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Abstract

A regional coupled approach to water cycle prediction is demonstrated for the

4-month period from November 2013 to February 2014. This provides the first multi-

component analysis of precipitation, soil moisture, river flow and coastal ocean simula-

tions produced by an atmosphere-land-ocean coupled system focussed on the

United Kingdom (UK), running with horizontal grid spacing of around 1.5 km across all

components. The Unified Model atmosphere component, in which convection is

explicitly simulated, reproduces the observed UK rainfall accumulation (r2 of 0.95 for

water day accumulation), but there is a notable bias in its spatial distribution—too dry

over western upland areas and too wet further east. The JULES land surface model soil

moisture state is shown to be in broad agreement with a limited number of cosmic-ray

neutron probe observations. A comparison of observed and simulated river flow shows

the coupled system is useful for predicting broad scale features, such as distinguishing

high and low flow regions and times during the period of interest but are less accurate

than optimized hydrological models. The impact of simulated river discharge on NEMO

model simulations of coastal ocean state is explored in the coupled modelling frame-

work, with comparisons provided relative to experiments using climatological river

input and no river input around the UK coasts. Results show that the freshwater flux

around the UK contributes of order 0.2 psu to the mean surface salinity, and compari-

sons to profile observations give evidence of an improved vertical structure when

applying simulated flows. This study represents the first assessment of the coupled

system performance from a hydrological perspective, with priorities for future model

developments and challenges for evaluation of such systems discussed.
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1 | INTRODUCTION

Winter 2013/14 in the United Kingdom (UK) was notable for the

cumulative impacts of a series of successive damaging storms crossing

north-west Europe (Kendon et al., 2015; Lewis et al., 2015). Different

regions of the UK were substantially impacted by flooding from

coastal inundation (Sibley et al., 2015; Wadey et al., 2015), fluvial

(Huntingford et al., 2014; Neumann et al., 2015) and groundwater
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sources (Muchan et al., 2015). Such events provide strong motivation

for adopting a more holistic approach to understanding and quantify-

ing the risks to populations and infrastructure from compound

flooding from multiple sources and from concurrent hazards (Ciurean

et al., 2018; Pilling et al., 2016).

The coupling or linking of different environmental models has

long been considered a necessary approach to achieving this more

holistic view. This vision was well expressed by Beven (2007; quote

below reproduced with kind permission of the author), who invited

readers to:

“Consider, for flood prediction purposes, the possibility

of modelling the subtle (and interdisciplinary) coupling

between atmospheric forcing, catchment response,

river runoff and coastal interaction with tidally domi-

nated sea levels; capturing these subtleties will require

the dynamical coupling of many processes and compo-

nents from different institutes and different computing

systems. Components would be a representation of

the coastal seas, the regional atmosphere and the ter-

restrial surface and subsurface hydrology that would

interact through different boundary conditions.”
(reproduced from Beven, 2007).

For typical hydrological and risk assessment applications, any coupling

of models and data has been achieved by defining linear model chains

whereby outputs from one system (e.g., point or distributed observa-

tion, numerical weather prediction or climate simulation based data)

are fed into a hydrological and/or hydraulic model in order to simulate

the land surface response and risk of flood hazard (e.g., Coxon

et al., 2019a; Flack et al., 2019; Ming et al., 2020). For coastal flood

hazards, for example, Couasnon et al. (2020) recently illustrated the

need to consider both fluvial and coastal flood drivers in the estima-

tion of compound flood risk at coastal locations at a global scale, with

river and coastal surge data obtained from two independent sources,

although with both driven by the same ERA-Interim reanalysis of the

meteorological forcing.

The vision for the dynamical coupling between atmosphere, catch-

ment, rivers and coastal components as set out by Beven (2007) is

more closely achieved by adopting a fully coupled approach whereby

model components exchange information at run-time via a coupler so

that interactions and feedbacks are explicitly simulated. This is well

established and illustrated through the evolution of Earth System

Models to assess the drivers, sensitivities and impacts of environmen-

tal change on global scales (e.g., Sellar et al., 2019). The key challenges

for improving how hydrological processes are represented in these

systems were discussed by Clark et al. (2015), while Ward

et al. (2020) recently addressed the importance of and priorities for

better representing the land-ocean interface in Earth System Models.

On regional scales, the development of analogous dynamically

coupled Regional Environmental Prediction systems is helping to

underpin more whole-system simulations at more catchment and

coastal-relevant scales. This is driven by needs to improve short-term

hazard prediction (e.g., Senatore et al., 2015; Rainaud et al., 2017;

Zhang et al., 2021) and provision of more integrated longer-timescale

assessments of environmental change (e.g., Giorgi, 2019). To date,

regional coupled systems have tended to be developed with a view to

improving either the integration of meteorological and hydrological

predictions (e.g., Fersch et al., 2019), or with a focus on better rep-

resenting the impacts of air-sea interactions on the system through

coupling atmosphere and ocean (and occasionally wave) model com-

ponents (e.g., Strajnar et al., 2019; Thompson et al., 2019; Varlas

et al., 2018; Warner et al., 2010). Senatore et al. (2020) bridged these

perspectives to some extent in assessing the impact of different sea

surface temperature (SST) forecasts used as the lower boundary con-

dition on the hydrological performance of a km-scale regional

atmosphere-land simulations focussed on southern Italy. While based

on results from only two relatively short case studies, they highlighted

differences in precipitation and streamflow simulations when different

SST were used. It should also be noted however that a stronger sensi-

tivity was found to the choice of driving model providing lateral atmo-

spheric boundary conditions and many other uncertainties in the

water cycle modelling chain were not explored.

Durnford et al. (2017) arguably provide the closest realization to a

fully coupled water cycle prediction system on regional scales. The

development led by Environment Canada couples interacting regional

atmosphere, land surface, river routing and 3-d lake models and pro-

vides operational hydrological forecasts on short-to-medium range

timescales for the Great Lakes-St. Lawrence Seaway region of North

America. This builds on a detailed analysis of the sensitivity of net

basin supply to meteorological forcing and land surface model param-

eterization conducted by Deacu et al. (2012). Based on an 8-day sum-

mer period and longer 4-month evaluation simulations, Durnford

et al. (2017) assessed the hydrological performance of the system in

terms of simulated precipitation, river flows, lake inflows and water

levels, along with more oceanic variables of lake surface currents and

temperature. Lake ice forecasts were also illustrated for a winter

period. The system was shown to produce reliable results for a

3.5-day forecast, with atmosphere and lake water results considered

to be more mature and reliable than those from the river routing

model. Critically, it was found that assimilation of observed river flow

was required to limit the propagation of precipitation errors into the

predicted river flows and downstream to lake quantities.

To the authors' knowledge, this paper presents the first evidence

of such a whole-system regional water cycle prediction approach

focussed on the UK and surrounding shelf seas. Tonani et al. (2019)

identified that addressing salinity errors at both basin and local scales

within the operational km-scale regional ocean model for the north-

west European shelf seas as the most pressing improvement need.

They described a practical choice to use climatological river discharge

forcing into this system as it leads to improved salinity errors than

when a pan-European river flow forecast product was used. Note that

this same climatological river discharge forcing has been applied in

previous studies using the regional coupled system discussed in this

paper (e.g., Lewis et al., 2018; Lewis, Castillo Sanchez, et al., 2019).

The JULES (Joint UK Land Environment Simulator) land surface

model is used to represent hydrological processes in the UK-focussed

coupled system. In common with the evolution of other land surface
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models (Blyth et al., 2021; Clark et al., 2015), JULES is increasingly

being applied and assessed with a view to have a more complete rep-

resentation of terrestrial hydrology in addition to continuing focus on

the representation of land-atmosphere coupling as has been more tra-

ditional in their use as an interacting lower boundary for weather and

climate prediction. It has been previously demonstrated that JULES

can provide accurate daily river flow simulations over selected catch-

ments in Great Britain when driven by observation-based meteorolog-

ical forcing (Martinez-de la Torre et al., 2019), while G�omez

et al. (2020) demonstrated good river flow predictions when driven by

an operational JULES-based regional land surface analysis. There are

however known deficiencies in the hydrological performance of

JULES over the UK, including excessive evaporation rates (Blyth

et al., 2019), insufficient infiltration (Largeron et al., 2018) and numer-

ous inherent parameterisation and parameter uncertainties (Martinez-

de la Torre et al., 2019). As discussed by Wagener et al. (2021), these

uncertainties and limitations can in part be related to fundamental

gaps in knowledge in how to represent the hydrology of the UK,

which has led to a diversity of approaches, simplifications and use of

data across different model structures. There are also known but

important missing processes, notably representation of groundwater

flows and storage, within JULES (Batelis et al., 2020) and other UK-

focussed hydrological models (e.g., Coxon et al., 2019a). While

treating precipitation and other meteorological-related inputs as an

additional source of uncertainty among many (e.g., Wagener

et al., 2021) can provide a practical constraint for model development,

for example by optimizing model configurations with observed inputs,

there have been critically few studies of the joint hydro-

meteorological performance of linked precipitation-to-river flow pre-

dictions for the UK (Anderson et al., 2019; Flack et al., 2019). This

means that the impact of changes to the quality and characteristics of

precipitation forecasts on resulting simulations of soil moisture and

river flows are not routinely assessed, while the impact of atmosphere

predictions on ocean forecasts tend to be focussed on direct radiation

and surface weather forcing rather than an end-to-end assessment of

hydrological forcing (e.g., Lewis, Siddorn, et al., 2019).

The utility and limitations of more coupled predictions to rep-

resenting the UK's regional water cycle are therefore explored in this

paper. Results from km-scale fully coupled regional atmosphere-land-

ocean model simulations during UK winter 2013/14 are assessed,

focussing on its hydrological performance. It is not considered feasible

to use the coupled system as the primary means to isolate and

address key model biases and uncertainties, relative to more

component-specific and idealized simulations studies for example.

Rather, the extent to which those biases are found to limit the quality

of simulations of other model components within the system is

assessed. The following specific questions are considered:

a. Are km-scale regional simulations of precipitation and soil moisture

sufficiently accurate to provide useful forcing for distributed

modelling of river flows across UK catchments?

b. How sensitive are regional ocean simulations of the near-coastal

region around the UK to the representation and accuracy of input

river flows?

c. What do these results imply for future component model

development?

The model system and its components are introduced in Section 2.

Results are presented in Section 3, with a focus both on broad-scale

model performance metrics and the near-coastal impacts of coupling

the atmosphere-land system to the regional ocean. The implications

of this work are discussed in Section 4 and conclusions briefly drawn

in Section 5.

2 | DATA AND METHODS

This study assesses the performance of a km-scale regional

atmosphere-land-ocean coupled prediction system focussed on the

UK for simulations during the 4-month period covering winter

2013/14 between 30 October 2013 and 28 February 2014. Simula-

tions use the UK coupled system and model grids detailed by Lewis

et al. (2018) and Lewis, Castillo Sanchez, et al. (2019). Hourly mean

variables are exchanged between model components using the

OASIS3-MCT coupling libraries (Valcke et al., 2017) each hour

through the simulation. All simulations are free running with no data

assimilation applied to any component. Relevant aspects of each

model component are briefly summarized below.

2.1 | Atmosphere model component

The atmosphere component of the coupled system uses the Unified

Model (UM; version 11.1) code, implicitly coupled to the JULES (Best

et al., 2011; version 5.2) land surface model. Both components use

the RAL1-M (Regional Atmosphere Land 1, mid-latitudes) science con-

figuration documented by Bush et al. (2020). The variable resolution

model grid is defined in rotated polar coordinates, with regular 1.5 km

horizontal grid spacing in a central region focussed on the UK and

stretching to 4 km spacing towards the outer domain edge (Figure 1).

At this resolution, atmospheric convection is represented explicitly by

the model dynamics rather than being parameterized. Lateral bound-

ary conditions are applied hourly. These are provided by the first 24 h

of operational global-scale Met Office numerical weather prediction

(NWP) simulations archived from the time of the experiment, available

then at a resolution of order 25 km. Simulations are initialised by

interpolating the operational global analysis valid for 00Z on

30 October 2013 to the regional grid.

2.2 | Land surface and river flow model
component

The RAL1 configuration of JULES has four soil layers to a depth of

3 m and surface land use heterogeneity is accounted for by defining

the fractions of nine possible tiles of vegetation (broadleaf trees,

needle-leaved trees, temperate C3 grass, tropical C4 grass and shrubs)

and non-vegetated land-use (urban areas, inland water, bare soil and
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land ice) types for each grid cell (Lewis et al., 2018). The Brooks and

Corey formulation for soil hydraulic conductivity (Cosby et al., 1984)

is used, based on the mapped soil sand, silt and clay fractions used in

the operational regional NWP configuration (Bush et al., 2020). Sub-

grid-scale heterogeneity of soil moisture is computed using the Proba-

bility Distributed Model (PDM; Moore, 2007). The configuration used

in this study adopts the PDM optimisations recommended by

Martinez-de la Torre et al. (2019), developed from assessments of

JULES simulations focussed on 13 UK catchments at 1 km resolution

driven by 30-years of an observation-based meteorological forcing.

The main difference relative to the use of PDM in the RAL1 land sur-

face model configuration used for operational NWP (Bush

et al., 2020) is the introduction of a terrain slope-dependent formula-

tion that enhances the surface runoff generated over steeper regions

while requiring wetter soil conditions before surface runoff is pro-

duced over flatter regions, relative to the behaviour of the default

PDM scheme. Dependence on terrain slope is introduced by making

the ratio of the minimum volume of water stored in a gridbox below

which there can be no surface saturation (S0) relative to the maximum

possible gridbox storage (Smax) vary as a function of local slope.) as a

function of local slope (Martinez-de la Torre et al., 2019). This ratio is

illustrated in Figure 1a) for the 1.5 km variable resolution grid used in

this study. This parameterization constrains the surface runoff pro-

duction to wetter periods over flatter regions and enhances it over

steeper regions relative to the standard and non-spatially varying

PDM parameters used in RAL1. Saturation excess generates surface

runoff (Clark & Gedney, 2008) while free drainage from the base of

the soil column is treated as sub-surface runoff.

Accumulated surface and sub-surface runoff can be routed in

JULES using the River Flow Model (RFM) implementation of the kine-

matic wave equation solution (Bell et al., 2007; Dadson et al., 2011).

Water storages in each grid cell are computed and outflows routed to

the downstream grid cell defined by a pre-calculated flow direction

map linking adjacent points in the domain. The routing pathways are

defined on the same 1.5 km resolution grid as used for the rest of the

land surface (and atmosphere) component. Appendix B of Lewis

et al. (2018) provides further details. Note that no optimisation or cali-

bration of the river routing wave speed parameters has been

attempted in this study, with values listed in Table C3 of Lewis

et al. (2018) used for this initial assessment. A river routing timestep

F IGURE 1 (a) Map of coupled model domain extent (black surrounding box). Shaded colours illustrate the S0/Smax slope-dependent PDM
parameter for each land grid point. Line contours show the ocean model bathymetry, with solid contours drawn every 50 m in locations where
the ocean depth is shallower than 250 m and dashed contours every 500 m where the ocean is deeper. Red circles indicate the location of
climatological river outflow points in the ocean model. The grey box indicates the region of regular 1.5 km horizontal grid spacing in atmosphere
and land surface model components. (b) Zoom of the UK and Ireland region of the model domain (red box in (a)) with shading illustrating the

upstream number of grid cells of the river routing grid. The locations of gauge observations on the rivers Tay, Severn [Sev], Thames [Thm] and
Tamar [tam] are shown by black open circles. The location of the L4 ocean buoy off the south-West England coast is shown as a pink cross. The
location of Sheepdrove [1], chimney meadows [2], WythamWoods [3] and Waddesdon [4] COSMOS-UK soil moisture cosmic probe observation
sites are indicated by green crosses. Red circles show the location of climatological outflow points in the ocean model (as in (a)). Blue diamonds
indicate the location of ocean model river outflow points in the coupled system. Other sub-regions considered in the study are highlighted for
reference
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of 30 min is used, while the atmosphere and land models have a

timestep of 1 min. River routing is performed for the UK and Ireland

only, with no flow directions defined for other land areas in the model

domain to avoid the variable grid resolution of the land (and thereby

river network) grid in these regions.

2.3 | Ocean model component

The UK coupled system uses NEMO (Nucleus for European Modelling

of the Ocean; version 3.6; Madec et al., 2020) to simulate the 3-d

ocean state across the North-West European shelf with tidal and

meteorological forcing. The AMM15 science configuration (Graham

et al., 2018; Tonani et al., 2019) is used. The NEMO ocean grid has

the same domain as the atmosphere, with regular 1.5 km horizontal

spacing throughout (Lewis, Castillo Sanchez, et al., 2019). The model

bathymetry is based on European Marine Observation and Data Net-

work (EMODNET), with a minimum possible ocean depth of 10 m set

in the absence of coastal wetting and drying. Daily lateral boundary

conditions from a 1/12� operational ocean forecasting system for the

North Atlantic are applied, and initial conditions for 30 October 2013

are provided by the long-term AMM15 hindcast simulation described

by Graham et al., (2018).

For the first time, the sensitivity of the ocean component to the

use of coupled river flow simulations is assessed. Typically, for exam-

ple in operational application of AMM15 and UK regional coupled

research published to date, a climatological river discharge is used

(Tonani et al., 2019). Figure 1a) shows 232 locations within the model

domain where a daily climatology of river flows has been defined

(indicated by red circles). For UK coastal points (Figure 1b), these are

based on National River Flow Archive gauge observations over the

period 1980–2014 while around other coastlines data are based on a

pre-existing climatology averaged across 1950–2005. There is a clear

imbalance between the number of discharge points around the UK

relative to other areas in the model domain. For each discharge loca-

tion, a river depth is specified, and a freshwater flux is applied to all

ocean model levels above that depth. The climatology therefore rep-

resents some typical freshwater flux for a given day of the year,

aiming to capture the main discharge locations and magnitude to

establish representative near-coastal salinity and density structures.

In contrast the coupled system enables simulated river flows, rep-

resentative of current conditions, to discharge into the ocean and

explicitly link land to ocean processes. As the ocean and atmosphere/

land grids have their own defined land-sea masks, a one-dimensional

coupling approach has been defined using OASIS whereby JULES

coastal outflow locations are identified, numbered, and paired with

the nearest NEMO inflow points on the ocean grid. Figure 1b) shows

842 connection points between the UK and Ireland river routing grid

and discharge points on the ocean grid (indicated by blue diamonds).

Given that coupled river flows are only computed for UK and Ireland

rivers in this implementation, the NEMO code was modified to use a

runoff coupling mask to distinguish between regions where the

coupled rivers should be used while continuing to use the daily clima-

tology elsewhere in the model domain.

2.4 | Experimental design

This study focuses on an assessment of the performance on the UK

coupled system during winter 2013/14 for simulating precipitation

and its impact through the land surface and hydrological system.

Three different approaches to representing river discharge into the

ocean component of the coupled system are then considered, summa-

rized in Table 1. In the fully coupled approach (CPLriv), hourly mean

JULES simulated river discharge at coastal points around the UK and

Ireland are mapped to the nearest NEMO ocean grid points, with cli-

matological discharge applied elsewhere. CPLclim uses the same

atmosphere-land-ocean coupled configuration but applying the clima-

tological river discharge everywhere. In CPLnoriv, discharges around

UK and Ireland are set to zero through the simulations, with climato-

logical discharge still applied elsewhere, providing an upper bound on

the magnitude of the impact of river flow quality on ocean

simulations.

3 | RESULTS

The following sub-sections present the characteristics of the simula-

tions of winter 2013/14 relative to available observations, with focus

on atmosphere (Section 3.1), land surface (Section 3.2), river flow

(Section 3.3), coastal interface (Section 3.4) and near-coastal ocean

(Section 3.5) components. Results are only presented from the CPLriv

simulations in Sections 3.1–3.3 as the performance of atmosphere

and land surface model components are essentially independent of

the way that flows to the ocean are represented in each experiment

(Table 1). Results from different river discharge experiments are com-

pared in Section 3.4 and 3.5.

3.1 | Precipitation

The spatial and temporal evolution of monthly accumulated precipita-

tion across the UK between November 2013 and February 2014 is

shown in Figure 2. The HadUK-Grid 1 km gridded rainfall product

based on gauge observations (Perry & Hollis, 2005) indicates a rela-

tively dry November but notably and increasingly wet conditions rela-

tive to climatology across much of the UK from December onwards

(see Figure 3, Kendon et al., 2015 for anomaly maps). Qualitatively,

the broad spatial distribution and monthly evolution of the CPLriv

precipitation in Figure 2e–h is in good agreement with observations.

TABLE 1 Summary of coupled simulations assessed

Run name
UK + Ireland river
discharge

Rest of domain river
discharge

CPLriv JULES simulation,

OASIS coupled

AMM15 climatology

CPLclim AMM15 climatology AMM15 climatology

CPLnoriv Zero flows AMM15 climatology
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That CPLriv can reproduce observed climatological features is encour-

aging given that the system has no data assimilation for any

component.

Differences between HadUK-Grid and CPLriv in Figure 2i–l high-

light the tendency for the convective-scale Unified Model simulation

to underestimate precipitation over upland areas across western UK

F IGURE 2 Maps of (a–d) observed and (e–h) CPLriv simulated monthly accumulated precipitation for November and December 2013, and
January and February 2014. Figures (a–d) show the HadUK-grid 1 � 1 km gridded gauge observed precipitation product (Perry & Hollis, 2005).
Figures (e–h) show the accumulated precipitation computed from the CPLriv hourly mean rainfall rate. (i–l) Monthly accumulation differences

between CPLriv and HadUK-grid precipitation computed on the HadUK-grid grid. (m) Time series comparing the CPLriv simulated and HadUK-
grid observed daily mean (water day 0900–0900) precipitation across England, Scotland and Wales land points through the period
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while overestimating rainfall in the drier regions further east. Note

CPLriv data are first interpolated to the HadUK-Grid grid for this

direct comparison. Smith et al. (2015) described the considerable

benefit of simulations at these resolutions for improving the repre-

sentation of orographic precipitation enhancement relative to

coarser-scale model grids in which local terrain gradients are

smoothed out and convection is explicitly parameterized. However,

these results are consistent with errors in the precipitation over

orography highlighted more recently by Chan et al. (2018) for long-

duration Unified Model simulation using a similar configuration to

that used in this study.

This tendency for CPLriv to rain too little in relatively wet regions

and too much in drier regions is well illustrated by comparing the spa-

tial SD of monthly accumulated precipitation in HadUK-Grid

(Figure 2a–d) with that computed from CPLriv (Figure 2e–h). This is

summarized in Table 2. The SD of CPLriv accumulated precipitation is

consistently about 40% lower than for the observation-based HadUK-

Grid for each month during the simulation period. The benefit of

future updates to the regional atmosphere configuration on model

skill could therefore be simply and usefully assessed through the

extent to which such stark differences can be reduced.

Time series in Figure 2m compare water-day mean HadUK-Grid

precipitation for England, Scotland, and Wales land areas with the

equivalent simulated quantity from CPLriv. This shows good agree-

ment through winter 2013/14 with a correlation coefficient of 0.95

(statistically significant at 95% confidence level). This provides confi-

dence that the UK coupled system provides a robust simulation of

winter precipitation, though noting spatial errors in the representation

of orographic effects, which will be important in the context of hydro-

logical simulation.

F IGURE 3 Maps of monthly mean (a–d) surface evaporation, (e–h) surface runoff and (i–l) sub-surface runoff rate simulated by CPLriv for
November and December 2013, and January and February 2014 respectively. Note colour bar scales are different for each variable
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3.2 | Land surface hydrological response

The partitioning of precipitation falling on the surface through winter

2013/14 between evaporation and runoff components is shown in

Figures 3 and 4. Surface runoff represents the largest flux and

responds directly to precipitation as expected. December was notably

wet in western Scotland and February was wettest in south-western

England and Wales. The sub-surface response is more complex. Mean

results for November (Figure 3e) are particularly dry over much of the

UK and Ireland, but excessive runoff is apparent in some areas of

Scotland and persists through the winter. As discussed by G�omez

et al. (2020), the anomalously wet regions are potentially a feature of

the initial soil moisture conditions interpolated from the global model

analysis available for the valid time of these simulations. Mean sub-

surface runoff features in November are particularly smooth, indica-

tive of an extended period of spin-up to more convective-scale forced

conditions on the 1.5 km resolution model grid. While results are

presented for the full November to February December simulation

period in following sections, qualitative measures are computed for

December to February only to reduce the influence of spin-up on

hydrological results. Later in winter, the sub-surface runoff increases,

particularly on western slopes of upland regions. This spatial distribu-

tion is driven by the slope-dependent PDM configuration introduced

by Martinez-de la Torre et al. (2019).

The mean simulated volumetric water content (VWC) fraction in

the upper (0–10 cm below surface) and lowest (1–3 m below surface)

JULES soil layers is shown in Figure 4. There is a clear contrast in

timescales between the upper layer being driven by instantaneous

precipitation, also reflected in the surface runoff, and the lower layer

driven by the accumulated precipitation over time, reflected in the

sub-surface runoff evolution. The initial condition and spin-up issues

highlighted in Figure 3 are not apparent in the spatial averages shown

in Figure 4. By the end of February 2014, the lowest soil level holds

as much water as the upper layer, and the magnitude of surface and

sub-surface runoff components are more similar.

One of the challenges inherent in any assessment of the simu-

lated land surface response to precipitation has been the limited

observations of components of the terrestrial water cycle at scales rel-

evant to the model grid. The COSMOS-UK cosmic-ray soil moisture

observing system (Evans et al., 2016) was first established in 2013

and has since expanded to 52 sites across the UK (Cooper

et al., 2021). During winter 2013/14 an initial four sites were active

across a small part of southern England (Figure 1b). Cosmic-rays are

used to derive an estimate of soil moisture representative of a hori-

zontal area of about 0.12 km2 (order 20-times smaller than the model

grid area of 2.25 km2) and a nominal observation depth of order

20 cm, but which varies in time by order 5–10 cm.

Quantitative comparison of simulated and observation-derived

VWC in Figure 5 should be treated with some caution given that the

model and COSMOS-UK represent different vertical and horizontal

scales, and that grid box mean diagnostics represent considerable sur-

face heterogeneity within each model grid, even at 1.5 km resolution.

The variability of model data within a 5 � 5 neighbourhood of grid

points surrounding each location is considered, highlighting the

regions surrounding Chimney Meadows (Figure 5b) and Wytham

Woods (Figure 5c) to be considerably more heterogenous than those

surrounding Sheepdrove (Figure 5a) and Waddesdon (Figure 5d).

Comparing more qualitatively to the COSMOS-UK observations,

CPLriv simulations are in relatively close alignment to observed VWC

and well capture a gradual decrease in VWC during November

followed by a relatively abrupt increase during mid-December. There

is lower variability in VWC in both model and observations during

January and February. The model timeseries show less day-to-day

variability than COSMOS-UK and lower VWC than observed at three

of the four locations. Yang et al. (2020) and Yang et al. (2014)

reported systematic under-estimation of VWC in observation-forced

JULES simulations during southern hemisphere winter and attributed

this to the lack of lateral soil water flow in the JULES model. Blyth

et al., (2019) found that JULES simulated evaporation tended to be

excessive compared with flux tower observations, also consistent with

these results. A third process deficiency consistent with this bias is a

tendency for there to be insufficient infiltration of precipitation into

the JULES soil column (e.g., Largeron et al., 2018; Martinez-de la Torre

et al., 2019; Mueller-Quintino et al., 2016).

The closest qualitative agreement between CPLriv and COSMOS-

UK is found at Sheepdrove (Figure 5a). The lack of variability in VWC

between adjacent model grid points in the 5 � 5 neighbourhood may

indicate this to be a less hydrologically complex location (Cooper

et al., 2020), and given the site is at 170 m altitude in the Chiltern

Hills, there may be a more limited role for lateral flows here.

This analysis indicates that a more extensive assessment of the

simulated JULES soil moisture state at km-scales for more recent

periods would be of considerable value. This would need to look at a

more recent simulation period to make use of the more extensive and

multi-annual COSMOS-UK observations across the 52 sites available

today in order to better characterize, understand and improve the rep-

resentation of soil moisture processes across a broader range of mete-

orological and hydrological conditions, and across a broader range of

soil and land use types. This analysis could usefully form the basis for

further optimisation of land surface parameters, and assessment of

TABLE 2 Spatial SD of monthly
accumulated precipitation for each
month during study for CPLriv
simulations and HadUK-grid observations

November 2013 December 2013 January 2014 February 2014

CPLriv 33.1 mm 83.6 mm 55.9 mm 67.4 mm

HadUK-Grid 54.4 mm 140.7 mm 82.3 mm 103.4 mm

Note: CPLriv data are interpolated to the HadUK-grid points prior to computing statistics.
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F IGURE 4 Timeseries of spatially averaged daily mean simulated (a) soil evaporation, (b) surface runoff, (c) volumetric soil moisture content of
the upper (0–0.1 m depth) soil level (solid) and lowest (1–3 m depth below surface) soil level (dashed), (d) sub-surface runoff across England,
Scotland and Wales land points in the CPLriv coupled system during winter 2013/14
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the variability and accuracy of VWC on each land surface tile within a

land surface model grid cell.

3.3 | River flow

Relative to diagnostics of soil moisture processes, river discharge is a

well observed part of the terrestrial water cycle. Figure 6 shows a

first-order check on the typical magnitude of simulated and observed

flows through the study period across parts of the river routing net-

work, indicating generally good qualitative distinction between higher

and lower flow regions in CPLriv. Daily mean river flow gauge obser-

vations are provided by the UK National River Flow Archive (NRFA).

Summary bias and Nash-Sutcliffe efficiency (NSE) metrics for the sim-

ulated river flow in CPLriv between December 2013 and February

2014 are compared with observations at 154 gauges in Figure 7. This

set of gauges includes the 146 UK Benchmark Network sites

(UKBN2; Harrigan et al., 2018), selected to favour relatively natural

flow regimes and good hydrometric data quality, together with those

of the 13 catchments assessed by Martinez-de la Torre et al. (2019)

not included in UKBN2.

Given that the system is driven by simulated precipitation, most

land surface parameters have been optimized for NWP applications,

and no tuning has been applied for river flow parameters, Figure 7a) is

encouraging in that the simulated flows have small biases relative to

many gauge locations (99 locations where the bias is within 10 m3s�1,

88 locations where the bias is within 20% of the peak observed flow

magnitude). More substantial biases can be seen in south-eastern

England where CPLriv flows are overestimated relative to observa-

tions. This is characterized as a groundwater dominated region – a

process not represented in the free drainage approach of the JULES

configuration used in these simulations. Batelis et al. (2020) described

the application of a new groundwater flow boundary parameterization

in JULES which may improve flow simulations in such regions. CPLriv

can also be seen to overestimate flows in central Scotland, which are

likely attributable to excessive sub-surface runoff and a poorly initial-

ized soil moisture state.

While a NSE value of one represents a perfect simulation of the

observed time series, a NSE value of zero indicates that the simulation

provides no better prediction of the observed time series than the

observed mean, and might be considered a minimal requirement of a

useful river flow simulation. This target is only met for 69 (order 45%)

F IGURE 5 Timeseries showing CPLriv simulated total volumetric water content in the top 2 soil levels (to depth 35 cm below surface)
through November 2013–February 2014. Plots (a–d) are for points marked 1–4 in Figure 1 respectively. The mean value in a 5 � 5
neighbourhood of grid points nearest each location is shown as a solid line, with one SD about that value shaded. The minimum and maximum

model values in the neighbourhood are shown as dashed line time series. Also plotted are available daily mean COSMOS-UK cosmic-ray derived
volumetric water content estimations for each location (Stanley et al., 2020). The mean typical depth for which these observations are considered
appropriate through the period for each site is listed in each figure legend
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of the 154 gauges considered, with 10 locations having a summary

NSE value greater than 0.5. Figure 7b) shows that the locations with

best NSE values tend to be where observed flows are largest, and

therefore typically of most interest from the perspective of the broad

scale hydrological response in CPLriv. The relatively low number of

gauge locations for which NSE exceed zero, noting these are com-

puted over only 3 months of data, indicates that there is clear need to

focus research effort on improving the magnitude and timing of river

flow simulations in CPLriv.

Figure 8 provides a more direct illustration of the simulated and

observed daily mean flows through winter 2013/14 for four of the

gauges considered by Martinez-de la Torre et al. (2019). The Tamar,

Tay and Severn gauges are among the locations where CPLriv has

largest low bias relative to observations (Figure 7a) while CPLriv is

biased high at Thames, attributable in part to missing groundwater

storage. For reference, results from observation-driven hydrological

model simulations of Grid-to-Grid (G2G; Bell et al., 2018; Bell

et al., 2007) and DECIPHeR (Coxon et al., 2019b) are shown. These

indicate plausible best simulated results. DECIPHeR is a 100-member

ensemble, illustrating the influence of parameter uncertainty on the

model hydrological results for a given observed input. Both G2G and

DECIPHeR are driven by 1 km2 gridded daily precipitation fields

F IGURE 6 Maps of mean simulated river flow speeds between November 2013 and February 2014 for selected sub-regions of the UK (see
Figure 1). Mean observed flows for the same period at gauges in the National River Flow Archive (NRFA) UK benchmark (UKBN2) dataset are
plotted using the same colour scale as shaded square symbols
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derived from rain gauge observations. G2G was driven by a corrected

monthly potential evaporation derived from 5 km2 gridded tempera-

ture observations (Rudd et al., 2017), while as described by Coxon

et al. (2019a), the DECIPHeR ensemble was driven by daily potential

evapotranspiration data derived at 1 km2 by Robinson et al. (2017).

The G2G model underpins operational flood forecasting in the UK

and has therefore been optimized to represent peak flow conditions

across a wide range of UK hydrological regimes (Anderson

et al., 2019; Pilling et al., 2016). Unlike JULES or G2G grid-based rou-

ting, DECIPHeR represents a different model architecture that uses

hydrological response units to represent land heterogeneity and a

semi-distributed approach to flow routing (Coxon et al., 2019a).

The CPLriv flows vary too slowly with time compared to observa-

tions and G2G or DECIPHeR, although the broader-scale variability

on weekly to monthly timescales is more consistent. Largeron

et al. (2018) found that changes to the JULES infiltration could lead to

much more responsive river flow simulations than found using the

standard configuration scheme used in this study. For three of the

four locations presented in Figure 8, the slower variability of CPLriv

simulated flows contributes to an under-prediction of peak flows.

Results are often but not always within the range of solutions

provided by the DECIPHeR observation-driven ensemble. While there

is a clear need for further tuning and improvement of the CPLriv flow

results, this is outside the scope of this study. As discussed further in

Section 4, improving the CPLriv river flow predictions requires a com-

bination of coupled and uncoupled model development and assess-

ment approaches. This includes studies of the performance of the

current RAL1 configuration and the impacts of incremental updates

through further JULES enhancements on longer (i.e. multi-annual) sim-

ulations. Weedon et al. (2015) demonstrated the value of cross-

spectral time-series analysis to simultaneously assess the impact of

future system changes across temporal scales of interest.

3.4 | Discharge to ocean

Coupled modelling approaches enable terrestrial hydrological simula-

tions to directly impact the near coastal ocean. The time series of

accumulated river discharge into the ocean around UK and Ireland

coastlines in CPLriv (Figure 9) is consistent with previous results for

precipitation, soil moisture and river flow variables of the system,

declining through November and early December 2013 before

F IGURE 7 Summary of (a) bias [MODEL-OBS] and (b) Nash-Sutcliffe efficiency (NSE) metrics comparing observed and simulated river flow at
selected National River Flow Archive (NRFA) locations. Only data from December 2013, January 2014 and February 2014 are included here to
avoid any spin up impacts at the start of the simulation period. The size of circles is representative of the maximum observed flow during the
period. In (b), green shaded circles show where NSE > = 0, with shading indicated by the colour scale. Yellow filled circles show where �1 < =

NSE < 0, orange unfilled circles where �10 < NSE < �1 and red unfilled circles where NSE values less than �10 are computed for the evaluation
period
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reaching maxima over a period of around 3 weeks in late December

to mid-January 2014 and again in February. This is consistent with

the evolution of the UK National Runoff Series (UKNRS), an

observation-derived estimate of the discharge from England, Scotland,

and Wales coastlines. This is calculated as described by Marsh

et al. (2015) by accumulating the total observed runoff from NRFA

gauged catchments and using simulations of the G2G model to

account for flows from remaining ungauged catchments. G2G data

accounts for around 37% of the England-Wales-Scotland outflow

product. CPLriv results are up to 50% lower than UKNRS during the

F IGURE 8 Timeseries of observed (black dashed) and simulated (red) daily mean (0900–0900) river flow at selected gauge locations from
those assessed by Martinez-de la Torre et al. (2019) between November 2013 and February 2014. Mean bias (model–Obs) and Nash-Sutcliffe

efficiency metrics, computed from 1 December 2013, are listed. River flows from the G2G in dark blue (Bell et al., 2018) and DECIPHeR in grey
(Coxon et al., 2019b) hydrological models driven by the same observed precipitation and observation-based potential evaporation are also shown
as a reference. As DECIPHeR is a 100-member ensemble dataset, the ensemble mean is plotted along with maxima and minima simulated daily
flows

F IGURE 9 Timeseries of accumulated discharge from land to ocean around England, Scotland and Wales coastlines during winter 2013/14 in
the CPL simulations (red), as assumed in the AMM15 ocean model climatology (blue) and a UK National Runoff Series estimated from gauge
observations by the National River Flow Archive (black dashed line; Marsh et al., 2015)
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December/January peak and, consistent with Figure 8, show less day-

to-day variability than the UKNRS reference. Figure 9 also shows the

equivalent discharge in the climatological river flows used to force the

ocean in CPLclim simulations. CPLriv total values only begin to exceed

CPLclim during February whereas the relatively stationary winter cli-

matology is likely an overestimate of the observed coastal discharge

during the first part and an underestimate during the latter part of

winter 2013/14. In the context of a first evaluation of a more coupled

approach to the UK water cycle however, Figure 9 provides further

reassurance that the order of magnitude of discharge from CPLriv and

its temporal variability are broadly representative.

3.5 | Coastal ocean response

The sensitivity of the coupled NEMO ocean surface salinity to the

freshwater flux imposed at the coastline is summarized in Figure 10.

Monthly mean salinity difference maps show the extent of regions of

freshwater influence around the UK and Ireland. CPLriv is generally

less fresh than CPLclim, consistent with the relatively reduced dis-

charge (Figure 9). Largest differences, exceeding 2 psu, due to lower

flows in CPLriv are apparent for outflow regions from the Thames

(consistent with Figure 7b), Bristol Channel (associated with lower

flows from the river Severn; Figure 7c) and Humber Estuary (fed by

the rivers Ouse and Trent; Figure 6b). Timeseries of region mean sur-

face salinity in Figure 10e) show that the CPLnoriv ocean surface

becomes increasingly saline with time, reaching a mean difference of

nearly 0.2 psu over the 4-month simulation period. This exceeds the

CPLriv and CPLclim variability during the period. CPLnoriv becomes

well mixed through the ocean depth, resulting in considerably less

temporal variability due to tidal and meteorological forcing than

CPLriv or CPLclim. By default, river discharge is applied in NEMO with

zero salinity (i.e. fresh water). This is a simplifying assumption and

additional source of uncertainty. Sensitivity to input salinity and

parameterizations of estuarine mixing processes should be explored in

future.

The mean SST response (Figure 11) is typically within 0.1 K

around the UK coastline, with more complex and less coherent spa-

tial patterns of SST differences due to the river forcing than for

salinity. Figure 11e) indicates that the SST sensitivity (even for

CPLnoriv results) is considerably smaller than the magnitude of

near-coastal SST simulation errors. Those errors can be mainly

attributed to missing ocean model processes such as coastline wet-

ting and drying or meteorological or tidal forcing errors (Tonani

et al., 2019). Analysis of SST results at some coastal buoys around

the UK (not shown) does indicate more localized responses to dif-

ferences in river forcing associated with the representation of spe-

cific storms in CPLriv and their absence in CPLclim. While outside

the scope of this paper, and noting sensitivities are within the

observational error, this provides some encouragement that near-

coastal simulations can be improved through further optimisation

of the river flows in CPLriv.

F IGURE 10 Monthly mean differences of (a–d) sea surface salinity simulated by CPLriv and CPLclim through winter 2013/14. (e) Timeseries
of average sea surface salinity in the region with bathymetry shallower than 250 m around UK and Ireland coasts simulated by CPLriv, CPLclim
and CPLnoriv configurations
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The sensitivity of simulated vertical profiles of ocean salinity and

temperature through winter 2013/14 at the L4 buoy location off the

south-west England coast (Figure 1) is shown in Figures 12 and 13

respectively. Vertical ocean profile observations are provided by CTD

sensor measurements operated weekly by Plymouth Marine Labora-

tory (Smyth et al., 2009).

Results for 9 December (Figure 12a and 13a) show some indica-

tions of the ocean state at depth spinning up from a common initial

condition with climatological river inputs. The CPLclim profile matches

the observed inversion relatively well, but is overall too fresh by

around 0.25 psu, consistent with a relatively high river discharge rela-

tive to observations through November and December. The CPLriv

and CPLnoriv results by contrast are well mixed throughout and more

closely match observed salinity in the upper 20 m. The CPLnoriv salin-

ity remains relatively constant through this period and tends to be too

saline (and too cool) even at 50 m depth and completely misses the

observed near-surface freshwater induced inversion. CPLriv and

CPLclim have more similar profiles, but there are encouraging signals

that the shape of CPLriv salinity profiles better match observations

than CPLclim and have closer agreement to observed near-surface

values. Such differences may be particularly important when assimilat-

ing profile information for example (King et al., 2019), and merits a

more rigorous assessment of the impact of simulated river inputs in a

full ocean assimilation experiment in near future. The temperature

profiles in Figure 13 also show clear structural differences between

simulations, consistent with the differences in salinity, although the

magnitude of differences between CPLriv and CPLclim is typically

within 0.1–0.2 K.

4 | DISCUSSION

This study provides a first assessment of the hydrological perfor-

mance of a whole system simulation of the water cycle using a UK-

focussed regional coupled system at km-scale. In common with the

evidence provided by Durnford et al. (2017), the vision for a more

integrated approach to water cycle prediction is a technical reality. A

free-running km-scale coupled simulation of the UK water cycle

across atmosphere, land and ocean components has been demon-

strated and run successfully, producing broadly representative results

across all components for winter 2013/14.

4.1 | Recommendations for model development
and evaluation

These results highlight that many limitations and scientific challenges

will need to be overcome before the UK-focussed regional coupled

system could be applied with confidence for hazard prediction appli-

cations across timescales. To best address those limitations, a blended

F IGURE 11 Monthly mean differences of (a–d) sea surface temperature simulated by CPLriv and CPLclim through winter 2013/14.
(e) Timeseries of average bias (model–observation) between simulations and observed SST by near-coastal buoys in the region with bathymetry
shallower than 250 m around UK and Ireland coasts for CPLriv, CPLclim and CPLnoriv configurations during January and February 2014
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approach is required for model development and evaluation. On the

one hand, as demonstrated by Deacu et al. (2012) in the Canadian

context, and advocated by Flack et al. (2019) in the context of UK pre-

dictions, system improvements should be realized with an end-to-end

assessment to avoid building dependence on either compensating

errors or necessary bias or calibration corrections through a modelling

chain. However, the current study also illustrates that there remains a

need to focus on addressing model errors at a component (and sub-

component level), with ability to isolate and test model para-

meterisations and assumptions for key processes with known inputs

(e.g., observed forcing, idealized simulations) and assessed against

observed outputs. This highlights the technical imperative for environ-

mental predictions systems to be designed as flexible modelling frame-

works, rather than monolithic and intractable systems of increasing

complexity. By supporting a variety of traceable experimental design

and levels of uncoupled to fully coupled predictions, such frameworks

provide a means to link from process-level understanding and improve-

ment through to enabling routine evaluation of the impact of those

changes on other components of the system. It cannot therefore be

sufficient to have an ambition to be ‘end-to-end’, but to support ‘com-

ponent-to-system’ evaluation and development, and this is where fur-

ther value of working across environmental modelling disciplines and

taking more whole-system approaches can be realized.

These and similar CPLriv simulations will therefore need to be

revisited routinely to assess the impact of future component model

developments, that will originate through detailed assessment and

research to optimize regional atmosphere, land surface and ocean

configurations (e.g., Bush et al., 2020; Graham et al., 2018), on the

whole-system performance. However, it is encouraged that as far as

practical, such process-level assessments are conducted with a view

to readily being applicable to improving the UK regional coupled sys-

tem, for example through simulation studies focussed on common

domains, model grids, and use of supporting mapped data. While the

winter 2013/14 period provides a high-profile and high-impact period

for initial demonstration of the regional coupled approach to water

cycle prediction for the UK, further evaluation experiments will also

be required to cover a broader range of climatological conditions,

including those associated with convectively dominated intense sum-

mer rainfall and prolonged dry periods.

4.2 | Hydrological focus for atmosphere
configuration development

It has been shown that he simulated precipitation in CPLriv is repre-

sentative of observations at national scale, yet there are clear biases

in its spatial distribution even on monthly timescales with relatively

low accumulation over steeper terrain across western UK and too

much rainfall propagating further east. While the benefit of km-scale

resolution atmosphere modelling for improving the representation of

F IGURE 12 Vertical profiles of observed and simulated ocean salinity at the L4 ocean buoy location (see Figure 1) on (a) 9 December,
(b) 17 December 2013, (c) 14 January, (d) 20 January, (e) 29 January, (f) 10 February 2014. Daily mean profiles are computed from 5 � 5 grid
points nearest to the observation point, with one SD indicated by error bars
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orographic rainfall has been well established (e.g., Roberts et al., 2009;

Smith et al., 2015), this study shows lower skill for precipitation over

steep terrain than indicated for operational regional NWP results for

the UK at 1.5 km resolution by Smith et al. (2015). The west–east bias

pattern is however consistent with the results for winter precipitation

of a regional climate (i.e. non-assimilating) application of the UM over

Scotland at this scale by Chan et al. (2018). This merits further investi-

gation and improvement, both to identify the role of data assimilation

in the better operational NWP performance and to assess whether

there are additional influences such as changes to model physics,

domain extent or global boundary conditions which impact precipita-

tion biases and can lead to an improved treatment in future RAL con-

figurations. An experiment is proposed to assess the land surface

response to parallel free-running and assimilative NWP meteorology

driving JULES over a prolonged period, to better understand the

extent to which simulated river flows are degraded by the absence of

assimilation in CPLriv at present.

4.3 | Linking forced to coupled land surface model
development and evaluation

The CPLriv hydrological configuration effectively translates the rec-

ommendations of Martinez-de la Torre et al. (2019), obtained from an

assessment of observation-driven JULES simulations (1991–2000) at

13 gauges of interest, to a national-scale system. Martinez-de la Torre

et al. (2019) presented river flow simulations biased low relative to

observations (typically between �30% and � 10% bias) with NSE

metrics in the range 0.59–0.85. In common with Martinez-de la Torre

et al. (2019), key land surface processes for improvement remain a

balance between:

• Reducing excessive evaporation (Blyth et al., 2019),

• Enhancing infiltration of precipitation into the soil column

(Largeron et al., 2018),

• Addition of lateral and sub-surface flows in the land model

(e.g., Batelis et al., 2020).

A number of these enhancements are being currently delivered and

coordinated through the Hydro-JULES programme (https://hydro-

jules.org/). Hydro-JULES research is also deriving improved land sur-

face parameters through a data assimilation framework using the

COSMOS observations (Cooper et al., 2020; Pinnington et al., 2020).

However, it is notable that relative to the JULES implementation

used in this paper, the developments of Martinez-de la Torre

et al. (2019) were based on catchment-specific assessments, using a

different model grid with different soil ancillary information, and with

a different land surface initialisation approach. For land surface model

focussed enhancements, such as to be delivered from Hydro-JULES,

to be readily applied and demonstrated in the UK coupled system,

care needs to be taken to align research configurations as far as possi-

ble. A key gap remains an imperative for greater flexibility and

F IGURE 13 Vertical profiles of observed and simulated ocean temperature at the L4 ocean buoy location (see Figure 1) on (a) 9 December,
(b) 17 December 2013, (c) 14 January, (d) 20 January, (e) 29 January, (f) 10 February 2014
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transparency of methods for generating any new supporting data sets

and configuration parameters. At the same time, greater technical

flexibility is required to limit the extent to which developments of one

model component are constrained by technical details of any other.

For example, the atmosphere and land surface components used in

this study are currently defined on a common model grid to support

implicit atmosphere-land coupling, and thereby the river routing in

CPLriv has been applied only on the fixed 1.5 km resolution inner

region of the domain whereas gridded hydrological model develop-

ment for the UK tend to focus on 1 km resolution definitions

(e.g., Robinson et al., 2019). Future work is planned to be able run

river routing as a separate code executable to the rest of the land sur-

face component in order to take advantage of the flexibility of model

grids and interpolation of fields provided by coupling libraries,

enabling simulation of river flows on a more hydrology rather than

atmosphere relevant model grid. This might be viewed as a first step

towards even further flexibility of geographical definitions and model

grids across different sub-components of the land surface representa-

tion (e.g., Chaney et al., 2016).

4.4 | Towards more useful coupled system
hydrological predictions

The recent development of a UK regional soil moisture analysis for

NWP by G�omez et al. (2020) provides opportunities to explore the

impact of improved soil moisture updating on system performance.

Several authors have highlighted the value of river flow assimilation

for improving both river flow and soil moisture (e.g., McMillan

et al., 2013; Sun et al., 2016; Tian et al., 2019; Warrach-Sagi &

Wulfmeyer, 2010). This will be of benefit in the UK context, but there

are first order model biases that are worth addressing as a more

immediate development priority. As advocated by Clark et al. (2015),

there also remain opportunities to improve the river flow parameteri-

zation, for example by implementing a 1-D diffusive wave solution.

There is also a strong requirement to move to the assessment of

land surface and river flow simulations in probabilistic terms. Work is in

progress to run the UK coupled system in ensemble mode, with the

atmosphere component driven by the MOGREPS-UK operational NWP

ensemble (Porson et al., 2020). Driving regional river flow predictions

with an ensemble of precipitation input, and introducing stochastic and

parameter perturbations in the land surface and river routing compo-

nents offers many opportunities to better understand the propagation

of uncertainty through the system, as well as consider appropriate

design of regional coupled ensemble systems when coupling a range of

potential flow solutions with ensemble ocean model components.

4.5 | Linking improved hydrological simulation to
coastal ocean predictions

The impact of modifying the river discharge from the land into the

coastal ocean around the UK has been quantified for winter 2013/14.

While differences between CPLriv and CPLclim ocean results

demonstrate some sensitivity, this analysis also highlights that the

exact details of the river flow simulation are of second order impor-

tance to other coastal ocean processes. It will be interesting to revisit

this analysis when the CPLriv discharges are not biased low relative to

observations, and to undertake more detailed analysis of the impacts

for specific case studies of coastal flooding and tidal locking in a

multi-hazard context. Assessing the sensitivity of the near-coastal

ocean to river discharge is also hampered by the limited availability of

in-situ salinity observations around the UK coast, with the L4 profile

observations presented here being a very rare and valuable resource.

A brief comparison between CPLriv salinity results with SMOS satel-

lite derived salinity products (Olmedo et al., 2021) proved inconclusive

due to limited data availability in the near-coastal regions where river

discharges were impacting ocean simulations.

The UK coastal ocean response to the characteristics of freshwa-

ter inflow is found to be relatively small in this study, with broad scale

features of CPLriv and CPLclim remaining similar despite different

river discharge forcing. For other regions, the influence of ocean strat-

ification induced by precipitation and freshwater inflow remains an

area of active research. For example, Gévaudan et al. (2021) suggest

that salinity stratification in the north-western tropical Atlantic

induces a significant increase of SST (by 0.2–0.5 K) leading to a 19%

increase in summer rainfall, and much weaker impacts in winter.

Krishnamohan et al. (2019) reviewed the hypotheses that strong salin-

ity stratification due to large freshwater inflow in the northern Bay of

Bengal inhibits vertical mixing of heat and maintains warm sea surface

temperatures and enhances rainfall. In their assessment based on

coarser 25 km resolution simulations with climatological river inputs,

they in fact found little sensitivity of SST or precipitation to large

changes in Bay of Bengal salinity stratification. However, the role of

the freshwater-influenced mixed layer on the evolution of tropical

cyclones in the region is also recognized (e.g., Qiu et al., 2019;

Yesubabu et al., 2021), and further studies assessing atmosphere-

land-ocean feedbacks at finer model resolutions that enable more

explicit representation of atmospheric convection and ocean eddies

would be welcome. These examples further motivate the need for

accurate predictions of freshwater flows in global and regional scale

coupled prediction systems when considering atmosphere–ocean

feedbacks.

Beyond being able to sample a broader range of meteorological

and land surface conditions, extending the simulation period towards

multi-annual timescales will enable assessment of the sensitivity of

UK coastal oceans to freshwater influence and accuracy of river flow

predictions as a function of seasonal and tidal cycles for locations of

interest.

4.6 | Beyond physical processes towards regional
earth system simulation

Finally, it is worth revisiting the vision for more dynamical coupling of

the water cycle in the context of Earth System processes at regional

scales. These extend beyond physical couplings between components

into provision of capabilities to deliver forecasts and assessments of
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environmental changes on biogeochemical processes, and ultimately

to include the role of anthropogenic influence on these. The modelling

framework presented here provides a good basis from which to

advance coupling to marine and terrestrial biogeochemistry models

and inform questions of water quality and marine health. This also

emphasizes that the value of developing accurate predictions of

hydrological processes in land surface models extends beyond an abil-

ity to provide predictions of river flow and water availability, but to

being an integral part of whole system simulations of the Earth Sys-

tem across scales. This vision was well characterized again by

Beven (2007), as follows:

Built on the fluxes within those models, air and water

pollutant transport models and biogeochemical models

could, additionally, be implemented locally within the

regional scale domain. Each component should be able

to assimilate data transmitted from field sites and to

assess the uncertainty in the predictions. Such an inte-

grated system should operate both in real time, assimi-

lating data and boundary conditions from larger scale

models and displaying the ‘current state of the envi-

ronment’, as well as providing the potential to update

model predictions into the future under different

scenarios.”

5 | CONCLUSIONS

A km-scale regional coupled simulation system has been presented

with results showing broadly representative predictions of precipita-

tion, soil moisture, river flow and coastal ocean state for free-running

simulations focussed on the UK for winter 2013/14. Three specific

questions were set out in Section 1.

(a) Are km-scale regional simulations of precipitation

and soil moisture sufficiently accurate to provide use-

ful forcing for distributed modelling of river flows

across UK catchments?

For winter 2013/14, a west–east bias in accumulated precipita-

tion simulations has been identified, with rainfall too low over upland

areas of western UK and too much rainfall advected further east. This

assessment has been unable to determine how limiting these biases

are for modelling of river flows across the UK—in practice there are

too many processes within the coupled hydro-meteorological model-

ling chain. Some of the challenges and opportunities of using coupled

systems as part of the assessment of hydrological model performance

were discussed in Section 4. A further limiting constraint for the time

of interest in this study is that there were relatively few in-situ obser-

vations of soil moisture state, although the direct comparison pres-

ented shows moderately good agreement between simulations and

observations where available.

There are atmosphere and land surface model developments that

can be implemented to further improve the simulated river flow

results presented, through enhancements to their process representa-

tion. This study therefore provides a useful first indication of the

hydrological performance of the UK km-scale regional coupled system

that will be revisited in future when assessing the impact of changes

to model components on the whole system (e.g., Deacu et al., 2012).

(b) How sensitive are regional ocean simulations of the

near-coastal region around the UK to the representa-

tion and accuracy of input river flows?

Dynamically coupled prediction systems enable new insight to be

gained on the ‘hydrological response’ of the near-coastal ocean to

hydro-meteorological processes. For winter 2013/14, the near coastal

salinity can be modified by more than 2 psu in regions impacted by

river discharge around the UK coast due to the change from a climato-

logical to simulated river flow. On average, the impact on temperature

is considerably smaller, and the sensitivity to river flows shown to be

of second-order importance relative to other sources of near-coastal

ocean errors.

It has not been possible to address the extent to which accuracy

of simulated input river flows impacts near-coastal ocean predictions

in this study. This question will be better addressed in future through

returning to an assessment of the extent to which ocean predictions

for winter 13/14 and other seasons can be improved when using

updated model configurations in which the simulation of UK river

flows is improved, for example by reducing spatial precipitation biases

from the atmosphere model or adding groundwater parameterisation

in the land surface model. The sensitivity demonstrated in this study

between input climatological and simulated river flows suggests that

broad scale sensitivity due to changes in the simulated flow will be rel-

atively minor overall, but impacts may be better assessed focussing on

specific locations and times of interest.

(c) What do these results imply for future component

model development?

This study demonstrates the feasibility of a vision for more

dynamically coupled systems to provide useful predictions at scales

relevant to catchment and coastal processes, but also highlights the

challenges of being able to develop improved predictions within sys-

tems with multiple sources of model uncertainties and where several

variables of interest within the hydrological prediction chain are rela-

tively poorly observed. Development priorities have been identified

for further improving the quality of these predictions using the UM-

JULES-NEMO modelling framework. Key to this is a need to deliver

improvements to model parameterizations and related data across

components. This includes priorities to reduce precipitation biases,

improving land surface model representation of evaporation and infil-

tration processes; addition of missing processes, notably of lateral and

sub-surface water flows in the land surface model; and a move to

more assimilative and probabilistic modelling frameworks.

Whilst the details of the model configuration, supporting datasets

and validation protocols are specific to the modelling framework pres-

ented here their discussion draws out generalizable insights which are
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anticipated to of value to the wider community. The first insight

relates to the value of assessing model performance over extended

periods with free-running simulations. This is particularly important

for assessment of precipitation characteristics (e.g., Figure 2), with

understanding of model performance often based on validation activi-

ties focussed on operational numerical weather prediction and

regional models that are better constrained by shorter simulations and

frequently updating initialisation. This requirement is increasingly

being addressed through closer alignment of convective-scale model

development and evaluation in the context of their growing applica-

tion across both weather and climate timescales (e.g., Giorgi, 2019).

A second insight is the need to use available in-situ soil moisture

observations routinely as a core part of evaluating atmosphere-land

coupled models (e.g., Figure 5). This is not currently common practice,

with the resulting risk that the land surface hydrology becomes a

“sink” for errors in atmospheric forcing and model uncertainties

(e.g., Drusch & Viterbo, 2007). Even given observation uncertainties

and challenges in translating between observed and equivalent model

variables, monitoring the relative spatial distributions and temporal

variability of simulated soil moisture to in-situ networks such as

COSMOS-UK and international comparators is shown to be of value

for model development and needs to be championed across modelling

groups. This argument can be extended to include utility of translating

model outputs to river flow (e.g., Figure 8) to compare with a more

widely observed quantity, ideally using an ensemble of river flow

model configurations to indicate the degree of confidence to which

input simulated runoffs are representative.

Third, through assessing a model chain with interacting compo-

nents, this study highlights the value of using coupled models to

understand interconnected environmental problems. The near-coastal

ocean response to changing river discharge (e.g., Figure 10) gives a

measure of its sensitivity to relatively modest alterations to the input

forcing. From a model development perspective, demonstrating the

sensitivity of ocean models to the input river discharge will provide

more confidence in resulting operational predictions (e.g., Tonani

et al., 2019). Moreover, this study demonstrates an experimental

framework with which to assess how environmental changes in the

atmosphere, terrestrial or marine water cycles might interact through

other components of the Earth system. Assessment of such model

frameworks would benefit from evaluation of simulations over longer

periods, extending from months in this study to multi-annual studies.

These will also provide a strong basis for further exploration to more

biogeochemical aspects of the Earth System at regional scales in

future.
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