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Abstract 

It has been shown that the changes in global terrestrial water storage (TWS) are strongly linked 
to the teleconnections (TCs) that induce large-scale climate variations. However, the 
contributions of the different TCs to global changes of TWS and its components (water storage 
components, WSCs) remain undetermined. To fill this gap, we systematically assess the 
relationships between six major ocean-related TCs and different WSCs derived from the 
Gravity Recovery and Climate Experiment (GRACE) mission and hydrological models under 
different timescales. Additionally, the interrelationships of the TCs are also analyzed via the 
independent component analysis for further investigation. The results allow an improved 
understanding of the hydrometeorological process controlling WSC changes. Specifically, the 
annual timescale analysis can constrain high-frequency noises and retain the informative 
fluctuations of WSC residuals. ENSO and AMO are found to be the two most dominant TCs 
controlling the variations of WSCs globally. TWS and groundwater storage (GWS) are the two 
WSCs most correlated with the dominant TCs. The WSCs at shallow depths, which are largely 
affected by strongly hysteretic controls of TCs, are more closely linked to the TCs with many 
high-frequency components that tend to have weak hysteresis on WSCs. As for the 
interrelationships of TCs, the independent component, which is highly correlated with all six 
TCs, has a predominant influence on WSCs. 
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Introduction 

As a fundamental component of the terrestrial hydrological cycle, terrestrial water storage 
(TWS) includes many subcomponents like water in lakes, soil, and aquifers (Scanlon et 
al. 2018). The inter-annual and decadal climate variability caused by large-scale ocean-
atmosphere teleconnections (TCs) is an overwhelming non-negligible factor affecting regional 
water resources, modulating the location and strength of storm tracks and fluxes of heat, 
moisture, and momentum (Chen et al. 2021b; Ni et al. 2018; Oñate-Valdivieso et al. 2020). 
The changes in TWS and its components (water storage components, WSC) due to TCs have 
important implications for assessing climate variability, food security, water and energy use, 
and drought/flood risk (Guo et al. 2019). 

Traditional estimation of TWS change has been mainly conducted in two ways (Ni et al. 2018): 
using the water balance method and summing all WSCs. It is a cumbersome process, requiring 
large observational data or sophisticated models (Han et al. 2019). Alternatively, the Gravity 
Recovery and Climate Experiment (GRACE) has provided unprecedented global TWS change 
observations since its launch in 2002. With improved data quality and more than a decade of 
observations, GRACE TWS has been widely used for assessing the impacts of climate change 
on regional and global water resources as well as carbon cycle (Banerjee and Kumar 2018; Nie 
et al. 2018; Humphrey et al. 2018; Thomas and Famiglietti 2019). 

Many studies have analyzed the relationships between GRACE TWS and TCs. The impacts of 
TCs on TWS changes in specific regions (e.g., Yunnan Province (Han et al. 2019)), river basins 
(e.g., major Indian river basins (Soni and Syed 2015), Yangtze River (Zhang et al. 2015)) and 
types of river basins (e.g., endorheic basins (Wang et al. 2018)) have been studied. However, 
a regional evaluation may experience bias in calculating the region-averaged TWS when 
different drying and wetting trends exist in a given region (Liu et al. 2020; Sun et al. 2018). 
Besides, previous studies examined TWS dynamics at specific time scales (Liu et al. 2020; 
Phillips et al. 2012), which may be affected by the high-frequency noise in the dynamics and 
ignoring the various performances over multiple-time scales. As for the grid-based or site-
based analyses, many studies only focused on single TC globally (e.g., grid-based analysis for 
El Niño–Southern Oscillation (ENSO) (Ni et al. 2018; Phillips et al. 2012)) or some TCs 
regionally (e.g., grid-based studies in Australia (García-García et al. 2011), West Africa 
(Ndehedehe et al. 2017) and the Asian and eastern European regions (Liu et al. 2020) and 
Africa (Anyah et al. 2018)). To the best of our knowledge, only Guo et al. (2021) investigated 
the relationships between global TWS and multiple TCs. However, it remain unclear which 
WSCs are most correlated with the dominant TCs. The impacts of more TC factors on global 
WSCs need to be comprehensively analyzed due to the differences in their properties and 
interrelationships of TCs and WSCs, which would be helpful for understanding and predicting 
water resource changes (Kennedy et al. 2009). When considering the relationships between 
TCs and WSCs, direct or trend-remained cross-correlation analyses are often used (Anyah et 
al. 2018; Han et al. 2019; Soni and Syed 2015). However, the results may be affected by human 
activity and long-term climate change since they contribute to the change in trends instead of 

https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR33
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR4
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR25
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR27
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR10
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR25
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR11
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR2
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR26
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR14
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR37
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR11
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR34
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR43
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR38
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR20
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR35
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR20
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR28
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR25
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR28
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR7
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR24
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR20
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR1
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR9
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR17
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR1
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR11
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR34


interannual climate variability (Liu et al. 2020; Phillips et al. 2012; Scanlon et al. 2016; Wang 
et al. 2018). 

The main novelty of our study is to fill the gap of existing research via the use of several signal 
processing methods to suppress the irrelevant factors and identify the unique relationships 
between the different hydrological WSCs and TCs for a better understanding of large-scale 
hydrometeorological processes. To this end, the study decomposes the different WSC time 
series derived from GRACE observations and model simulations via the Seasonal-Trend 
Decomposition by Loess (STL) method. We systematically examine the influences of TC 
factors on WSC residuals by considering multiple ocean-related TC factors (i.e., North Atlantic 
Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), ENSO, Pacific Decadal 
Oscillation (PDO), Arctic Oscillation (AO), Indian Ocean Dipole (IOD)) and determine 
possible dominant TCs and WSCs most correlated with the dominant TCs. Additionally, their 
relationships under different time scales via the moving-average method are investigated to 
find the best appropriate data processing. Subsequently, a higher-order statistical method of 
independent component analysis (ICA (Anyah et al. 2018)) is applied to filter the 
interrelationships among the six TCs and isolate any unique or combined influences of these 
indices on WSCs (e.g., ENSO and PDO (Girishkumar et al. 2015)), which is helpful for us to 
identify unique regions strongly affected by such relationships (Anyah et al. 2018). 

In the following sections, we first describe the datasets used in Sect. 2. The methods and data 
processing steps are described next in Sect. 3. We then exhibit the results in Sect. 4. The 
uncertainties and limitations of this study are discussed in Sect. 5. The conclusions are finally 
summarized in Sect. 6. 

Datasets 

Six WSC datasets and six major ocean-related TCs are used in the study. Table 1 lists the types 
and sources of data used. Their detailed information is described below. We exclude the 
contribution of Antarctica since it is not included in the hydrological and land surface model 
outputs. 

Table 1 List of the main data sets used in this study 
 

Data type Data source 
Water storage component:  
TWS JPL RL06 mascon v2 
SWS WGHM v2.2d 
SnWS CLSM 2.1 and WGHM v2.2d 
PCW CLSM 2.1 and WGHM v2.2d 
RZSM CLSM 2.1 and WGHM v2.2d 
GWS CLSM 2.1 and WGHM v2.2d 
Teleconnection:  
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NAO NOAA 
ENSO NOAA 
PDO NOAA 
AO NOAA 
AMO NOAA 
IOD NOAA 

*The above Acronyms can refer to List of Acronyms. 
 
 

GRACE-derived Terrestrial Water Storage (TWS) 
The RL06 GRACE monthly solutions based on regional mass concentration (mascon) 
functions provided by the Jet Propulsion Laboratory (JPL), USA with 0.5° resolution are used 
in this study, as in Sun et al. (2020). Scanlon et al. (2016) suggested that the performance of 
GRACE mascons in 176 global basins is not worse than traditional-scaled spherical harmonics. 
Capturing all the signals observed by GRACE within the measurement noise level, TWS is 
given in equivalent water thickness. The study period is between April 2002 and December 
2016 (i.e., 177 epochs with a linear interception (Liu et al. 2020; Long et al. 2015; Yang et 
al. 2017)). 

Other Water Storage Components (WSCs) From Model Outputs 
The WaterGAP Global Hydrology Model (WGHM, v2.2d) (Müller Schmied et al. 2020) 
simulates many kinds of WSCs (e.g., surface, soil and groundwater) and considers some 
anthropogenic influences (e.g., human water use) on them. WGHM has a qualitatively 
reasonable performance to describe global-scale water resources (Hu et al. 2021). As a kind of 
GLDAS-2.1 product, the catchment land surface model (CLSM) simulates the shallow 
groundwater and has been upgraded by initializing soil moisture over desert (Xia et al. 2019). 
In this study, we use WGHM (0.5 degree and one month) to derive the surface water storage 
(SWS) and use CLSM (1 degree and one month) and WGHM to derive snow water storage 
(SnWS), plant canopy water (PCW), root zone soil moisture (RZSM) and groundwater storage 
(GWS), as in Hu et al. (2021). 

Teleconnections (TCs) 
In this work, we use six important atmosphere-ocean coupled TCs, including ENSO, NAO, 
AMO, AO, PDO and IOD. They characterize patterns of coupled atmosphere-ocean variability 
in different anomaly centers and may be modulated by each other (Girishkumar et al. 2015; 
Guo et al. 2021; Saji and Yamagata 2003). Their detailed information is described in 
the Supplementary Material. 

Methods 
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The methodology flow diagram in Fig. 1 exhibits the primary steps of data processing. First, 
we derived different WSCs (i.e., TWS, SWS, SnWS, PCW, RZSM and GWS) from different 
sources (i.e., GRACE JPL RL06 mascon, WGHM and CLSM) with a consistent temporal-
spatial resolution (i.e., 0.5 degree and one month) via the linear interpolation and resampling 
methods. Second, the residuals of WSCs are obtained via the STL method. Third, the residuals 
are filtered via the moving average method for multi-timescale analyses. Fourth, we conduct 
the cross-correlation analyses between the residuals and TCs as well as their independent 
components (ICs) via the ICA method. The main methods used are described below. 

Fig. 1

 
Methodology flowchart of data processing in this study 

 

Time Series Decomposition: Seasonal-trend Decomposition by Loess (STL) 
Method 
We decompose an original WSC signal into three parts: a long-term trend, a seasonal 
component, and a residual component via the STL approach (Cleveland et al. 1990), which is 
a robust method to decompose time series and can be described as follows: 

 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑆𝑆𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑅𝑅  
(1) 
 

where 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑆𝑆𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 and 𝑅𝑅𝑅𝑅 represent the original time series, the long-term trend, 
the seasonal and residual components. The setting of necessary parameters in this study can be 
found in the Supplementary Material. 
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Independent Component Analysis 
The ICA technique (Hyvärinen et al. 2001) uses the higher-order statistical indicators (higher 
than second-order mutual statistical information, e.g., principal component analysis) to extract 
modes that are statistically mutually as independent as possible from TCs. 

In the ICA model, the data matrix O (M×E) of the raw TCs is assumed to be a linear 
combination of some unknown latent variables represented as the original signal 
matrix S (P×E), which can be shown as, 

  
(2) 
 

where the mixing matrix A (M×P) describes the linear transformation from S to O, M denotes 
the number of raw TCs, E is the number of epochs, P is the number of the derived latent source 
signal. Each IC (1×E) in the original signal matrix S has its weight vector a (M×1) in the 
mixing matrix A. The original signals can be derived via the inverse of the mixing 
matrix A (i.e., the unmixing matrix W (P×M)). It is the key step to find such A or W to 
generate original signals as statistically independent as possible. In this study, the ICA 
algorithm proposed by Hyvärinen and Oja (2000) is used. 

Cross-correlation Analysis 
In this study, we analyze the cross-correlation between the WSC residuals and TCs with the 
consideration of time lag since climate changes generally lead to hydrological changes (Liu et 
al. 2020). The cross-correlation measures the strength and direction of a linear relationship 
between the two time series, and it has been used in many hydrology studies (e.g., Krishan et 
al. (2014)). The correlation coefficient can be calculated as follows: 

  (3) 
 

where 𝑉𝑉𝑉𝑉𝑉𝑉12(𝜏𝜏) is the covariance between the leading TC and the lagging WSC, ττ is the lag, 
and 𝑉𝑉𝑉𝑉𝑉𝑉11(𝜏𝜏) and 𝑉𝑉𝑉𝑉𝑉𝑉22(𝜏𝜏)represent the variances of TC and WSC, respectively. Only the 
historical and current influence of TCs on the WSC residuals are considered; therefore, the 
values of lag 𝜏𝜏 range between 0 and 24 months (Liu et al. 2020; Ni et al. 2018). In each study 
site, we calculate the correlation between the different combinations of TCs and WSCs. The 
TC and WSC with the maximum absolute value are termed as the dominant TC and the 
dominant WSC, respectively. 

Results 

Relationships Under Different Timescales Via Moving Average 
Figure 2 shows that the modes of distributions of maximum correlation coefficients gradually 
go away from the y-axis as the size of the moving average window increases. However, the 
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amplitudes of the increase are large between 1 month and 12 months and become small between 
12 months and 60 months. The high-frequency noises of a time series can be filtered out via 
moving average, while moving average with excessively large sliding periods can result in over 
smoothed data since the relatively high-frequency components that include valuable 
information may get lost. Therefore, a moving average with a 12-month window is selected for 
this study. 

Spatial Patterns of Links Between TCs and WSCs 
The spatial distributions of cross-correlation analyses between TCs and WSCs are shown in 
Fig. 3a–d. The corresponding basin-average results can be found in Fig. S1 of 
the Supplementary Material. The general spatial patterns at the basin scale are similar, 
especially at low latitudes. However, some spatial heterogeneities in the sub-basins are 
overlooked in the basin-average analyses. Besides, the areas of the dominant SnWS mainly 
distribute in the Northern Hemisphere. The areas of the dominant TWS and GWS mainly exist 
in the low- and mid-latitude (i.e., 40° to -40°) (Fig. 3a). The dominant ENSO and AMO are 
distributed in wide areas. The negative relationships are mainly distributed in the northern part 
of South America, southern Africa, and western Europe. The positive correlations are mainly 
distributed in North America, the southern part of South America, northern Africa, and a major 
part of Asia (Fig. 3d). 

Fig. 2 

 
The probability distributions of maximum correlation coefficients via different months 
of moving average 
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Fig. 3

 
Cross-correlation analyses between TCs and WSCs: Spatial patterns of (a) dominant 
WSC; (b) TC lags; (c) dominant TC; (d) maximum correlation coefficients (significant 
threshold: |r|>~0.15 given p < 0.05) and the fractions of grids of (e) dominant WSCs; 
(f) lags; (g) dominant TCs and (h) maximum correlation coefficients. The gray dashed 
line in (a)~(d) denotes the Equator 

 

Statistical Results of the Cross-correlation Analyses 
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The statistical results of the cross-correlation analyses are shown in Fig. 3e–h. The two 
dominant WSCs are TWS and GWS, which account for 36.06% and 25.13% of the total 
dominant WSC distribution, respectively. The lag distribution is concentrated around five 
months. The two most dominant TCs are ENSO and AMO (i.e., 61.65% and 20.46%), 
especially for ENSO, which is also consistent with maximum absolute correlation coefficient 
averages among different TCs (i.e., ENSO (r=0.44), AMO (r=0.39)). Besides, in general, more 
significant negative correlation coefficients (i.e., r=-0.4219 and 0.4060 for negative and 
positive correlation coefficients, respectively) are found. 

For the lag analyses, the most significant relationships between TCs and WSCs in many areas 
have the 24-month lag (Fig. 3b). It is reasonable since many potential larger lags (greater than 
24 months) in the cross-correlation analyses may be included in the 24-month lag. It is expected 
that a 24-month lag can be further divided into subgroups if we are interested. The following 
analysis in detail similar results also confirms this point. 

To further investigate the relationships between WSCs and TCs, we reanalyze the results in 
Fig. 3e-g. Fractions of grids of the dominant WSCs under different dominant TCs are shown 
in Fig. S4a. Based on Fig. S4a, SWS is most affected by NAO (i.e., 29.71%, 13.34%, 12.70%, 
15.63%, 10.35% and 11.49% for NAO, ENSO, PDO, AO, AMO, IOD, respectively), which is 
not revealed in the general characteristics presented in Fig. 3g. Among the different dominant 
TCs, AMO, PDO and ENSO generally have higher fractions that strongly affect TWS and 
GWS. In contrast, NAO, IOD and AO generally have higher fractions that dominate SWS, 
PCW and RZSM. Figure S3 shows that NAO, AO, and IOD have more high-frequency 
components than ENSO, AMO and PDO. In addition, from SWS, PCW, RZSM to GWS/TWS, 
the average depths of WSCs generally increase. It exhibits a certain correlation between the 
depths of the dominant WSCs and the frequency components of the dominant TCs. However, 
the performance is not consistent for SnWS that has a relatively shallow depth. It indicates the 
influences of other factors like locations of anomaly centers of TCs since areas of the dominant 
SnWS are mainly in the Northern Hemisphere. 

Like Fig. 3f, the lag distributions of different groups generally have two prominent modes 
(Fig. S4b–m). Figure S4b–g shows the lag distributions under different dominant TCs. The 
central tendencies of lag distributions of the dominant ENSO, AO, IOD, NAO are smaller, 
while the dominant PDO and AMO have larger central tendencies, especially for PDO. It 
indicates that the lags are related to the frequency components of TCs to some degree, 
considering that the TCs in the former have more high-frequency components than the latter. 

Figure S4h–m shows that the lag distributions of dominant TWS and GWS are mainly 
concentrated at relatively small number of months, while other WSCs have higher fractions of 
large lags. The dominant WSCs at relatively shallow depths (i.e., SWS, SnWS, RZSM, PCW) 
are dominated by many large-lag controls from TCs since they are susceptible to TCs and hence 
can retain long-lasting influences of TCs suffering from the amplitude decay due to the long-
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distance transmission. The small fractions of areas of the dominant SWS, SnWS, RZSM and 
PCW in Fig. 3e could be caused mainly by their relatively small or unstable storage values. 

Influence of Independent Components of TCs Indices on WSCs 
The ICA technique is applied to the TCs in order to explore the potential links between WSCs 
and specific or combined global TCs (as in Anyah et al. 2018) and to avoid the influence of the 
interdependencies among multiple TCs (Liu et al. 2020; Runge et al. 2019), e.g., ENSO and 
PDO (Girishkumar et al. 2015), AO and NAO (Guo et al. 2021). The time series of the four 
leading independent components (ICs) are retained (the details of processing is given in 
the Supplementary Material), which are highly related with ENSO and PDO (ENSO+PDO), 
NAO and AO and AMO (NAO+AO+AMO), IOD, all TCs (COMMON), respectively. The 
results demonstrate the uniqueness of IOD and the existence of some interdependency among 
the different TCs. 

Figure 4a–d shows the spatial patterns of dominant WSCs, lags, and correlations via ICA. They 
are similar to those obtained from direct cross-correlation analysis (Fig. 3a–d), which 
demonstrates the robustness of the results about response of WSCs to TCs. As for the spatial 
distribution of the dominant TC ICs, the dominant COMMON-related IC covers the largest 
areas, indicating the significant influence of the common feature of the six TCs. Other TC ICs 
also perform significantly different spatial patterns (e.g., the wide areas dominated by the IOD-
related IC). The results reveal the unique properties of TC ICs. 

Compared with the statistical results in Figs. 3e–h and 4e–h exhibits similar results of the 
dominant WSCs (i.e., 33.64% and 23.51% for TWS and GWS, respectively). However, the 
second peak corresponds to a larger lag (at around 16 months) and a greater fraction, indicating 
stronger hysteresis via TC ICs. In addition, a slightly higher occurrence of negative correlation 
is also found (i.e., 51.78% for TC ICs and 47.26% for TCs). Significant differences between 
the results for TC ICs and TCs exist in the dominant TC-related variables. The dominant 
COMMON affects the greatest fraction of areas (i.e., 65.34%), while the dominant 
ENSO+PDO affects the least fraction of areas (i.e., 2.79%). Compared with the large areas of 
the dominant ENSO in Fig. 3c, g, it further demonstrates the unique properties of 
interrelationships of TCs and significant influences from the common feature of all six TCs on 
WSCs. 

 

https://link.springer.com/article/10.1007/s11269-021-03015-x#Fig3
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR1
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR20
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR30
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR8
https://link.springer.com/article/10.1007/s11269-021-03015-x#ref-CR9
https://link.springer.com/article/10.1007/s11269-021-03015-x#MOESM1
https://link.springer.com/article/10.1007/s11269-021-03015-x#Fig4
https://link.springer.com/article/10.1007/s11269-021-03015-x#Fig3
https://link.springer.com/article/10.1007/s11269-021-03015-x#Fig3
https://link.springer.com/article/10.1007/s11269-021-03015-x#Fig4
https://link.springer.com/article/10.1007/s11269-021-03015-x#Fig3


Fig. 4

 
 
Cross-correlation analyses between between the independent components (ICs) of TCs 
and WSCs: spatial patterns of (a) dominant WSCs; (b) time lags; (c) dominant TC ICs; 
(d) maximum correlation coefficients (significant threshold: |r|>~0.15 given p = 0.05) 
and the fractions of grids of (a) dominant WSCs; (b) lags; (c) dominant TC ICs and (d) 
maximum correlation coefficients. The gray dashed line in (a)~(d) denotes the 
Equator 
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Discussion 

Results Compared with Previous Studies 
The results presented herein have some similarities to the findings given in previous reports. 
The areas near the Equator (known as the intertropical convergence zone (ITCZ)) have strong 
maximum absolute correlation coefficients and weak lags (Ni et al. 2018). The dominant ENSO 
exists over large areas, e.g., Amazon Basin (Ni et al. 2018; Phillips et al. 2012), major India 
river basins (Soni and Syed 2015) and Yangtze River Basin (Zhang et al. 2015). There are also 
many areas dominated by AMO, like parts of China (Qian et al. 2014), West Africa 
(Ndehedehe et al. 2017), the middle of Australia, western South America (i.e., western Amazon 
Basin (Guo et al. 2021)). Significant spatial heterogeneity of the maximum correlation 
coefficients is found. Many IOD-dominated areas are distributed in the Indian Ocean rim 
regions where significant precipitation and temperature variability is related to IOD (Saji and 
Yamagata 2003). More negative correlations exist in tropical regions and Southern Hemisphere, 
similar to the report by Phillips et al. (2012) that there are strong negative correlations between 
TWS and ENSO. Besides, large fractions of areas with negative correlations are dominated by 
ENSO in Australia, which is consistent with Chen et al. (2021a) that reports strong La Niña 
induced Australia‐wide wetting. Greater control of ENSO on GWS across the USA (Kuss and 
Gurdak 2014) and the positive relationships between ENSO and TWS over Equatorial eastern 
Africa (Anyah et al. 2018) are also found. Besides, there are large COMMON-dominated areas 
with positive/negative correlations in western/eastern Australia, which is similar to the seesaw 
phenomenon described by Chen et al. (2021a) (i.e., eastern Australia is gaining water, while 
western Australia is losing water, and vice versa). The small ENSO+PDO-dominated areas 
also support the conclusion in Guo et al. (2021). 

There are also some findings in our results that have not been reported in previous studies. For 
example, Liu et al. (2020) found that ENSO, AO and NAO are the three dominant factors 
controlling the variations of TWS over Asia and Eastern Europe. However, AO and NAO 
dominate only a small fraction of areas in our work. Several reasons are responsible for these 
differences. First, different components of TWS (i.e., WSCs) are considered in this study, while 
Liu et al. (2020) only considered TWS as a whole and also suggested a divergent response of 
hydrological components to TCs. Second, more regional TCs used in Liu et al. (2020) may 
mask the influences of six dominant TCs used in this study. Third, a newer version of JPL 
mascons is used in our studies, which provides more accurate TWS data. Fourth, moving 
average is not applied to smooth the residual series in Liu et al. (2020); hence some high-
frequency noise may affect the results. Besides, some other factors can also lead to different 
results. For example, focusing on TCs with anomaly centers close to the areas of interest, some 
studies (Han et al. 2019; Yao 2017; Zhang et al. 2015) neglect the influences of TCs with 
anomaly centers far away from the study areas, which may be the dominant factors based on 
our results. Limiting the number of lag months to a narrow range (Guo et al. 2021) could omit 
the second peak of lag distribution, although their first peak of lags is close to five months. In 
some studies, detrend and deseasonalization are not applied in the data-processing steps (e.g., 
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Anyah et al. 2018; Han et al. 2019; Soni and Syed 2015)—their results are prone to be affected 
by the long-term and seasonal signals of irrelevant factors (i.e., climate changes and human 
activities). 

Uncertainty and Limitation 
We note that there are sources of uncertainties and limitations of the current study. First, we 
acknowledge uncertainties (e.g., model structure error) in the estimates of the WSCs, especially 
for ones derived from global hydrological models (Scanlon et al. 2018). In situ observations of 
WSCs with high accuracy are expected to be used in future studies. The data from various 
sources might also be fused for quantifying the uncertainty of results (e.g., via the methods of 
difference (Fig. S2 in the Supplementary Material) and three-cornered hat (Long et al. 2017)). 

Intermediate variables (e.g., precipitation (Zhang et al. 2019) and evapotranspiration) and 
attributions of areas like vegetation coverage can be used to analyze mechanisms of TC 
influences on WSC variability. The impact of sunspot activities on TCs and WSCs (Han et 
al. 2019) should be further investigated. The relatively short data duration in this study (i.e., 15 
years) limits its utility to understand longer-term TC-WSC relationships and their changes over 
time, e.g., there are only few phase changes of AMO during the study period. 

As for the multi-period analysis, the moving average method can provide only an 
approximation to the real-world situation (Hassani et al. 2013) due to its assumption on the 
stationarity for the data, linearity for the model and normality for the residuals. Therefore, a 
method that does not depend on these assumptions, such as singular spectrum analysis, could 
be beneficial for further analyses (Colebrook 1978). 

Conclusions 

In this study, we systematically analyze the relationships between TCs and WSCs using cross-
correlation analysis. WSC residuals are derived via the STL method and then filtered via the 
moving average method with different time windows. The influence of the various independent 
features of TCs is also revealed via the ICA method. The major conclusions drawn from this 
study are summarized as follows: 

1. A yearly moving average is appropriate for constraining high-frequency noises and 
retaining informative fluctuations of WSC signals. The areas of dominant TWS and 
GWS are mainly in the low- or mid-latitude. Tropical and subtropical regions have the 
strongest correlations and a relatively small lag as for the response of WSCs to TCs. 
The areas dominated by IOD mainly distribute on Indian Ocean rim regions. 

 
2. TWS and GWS are the two most dominant WSCs while ENSO and AMO are the two 

most dominant TCs. The lags have two modes, the more significant of which is 
approximately 5 months. The negative connections are generally stronger than the 
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positive connections. The WSCs at relatively shallow depths, which are generally 
affected by many large-lag controls from TCs, tend to be dominated by the TCs with 
many high-frequency components that are prone to having a relatively faster 
WSC response. 
 

3. There are four significant ICs among the six TCs, which are, respectively, highly 
correlated with (i) ENSO and PDO, (ii) NAO and AO and AMO, (iii) IOD, (iv) all TCs, 
among which the fourth IC has the largest dominated areas and show the strongest links 
for controlling WSC variations. Compared with the analysis based on TCs, TC ICs 
generally have stronger hysteresis and more negative connections on WSCs. 

 

Availability of data and material 

Data will be made available on request. 
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AMO: 

Atlantic Multidecadal Oscillation 
AO: 

Arctic Oscillation 
CLSM: 

Catchment Land Surface Model 
ENSO: 

El Niño-Southern Oscillation 
GRACE: 

Gravity Recovery And Climate Experiment 
GWS: 

Groundwater Storage 
IC: 

Independent Components 
ICA: 

Independent Component Analysis 
IOD: 

Indian Ocean Dipole 
ITCZ: 

Intertropical Convergence Zone 
JPL: 

Jet Propulsion Laboratory 



MEI: 

Multivariate Enso Index 
NAO: 

North Atlantic Oscillation 
NOAA: 

National Oceanic and Atmospheric Administration 
PCW: 

Plant Canopy Water 
PDO: 

Pacific Decadal Oscillation 
RZSM: 

Root Zone Soil Moisture 
SnWS: 

Snow Water Storage 
STL: 

Seasonal-Trend Decomposition By Loess 
SWS: 

Surface Water Storage 
TC: 

Teleconnection 
TWS: 

Terrestrial Water Storage 
WGHM: 

Watergap Global Hydrology Model 
WSC: 

Water Storage Component 
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