporation exponent (FX-
EXP_DATA), deep drainage coefficient (SLOPE), saturated soil hydraulic conductivity
(SATDK), saturated hydraulic conductivity coefficient of lateral flow (LKSATFAC), porosity
(MAXSMC), and filed capacity (REFSMC). Parameters are relevant to overland flow, that is,
the roughness coefficient (SFC_ROUGH), and Manning’s roughness coefficient (MannN).
Parameters required for lake routing include coefficient (WeirC), weir length (WeriL), orifice
coefficient (OrificeC), orifice area (OrificeA). Groundwater parameters include the coeffi-
cient of baseflow (Coeff) and exponent (Expon) of the bucket model. However, adjusting
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these parameters had little effect in the runoff simulations, so all default values were used
in coupled simulations except for Zmax, which was calibrated from 10 to 50.

2.3.2. Coupled Simulations

The WRF-ARW (WRF-S, hereafter) model is configured standalone on a two-way
nested domain of 20.4 km cell resolution, covering east Asia and SRTR, respectively
(Figure 2). The simulation has 33 vertical layers up to 50 hPa and is driven by the European
Centre for Medium-Range Weather Forecasts Reanalysis (ERA) Interim, which has a reso-
lution of 0.75 degrees. The land surface static physiographic input is generated by WRF
Preprocessing Tools, in which the MODIS IGBP 21-category data is used to interpolate
land use categories. Soil data is from a comprehensive 30 arc-second resolution grided soil
characteristics data of China [67]. Grell-Devenyi [68] is selected as Cumulus parameter-
ization options in domain1, and the convection-permitting module is used for domain2.
The free-drainage approach [8,69] is selected as the lower boundary condition. A previ-
ous study shows that parameter calibration cannot resolve the deficiency of groundwater
table-based parameterizations in simulating runoff [62]. Other selected parameterization
schemes in this study are shown in Table S1 (in Supplementary Materials). The hindcast
simulation period is from 1 June 2018 to 30 November 2018, with the first 45 days for
warm-up and the rest for comparison. The reason for setting such a long warm-up time is
that 1.5 spin-up days are needed for precipitation, but a much more extended period is
necessary for discharge due to the influence of soil moisture [70].
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To investigate the influence of the WRF-Hydro extension, the coupled WRF-Hydro
model (WRF-H, hereafter) is set using the same parameters, driven by the same forcing
data in the same hindcast period with the WRF-Standalone model (WRF-S, hereafter),
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except the inner domain of WRF-H is coupled with a sub-grid at a 400-m resolution to
compute overland and river flow. The refined routing grids in the WRF-H extension are
created by WRF-Hydro GIS Pre-Processing Tools, Version5.1, with the aggregation set to 10.
The input elevation data is from the Shuttle Radar Topography Mission (SRTM), which has
a spatial resolution of 90 m [71]. The simulations start from 1 June using the same initial
and boundary conditions, and the data before 15 July are used for spin up.

3. Validation Data and Analysis Metrics
3.1. Validation Data

For model validation, in situ data were collected from three hydrological discharge
stations, two eddy covariance stations, and fourteen meteorological stations (Figure 1).
The primary information of the observation data is shown in Table 1, and the geograph-
ical coordinates of the stations are shown in Table 2. The runoff data was observed at
12:00 a.m. each day. Data periods are from July to November 2018. The Northwest In-
stitute of Eco-Environment and Resources, Chinese Academy of Science in SRTR, set up
two eddy-covariance systems to record the sensible and latent heat fluxes every 30 min.
Meteorological station data were supplied by the China Meteorological Administration
(CMA), and the observations were made at 0:00, 6:00, 12:00, and 18:00 UTC, and data were
processed as daily averages.

Table 1. Information of validation data, including China Meteorological Administration observation (CMA), Hydrologic
data, Eddy covariance data, Global the Precipitation Mission (GPM) level_3 IMERG final product, the Soil Moisture Active
Passive (SMAP) mission level-4 product, Global Land Evaporation Amsterdam Model (GLEAM), and China Meteorological
Forcing Dataset (CMFD).

Data Set Type Variable Spatial
Resolution

Time
Interval

CAM (China Meteorological
Administration

observation data)
in situ

Precipitation, surface skin temperature
and pressure, 2 m air temperature and

humidity, wind speed
point six-hourly

Hydrologic data in situ Discharge point daily
Eddy covariance in situ Heat flux point 30 min

GPM level_3 IMERG final remote sensing Precipitation 0.1◦ 30 min
SMAP level-4 remote sensing Soil moisture 9 km three-hourly

GLEAM remote sensing Evapotranspiration 0.25◦ daily
CMFD Fusion of reanalysis and in-situ data Air temperature at 2 m 0.1◦ three-hourly

In addition, the grided dataset in Table 1 is used for validation. The GPM level_3
IMERG final product [72] is the rainfall estimates combining data from all passive-microwave
instruments in the GPM constellation [73]. The Soil Moisture Active Passive (SMAP)
Mission is a satellite-based soil moisture product [74]. SMAP mission level-4 product
is a modeled product. Based on brightness temperature observations (SMAP L1C_TB),
it assimilates SMAP L1C_TB into the NASA catchment land surface model using a spatially
distributed ensemble Kalman filter [75,76], producing estimations of surface (0–5 cm)
and root zone (0–100 cm) soil moisture estimation. GLEAM (Global Land Evaporation
Amsterdam Model) is a set of algorithms [77] providing evapotranspiration and estimating
its components separately. The dataset of version 3.3b [78] is mainly based on satellite
data. The China Meteorological Forcing Dataset (CMFD) [79] is a gridded near-surface
meteorological dataset, which is made by fusion ground-based observations with several
gridded datasets from remote sensing and reanalysis. The CMFD dataset was only used
for verification in this study.
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Table 2. The coordinates of hydrographic stations (red pentagons in Figure 1), turbulent heat flux
stations (pink pentagrams in Figure 1), and China Meteorological Administration ground observation
(CMA) stations (black triangles in Figure 1).

Station ID Stations Latitude (◦ N) Longitude (◦ E) Elevation (m)

Runoff gauge1 Changdu 31.13 97.18 3306
Runoff gauge2 Tangnag 35.5 100.15 4989
Runoff gauge3 Zhimenda 33.01 97.25 3531

Eddy covariance1 Elinghu 34.91 97.55 4322
Eddy covariance2 Huahu 33.92 102.82 3432

CMA 1 Wudaoliang 35.22 93.08 4612
CMA 2 Tuotuohe 34.22 92.43 4533
CMA 3 Qumalai 34.13 95.78 4175
CMA 4 Zaduo 32.9 95.3 4066
CMA 5 Nangqian 32.2 96.48 3644
CMA 6 Chagndu 31.15 97.17 3306
CMA 7 Maduo 34.92 98.22 4272
CMA 8 Dari 33.75 99.65 3968
CMA 9 Guoluo 34.47 100.25 3719

CMA 10 Henan 34.73 101.6 3530
CMA 11 Maqu 34 102.08 3471
CMA 12 Jiuzhi 33.43 101.48 3629
CMA 13 Hongyuan 32.8 102.55 3492
CMA 14 Ruoergai 33.58 102.97 3440

GPM is reliable for rainfall and cold season solid precipitation estimates [80], making
it suitable for evaluating precipitation in SRTR [81–84]. Previous assessments evaluating
the SMAP against two soil moisture observation networks on TP showed that the SMAP
retrievals could well capture the amplitude and temporal variation of the soil moisture [85].
When atmospheric water balances, evapotranspiration was taken as the evapotranspiration
(ET) baseline, GLEAM matches low ET estimates, and errors are amplified when ET is
higher [86]. Previous studies showed that the surface air temperature downscaled from
CMFD is more accurate than ERA-interim data over the TP [87]. This dataset is used
for spatial validation after compensating for the deficiencies of the sparse observation of
CMA weather stations in western China and systematic bias of reanalysis/remote sensing
datasets [48].

3.2. Skill Metrics

The Pearson correlation coefficient (CC, range −1 to +1) and root mean square error
(RMSE, range 0 to ∞) evaluate the model simulation effectiveness against the in situ
observations or remote sensing data. In addition to RMSE, the Nash-Sutcliff Efficiency
(NSE, range −∞ to 1) is used in runoff assessment. The formula of the criterion at a given
site or grid point is:

CC =
cov(Vobs, Vmod)

σobsσmod
(1)

RMSE =

√
1
n

n

∑
i=1

(
Vi

mod −Vi
obs
)2 (2)

NSE = 1− ∑n
i=1
(
Vi

mod −Vi
obs
)2

∑n
i=1
(
Vi

mod − µobs
)2 (3)

where Vobs and Vmod denote the observation and simulation values. cov(Vobs, Vmod) is the
covariance of Vobs and Vmod. σobs and σmod are the standard deviation of the observation and
simulation. µobs is the average value of the observation. Vi

obs and Vi
mod are the observation

and simulation of the ith time step. In addition, Taylor diagrams providing summary
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statistics of CC, RMSE and standard deviation (SD) were used for model performance
analysis [88].

The t-statistic tests the statistical significance of the linear correlation coefficient:

t =
r
√

n− 2√
1− r2

(4)

where r is the linear correlation coefficient, n is the sample size. The significance level in
this study is set at 95%.

Uncentered anomaly correlation coefficient (a number range 0 to 1) [89,90] is used in
the verification of spatial fields.

ACC =
∑M

m=1 y′mo′m√
∑M

m=1 (y
′
m)

2
∑M

m=1 (o
′
m)

2
(5)

where y′ and o′ are the departure of simulation and verifying data from a reference state at
each grid point (m).

The final metric is a quantitative method to study the precipitation frequency-intensity
structure proposed by [91]. In this method, two quantitative parameters are obtained by
fitting a double exponential function with the statistical results of the frequency of different
rainfall intensities. The equation is:

Fr(I) + 1 = exp
[

exp
(
α− 1

β
I
)]

(6)

where Fr(I) is the frequency when the precipitation intensity is in I (mm) categories. α and
β are the parameters we want. For the left and right sides of Equation (6), take two natural
logarithms at the same time to get:

ln(ln(Fr(I) + 1)) = α− 1
β

I (7)

That is to say, the double logarithm of the occurrence frequency of a certain precipita-
tion intensity is a linear function of precipitation intensity. Previous studies have shown
that the precipitation distribution of meteorological station observations, satellite remote
sensing, and numerical simulation obey this law well [92,93]. In this function, α and β are
related to weak and intense precipitation occurrence frequency, respectively. Numerical
simulations are associated with an increased frequency of light precipitation but decreased
frequency in heavy precipitation, resulting in a larger α and smaller β in simulation than
observation. [92].

4. Results
4.1. Streamflow Simulation

The performance of the runoff simulation was evaluated using the parameters ob-
tained from the calibration procedure in Section 3.2, i.e., Zmax = 50. The NSE of the source
region of the Yangtze, Lancang and Yellow rivers are 0.12, 0.19 and 0.36, respectively,
based on daily observations from hydrological stations (Figure 3). The effect of setting
Zmax to 50 is to take the overestimation of precipitation in the WRF-S and store it in the
conceptual groundwater bucket to keep the simulated streamflow close to the observa-
tions. Such results were consistent with the study in the eastern Alps [45], where after
parameter-calibrated that the bias in precipitation does not deteriorate the reproduction of
runoff discharges.

As the three river sources are interconnected, considering them as a whole reduces
errors in runoff simulation caused by the errors in the precipitation fall zone. This precipi-
tation fall zone error is generated by the GCM and introduced into the flow production
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simulation system by the precipitation as driving information. The simulated and observed
total flows of the three rivers are obtained by adding up the flows of Zhimenda, Changdu
and Tangnag. Then the Nash-Sutcliff Efficiency (NSE) and root mean square error (RMSE)
between simulation and observation of runoff in SRTR is 0.55 and 324.2 m s−1, respectively
(Figure 3d). This considerable improvement in NSE suggests that the overestimation of
precipitation by the GCM and the error in the precipitation fall zone are sources of error in
flow production.

Nevertheless, The WRF-Hydro produces high temporal resolution estimates of yield
flow with acceptable results. And it illustrates that the bias from meteorology is essentially
addressed through calibration. The accuracy of model simulations on the daily scale will
be further improved as the driving information error decreases due to more observations.
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Figure 3. Time series of observed and simulated (uncoupled WRF-Hydro) discharge of (a) Zhimenda station; (b) Changdu
station; (c) Tangnag station; (d) amount of three stations.

4.2. Comparison with In-Situ Observations
4.2.1. Comparison with CMA Data

As the first step toward evaluating the coupled WRF-Hydro modeling system’s per-
formance, we present comparisons between observed and simulated variables at fourteen
individual CMA stations in Figure 1. The compared variables are listed in Table 1. Simula-
tions in the WRF-S/WRF-H model grid nearest to the CMA stations are converted from
hourly data to daily for comparison with observations.

Taylor diagrams for different variables are shown in Figure 4. As thermodynamic
variables, both the air temperature and surface pressure are simulated with a slight standard
deviation. These two variables and surface skin temperature strongly correlate with
observations due to daily and seasonal variation. The simulated wind speed has shown
the worst correlation among all variables. The positions of the stations on the Taylor
map are essentially the same on the humidity map as they are on the precipitation map.
The precipitation RMSE between WRF-H/WRF-S and observations is mainly derived



Water 2021, 13, 3409 10 of 23

from the uncertainties in the model, forcing the heavily overestimated precipitation in
ERA-Interim over the TP [94]. In general, the simulation performance varies more between
observations than between models.
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Table 3 shows the average value of each variable for 14 stations. By comparison, all
six variables from WRF-H have a smaller RMSE than WRF-S, and five variables have a
better correlation with observations in WRF-H. WRF-H made an improvement of 13.48%
in RMSE and 8.31% in CC than WRF-S.

Table 3. Averaged Root-Mean-square Error (RMSE) and Correlation Coefficient (CC) between the measurements collected
from the 14 China Meteorological Administration (CMA) stations and the simulated near-surface and land surface meteoro-
logical variables for the period from 15 July 2009 to 30 November 2018. The last column is the number of sites that passed
the significance test across the 14 observatories.

Variables
RMSE CC Number of Sites

WRF-H WRF-S WRF-H WRF-S WRF-H WRF-S

Precipitation (mm) 5.9 6.1 0.33 0.23 13 11
Air temperature at 2 m (k) 3.1 3.2 0.97 0.97 14 14

Surface skin temperature (k) 6.8 7.0 0.91 0.91 14 14
Surface pressure (hPa) 15.7 15.8 0.91 0.91 14 14
Relative humidity (%) 15.7 15.7 0.6 0.59 14 14

Wind speed (ms−1) 1.0 1.1 0.29 0.28 12 12
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4.2.2. Comparison with Turbulent Heat Flux Observation

We also evaluated the WRF-H/WRF-S simulations against turbulent flux measure-
ments shown in Figure 1. Table 4 shows the mean RMS error and CC in all comparison
periods. All correlation coefficients in the table pass the significance test with a confidence
level of 95%. The result at Elinghu shows that WRF-H simulates a larger CC than the WRF-S
in both latent and sensible heat flux. For RMSE, the WRF-H and WRF-S are superior to each
other in the simulation of sensible heat flux and latent heat flux. The simulation of WRF-H
increases RMSE by 15.91 Wm−2 for the latent heat flux and reduces it by 23.77 Wm−2 for
sensible heat flux. In contrast to the Elinghu station, the WRF-H simulates a smaller RMSE
than WRF-S in both latent and sensible heat flux but a larger CC for latent heat simulations
and smaller CC for sensible heat simulations.

Table 4. Root-Mean-Square Error (RMSE) and correlation coefficient (CC) computed between WRF-
Hydro/WRF and observation from 15 July to 30 November 2018, where the correlation coefficient
passed the significance test.

Stations Variables
RMSE CC

WRF-H WRF-S WRF-H WRF-S

Elinghu LH 55.7 39.8 0.75 0.74
HFX 45.9 69.7 0.76 0.74

Huahu
LH 77.4 80.4 0.73 0.72

HFX 67.9 74.4 0.78 0.79

4.3. Pattern Difference and Time Variation
4.3.1. Spatial Validation

Figure 5 shows the CC and RMSE distribution of soil moisture, evaporation, and
air temperature at 2 m against the remote sensing or reanalysis data from 15 July to
30 November. The simulations and validation data are processed as daily averages to avoid
the daily cycle dominating the evaluation measure. And bilinear interpolation in space
was performed for the simulations to match with the validation data.

When comparing the soil moisture, WRF-H exhibits a lower correlation and a larger
RMSE than WRF-S in most areas, especially in the west part of SRTR (Figure 5a–d). Due to
the wetter soil moisture simulation, more evapotranspiration was simulated by WRF-H.
Result in a slightly low CC and high RMSE simulated by WRF-H than WRF-S (Figure 5e–h).
But the WRF-H exhibits advantages in simulation temperature at 2 m, with lower RMSE at
the same CC. From the spatial distribution of soil moisture and evaporation, the simulations
are similar in the eastern part of the Three Rivers. In contrast, the simulation of WRF-H is
worse than WRF-S in the central and western regions.

After spatial validation, WRF-Hydro improved the simulation of temperature and
deteriorated the humidity and evapotranspiration. The WRF-Hydro does not show the
advantages in space scale as it does at the point scale. It is probably because the CMA
stations were built in the more inhabitable areas of the plateau, such as in the valleys.
These places are usually crossed by rivers and have a high soil moisture content. And these
wetter areas cannot be resolved by GLEAM data at 0.25◦ resolution but can be identified
by the 4 km WRF-Hydro model.
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The anomaly correlation is convenient to detect similarities in the patterns of de-
partures. And it avoids the influence of bias in the grid-based validations as they are
essentially a modeled product. Figure 6a illustrates that WRF-H exhibits a higher anomaly
correlation coefficient (0.955 versus 0.941). They reflect the spatial distribution of soil
moisture improvements due to lateral soil water flow simulated by WRF-Hydro. Models
that do not incorporate this process may lack the ability to reproduce anomaly patterns of
soil moisture. Figure 6b,c show that the anomaly correlation coefficient scores achieved by
WRF-H and WRF-S were close, and scores will be lower in winter. Soil water lateral flow
has little effect on evapotranspiration and 2 m air temperature patterns.
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Figure 6. Anomaly correlation coefficients of (a) soil moisture against SMAP, (b) evapotranspiration
against GLEAM, (c) air temperature at 2 m against CMFD.

4.3.2. Spatial Distribution

Figure 7 compares the total precipitation, average soil moisture, latent heat and
sensible heat fluxes simulated by WRF-H and WRF-S. The spatial distribution of the two
sets of the models is similar (Figure 7a,b). The difference (Figure 7c) is prominent in
local areas but small when averaged across the region, consistent with other study [43].
The characteristics of the soil moisture, in contrast, are opposite to the spatial distribution
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of precipitation. WRF-H spatially overestimates soil moisture throughout the SRTR and,
more significantly, in the northern part of the SRTR (Figure 7f). The result is that WRF-S
simulates soil moisture as wet in the southeast and dry in the northwest (Figure 7e), while
WRF-H will hamper such a spatial distribution feature (Figure 7d).
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period. (d–f), (g–i) and (j–l) are the same as (a–c), but for averaged soil moisture (0~10 cm), averaged latent heat flux and
sensible heat flux, respectively.

The spatial distribution of latent heat has the same characteristics as soil moisture
(Figure 7g–i), while the sensible heat flux is the opposite (Figure 7j–l). Changes in the
distribution of sensible and latent heat fluxes affect the boundary layer development and
influence the precipitation structure. Overall, the pattern of spatial changes in soil moisture,
sensible and latent heat flux is quite similar. The temporal variation will be analyzed next.

4.3.3. Time Variation

Figure 8 demonstrates simulated daily variable averages on the TRSR from 15 July
to 30 November. Although the precipitations from both models match over the entire
analysis period, the soil moisture simulated by WRF-H is more humid than WRF-S during
the analysis period. Latent and sensible heat flux declines with seasonal changes, and even
negative values emerge in sensible heat flux. The heat fluxes in the Tibetan Plateau are
more susceptible to the freeze-thaw process than the high-latitude frozen soil regions [95].
The latent heat flux simulated by WRF-H is greater than WRF-S before the soil freezes,
but the sensible heat flux is more petite than WRF-S. After the soil is frozen, WRF-H
coincides with the curve of the WRF-S simulation. Due to the energy balance, the surface
skin temperature simulation also showed differences before freezing.
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The albedo map shows that the two models’ albedo is relatively stable in summer
and dramatic in autumn and winter. The steady increase of albedo in summer is caused
by the decrease in soil moisture and phenology. The change in albedo due to inconsistent
precipitation simulation time is small—the accumulation and sublimation of snowfall cause
the fluctuated albedo. In September, due to differences in surface temperature simulations,
the albedo of the WRF-H is higher than the WRF-S, then the albedo of the two models
coincide as the temperature difference decreases.

WRF-H is more consistent with the WRF-S in winter because of the weakening of
overland flow and subsurface lateral flow. The decrease of soil hydraulic conductivity of
frozen soil reduced the subsurface flow. Furthermore, most winter precipitation falls to
the ground in snowfall and dissipates through sublimation, rarely infiltrating into the soil
layer. The snowmelt will contribute to discharges mainly during the rainy and peak flow
periods [70].
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4.4. Precipitation Structure and Boundary Layer Variables
4.4.1. Precipitation Frequency-Intensity Structure

Figure 9 shows the fitting results of GPM precipitation, WRF-H, and WRF-S. The circle
points represent the natural double pairs with different rainfall intensities, and the straight
lines represent the fitted curves. The simulations of WRF-H and WRF-S are similar, but
WRF-H is slightly closer to the GPM. According to Equation (7), the fitted α is 2.39, 2.74
and 2.8, and the fitted β is 26.63, 9.9 and 9.12 for GPM, WRF-H and WRF-S, respectively.
The difference between simulation and GPM, WRF-H is reduced by 15% compared to
WRF-S in a and β is reduced by 5%. The fitting results show that soil water lateral flow in
WRF-H makes the frequency-intensity structure closer to the observation. Since convective-
permitting is used in both models, the boundary layer that triggers convection needs to be
further evaluated.
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Figure 9. The precipitation frequency over the SRTR is binned by the hourly intensity and its double
exponential fit line.

4.4.2. Boundary Layer Variables

In Figure 10a, WRF-H shows a higher convective available potential energy (CAPE)in
most of the unfreezing period, and also that coupling hydrology processes make convec-
tional energy more readily available in SRTR. The amplitude of convective inhibition (CIN)
did not change in the unfreezing or freezing period between the two simulations. WRF-H
exhibits a slightly lower lifting condensation level (LCL) in most of the unfrozen period,
indicating a low cloud base. The level of free convection (LFC) fluctuates violently in the
unfrozen season but becomes stable when it uplifts to the top of model layers in the frozen
season. The improvement of precipitation structure is mainly attributed to the increase of
CAPE caused by wetter soil.
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5. Discussion

We evaluated the runoff simulation skills of uncoupled WRF-Hydro and the effect of
lateral flow of soil water on the atmosphere by an enhanced fully coupled WRF-Hydro
model in SRTR. This is one of the earliest studies using WRF-Hydro in the SRTR, which is
located on the Tibetan Plateau and is an important watershed for ecological conservation
and water management in China. The results reveal the following main conclusions:

1. The reproduction of the daily discharge amount of the three stations has a Nash-
Sutcliffe model efficiency generally above 0.55, demonstrating the potential of WRF-
Hydro for hydrological forecasting in SRTR.

2. In the coupled experiment, WRF-Hydro made an improvement of 13.48% in RMSE
and 8.31% in CC above WRF-ARW when compared against CMA data, and an
improvement of 6.6% in RMSE and 1% in CC when compared against turbulent
heat fluxes observation. WRF-Hydro tends to overestimate the soil moisture of the
western part of the SRTR, but less so in the eastern part and areas with wetter soil
moisture. This difference occurs mainly during the period when the soil is not frozen.
Although the root mean square error of WRF-Hydro is larger than that of WRF-ARW
compared against SMAP and GLEAM, WRF-Hydro scores higher in the anomaly



Water 2021, 13, 3409 18 of 23

correlation coefficient. These findings show the significance of lateral flow in soil
moisture simulation.

3. The coupled WRF-Hydro results in an increase in latent heat flux, a decrease in
sensible heat flux, and a decrease in soil surface temperature due to the moist soil.
The change in turbulent heat flux gives the WRF-Hydro simulation an enormous
CAPE and easier convection, reducing precipitation intensity-frequency errors.

The NSE of runoff in this study is not high, perhaps because the agility of WRF-Hydro
might be unnecessarily constrained by its complex process [96]. This is probably the
reason that NSE is low in some watersheds in similar studies [97–100]. The calibrated
model parameters (Zmax = 50) in this study are to offset the impact of continuously exces-
sive precipitation on runoff production. The extra precipitation stored in the conceptual
groundwater bucket during the simulation period will deteriorate runoff simulation in
the next period, for the discharge of baseflow will increase the runoff in winter. If the
simulation time is increased and the accumulated precipitation overestimation is large
enough, then the WRF-Hydro cannot obtain an accurate runoff through calibration and the
NSE will decrease as a result. It suggests that the output of the GCM is not recommended
as a driver for multi-year runoff hindcasting in SRTR. Accurate precipitation-driven data,
such as CMFD, is necessary for such simulation. However, using Zmax = 50 does not
worsen the coupled simulation, as the parameter does not affect soil moisture and cannot
further influence weather processes.

The lateral flow from WRF-Hydro leads to wetter soils in the SRTR, similar to the semi-
arid environment in the USA [101]. For areas where WRF-Hydro tends to overestimate
the soil moisture, it is recommended to calibrate the parameters affecting soil moisture
simulation, such as the reference infiltration factor (REFKDT). This study did not calibrate
soil moisture because the calibrated parameters could artificially lead to better simulation
results for one variable than the other.

The limitations of the study are mainly threefold. First, the overestimation of GCM
precipitation in SRTR [102] resulted in its inability to be used as a force to simulate multi-
year runoff. Secondly, although the soil texture dataset [67] has the highest resolution in
China right now, the small number of sampling points on SRTR leads to a larger uncertainty
in soil texture than in other regions in China. Thirdly, the CMA station was established in
a habitable place on the plateau. These areas tend to be low-lying, with moist soils and
rivers passing through them. This means that the stations are located where the lateral
flow of soil water flows in, not out. More observations are needed where lateral soil water
flows out.

The low but acceptable NSE of runoff simulation in the study shows the potential
of WRF-hydro in the hydrological simulation of the SRTR. Meanwhile, the high anomaly
correlation coefficient scores achieved by WRF-Hydro in soil moisture simulations, as well
as the closer to observed precipitation intensity-frequency structure, suggest that the WRF-
Hydro module is worthy of being incorporated in convective-scale simulations. Reducing
the precipitation overestimation of the GCM in SRTR is urgently needed for the future
application of the coupled WRF-Hydro model in SRST.

6. Conclusions

In the present study, we set up two sets of experiments to investigate the prospects
of WRF-Hydro in the hydrological forecasting and its impacts on land-atmosphere inter-
action of SRTR. Results reveal the WRF-Hydro has shown potential in runoff prediction
in SRTR. Coupled WRF-Hydro with soil water lateral flow increases wet soil bias in the
western part of the SRTR, but improves the soil moisture anomaly pattern. The coupled
model also enhances CAPE, and produces a more reliable precipitation intensity-frequency
structure. Overall, our results illustrate the effect of WRF-Hydro in the coupled hydrology-
atmosphere simulation system. GCM with less overestimation of precipitation in SRTR to
drive coupled WRF-Hydro is desirable for future work.
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