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ABSTRACT
Correct interpretation of soft-bodied fossils relies on a thorough understanding of their 

taphonomy. While the focus has often been on the primary roles of decay and early diagenesis, 
the impacts of deeper burial and metamorphism on fossil preservation are less well under-
stood. We document a sequence of late-stage mineral replacements in panarthropod fossils 
from the Sirius Passet Lagerstätte (North Greenland), an important early Cambrian Burgess 
Shale–type (BST) biota. Muscle and gut diverticula were initially stabilized by early diage-
netic apatite, prior to being pervasively replaced by quartz and then subordinate chlorite, 
muscovite, and chloritoid during very low- to low-grade metamorphism. Each new mineral 
replicates the soft tissues with different precision and occurs in particular anatomical regions, 
imposing strong biases on the biological information retained. Muscovite and chloritoid 
largely obliterate the tissues’ original detail, suggesting that aluminum-rich protoliths may 
have least potential for conserving mineralized soft tissues in metamorphism. Overall, the 
fossils exhibit a marked shift toward mineralogical equilibration with the matrix, obscuring 
primary taphonomic modes. Sequential replacement of the phosphatized soft tissues released 
phosphorus to form new accessory monazite (and apatite and xenotime), whose presence in 
other BST biotas might signal the prior, more widespread, occurrence of this primary mode 
of preservation. Our results provide critical context for interpreting the Sirius Passet biota 
and for identifying late-stage overprints in other biotas.

INTRODUCTION
Burgess Shale–type (BST) biotas provide 

critical insight into the function of Cambrian 
marine ecosystems and into the soft-part anat-
omy of diverse animal stem lineages (e.g., 
Daley and Edgecombe, 2014). Much progress 
has been made toward resolving the deposi-
tional controls on their occurrence (see Gaines, 
2014) and the resulting biases in the view they 
provide. They are primarily preserved as car-
bonaceous cuticular compressions (Butterfield, 
1990; Gaines et al., 2012), locally augmented 
by early diagenetic pyrite coatings (e.g., Gab-
bott et al., 2004). This commonality in preser-
vation has promoted the view that BST biotas 

form a coherent taphonomic grouping, the con-
sequence of a complex trade-off between decay, 
organic stabilization, and early diagenetic min-
eralization (Schiffbauer et al., 2014; Anderson 
et al., 2020; Saleh et al., 2021). However, little 
is known about the impact of deeper burial 
and very low- to low-grade metamorphism 
(i.e., anchizone to epizone) on the taphonomic 
outcome of these biotas. These processes have 
predictable consequences for the maturation 
of the carbonaceous fossils (Butterfield, 1990; 
Topper et al., 2018) and for the mineralogy 
and texture of their host sediments (e.g., Pow-
ell, 2003; Strang et al., 2016b; Lerosey-Aubril 
et al., 2018), but the extent to which they over-

print primary taphonomic signals or introduce 
artifacts is unclear.

We combine geochemical and petrographic 
analyses from scanning electron microscopy 
and stable silicon isotopes (see the Supplemen-
tal Material1) to resolve the impact of these pro-
cesses on the early Cambrian (Series 2, Stage 
3) Sirius Passet Lagerstätte (North Greenland), 
one of the oldest and least well understood 
BST biotas (Harper et al., 2019). It, like most 
other BST biotas, is dominated by arthropods 
but is distinguished by having experienced an 
unusually high grade of metamorphism, reach-
ing a peak temperature of 409 ± 50 °C (lower 
greenschist facies) during the Devonian Elles-
merian orogeny (Soper and Higgins, 1987); 
by comparison, the Burgess Shale (British 
Columbia, Canada) reached a peak tempera-
ture of 335 ± 50 °C (Topper et al., 2018). The 
occurrence of silicified muscles in this biota 
(Fig. 1) has led to the hypothesis that an Edi-
acaran silicification window (Tarhan et  al., 
2016) continued into the Cambrian, resulting 
in a unique style of BST preservation (Strang 
et al., 2016b). However, we show instead that 
this is a consequence of the Lagerstätte’s burial 
history, which has profoundly altered original 
fossil preservation. This new understanding 
provides both a context for interpreting this 
biota and for recognizing modified primary 
taphonomic signals in others.

RESULTS AND INTERPRETATION
The mineralized labile soft tissues of panar-

thropods are preserved in a diversity of silicate 

1Supplemental Material. Materials, methods and bulk rock geochemical characterization. Please visit https://doi​.org/10.1130/GEOL.S.15832125 to access the 
supplemental material, and contact editing@geosociety.org with any questions. The supporting petrographic dataset is available at the University of Bristol (UK) Data 
Repository (data.bris) at https://doi.org/10.5523/bris.1imwjxezxgu332uqzlna2lugud
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and non-silicate minerals (Figs. 1C and 2A), 
most shared with the host sediment. Cross-cut-
ting relationships reveal the general paragenetic 
sequence: apatite > quartz > chlorite ± musco-
vite > chloritoid > xenotime.

Apatite [Ca5(CO3,PO4)3(OH,F)] is invariably 
the first phase, consistent with its early preserva-
tion of soft tissues in other biotas (Briggs et al., 
1993). It is extensively replaced by subsequent 
phases, except in the guts (Fig. 2B) where it 
frequently remains important. Quartz [SiO2] 
is the dominant phase (Fig. 2A) and formed in 
multiple generations, including after late-stage 
chloritoid (see below; Fig. 2G). However, it 
everywhere succeeds apatite, as evidenced 
by abundant relict (<1 µm) apatite inclusions 
(Fig. 2C). Silicification is focused at the margins 
of the fossils (Figs. 2B and 2D), where inter-
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Figure 1.  Soft-tissue preservation in ?Sidneyia sp. (Natural History Museum of Denmark specimen MGUH-33947) from the Sirius Passet 
Lagerstätte (North Greenland). (A,B) Contrasting preservation of compressed exoskeleton and three-dimensional internal anatomy revealed by 
low-angle light (A), and high-angle light under water (B). Abbreviations: gd—gut diverticula; gt—gut tract; mu—muscle. (C–G) Corresponding 
energy-dispersive X-ray (EDS) elemental maps, with brightness indicating relative abundance. (C) Composite for silicon (Si), phosphorus (P), 
magnesium (Mg), and iron (Fe), showing localization of mineral phases. (D) Si map indicating preferential silicification of muscle. (E) P map 
indicating phosphatization of gut tract and diverticula. (F) Mg map representing chlorite associated with silicified muscle. (G) Fe map indicating 
partial pyritization of cuticle.

Figure 2.  Key textural relationships of minerals in sectioned soft tissues from the Sirius Passet 
Lagerstätte (North Greenland). (A) Energy-dispersive X-ray (EDS) mineral map of transverse 
section through ?Sidneyia sp. (Natural History Museum of Denmark specimen MGUH-33942), 
with extensively silicified musculature and chloritized viscera; chloritoid and monazite are 
mostly confined to host sediment. (B) Backscattered electron and corresponding wavelength-
dispersive spectroscopy (WDS) elemental map of gut diverticula preserved in apatite (P and 
Ca) against Al-rich sediment with intervening rim of quartz (Si front) (Arthroaspis bergstro-
emi, MGUH-33920). (C–H) BSE images with corresponding false-color overlays. (C) Silicified 
muscle locally overprinted by chlorite; original preservation in apatite indicated by relict 
inclusions (arrowed) (Siriocaris trollae, MGUH-33945). (D) Muscle preserved by quartz and 
chlorite; silicification is densest (Si front) against sediment (dotted white line) where patchy 
muscovite (arrowed) destroys muscle’s structure (?Sidneyia sp., MGUH-33942). (E) Muscle 
preserved by microcrystalline quartz, except against sediment (white dotted line) where it 
is replaced by prismatic inclusion-rich quartz (?Sidneyia sp., MGUH-33942). (F) Silicified 
and chloritized muscle with accessory monazite and xenotime at or near sediment bound-
ary (dotted line) (?Sidneyia sp., MGUH-33942). (G) Silicified muscle cross-cut by late-stage 
chloritoid, which destroys subcellular detail (sarcomeres) and is itself partially replaced by 
later quartz (arrowed) (?Sidneyia sp., MGUH-33936). (H) Xenotime growing inward (partially 
dendritic) and outward (prismatic) at fossil-sediment junction; intervening cuticle (arrowed), 
outlined by xenotime, is now preserved by interlocking quartz and muscovite (Kiisortoqia 
soperi, MGUH-33931).
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locking crystals of quartz (∼5–20 µm) grow-
ing inwards from the sediment may obliterate 
fine morphological detail (Fig. 2E; Fig. S1A 
in the Supplemental Material). Elsewhere, the 
quartz is microcrystalline and faithfully repli-
cates subcellular details originally captured by 
apatite, such as muscle myofibrils (Figs. 2C 
and 2G). Silicified muscle δ30Si values range 
between −0.76‰ and −0.99‰ (Fig. 3; Table 
S3), and are notably closer to that of the matrix 
(−0.7‰) than to other potential contemporary 
early diagenetic and biogenic low-temperature 
sources (see Geilert et al., 2014), consistent with 
a metamorphic origin.

Chlorite [(Mg,Fe)6AlSi3O10(OH)8] and mus-
covite [KAl2(AlSi3O10)(OH)2] typically occur 
as similarly sized (<20 µm long) lath-shaped 
crystals; locally, they are intergrown, indicat-
ing cogenesis. Whereas chlorite is widespread 
(Fig. 1F) and may faithfully pseudomorph silici-
fied soft tissues (Fig. 2D; Fig. S1B), muscovite is 
generally confined to discrete domains (Figs. 2A 
and 2D; Fig. S1C) and does not replicate ultra-
structural details. Chloritoid [(Fe,Mg,Mn)2Al4 
Si2O10(OH)4] principally occurs in the sediment 
(Fig. 2A) along with pyrite [FeS2] porphyroblasts 
(generally 50–90 μm), but it locally overprints 
silicified muscle and gut diverticula (Fig. S1C), 
particularly near the fossil margins or adjacent to 
sediment inclusions. The chloritoid forms large 
(as much as 320 µm long) lath-shaped euhedra 
that traverse multiple muscle fibers and destroy 
all original morphology (Fig. 2G). Their long 
axes exhibit a degree of preferred orientation (Fig. 
S1D), implying growth under stress.

Cuticles typically appear as thin kerogen 
films (carbon compressions), commonly accom-
panied by a patchy coating of (now oxidized) 
pyrite (Figs. 1B and 1G; Fig. S3). However, they 
may also be preserved by interlocking muscovite 
and quartz, indistinguishable from the sediment 
(Fig. 2H).

Accessory phosphate minerals occur in 
close association with the fossils and overprint 
the mineralized soft tissues, largely destroying 
their fine morphology. Xenotime [YPO4] forms 
rosettes within the digestive tract, may crudely 
preserve muscle tissue (Fig. S2D), and locally 
grows outwards (Figs. S2A–S2C) and inwards 
from the walls of fossils (Fig. 2H; Figs. S2B and 
S2C). Similarly, subhedral to euhedral apatite 
(as large as ∼20 µm) (Fig. S2G) occurs both 
inside and outside the fossils, in the latter case 
as a diffuse corona extending ∼400 µm away 
(Figs. S2E and S2F). By contrast, monazite 
[(REE)PO4, where REE indicates rare earth 
elements] is generally confined to the adjacent 
sediment (Fig. 2F), where it may be concen-
trated on only one side of fossils (Figs. S2E 
and S2F), suggesting growth linked to fluid 
movement (cf. Evans et al., 2002). In all cases, 
it is poikiloblastic and comparatively coarse 
(30–380 µm), locally replacing accessory apa-
tite (Fig. S2H) and at least partially overlapping 
syntectonic chloritoid formation (Fig. S2I) (see 
Wilby et al., 2007). Lastly, an amorphous P, Ca, 
Fe, Al-rich phase, interpreted to be a weathering 
product of apatite and pyrite, fills interstices in 
the fossils (Fig. S2J).

The bulk rock is enriched in aluminum 
and depleted in calcium compared to the Bur-
gess Shale, but its major element composi-
tion otherwise overlaps (for details, see the 
Supplemental Material; Table S4, Fig. S4). 
Powell (2003) considered the Burgess Shale 
to be unremarkable for a pelite, and though 
the mineralogy of the Sirius Passet protolith 
cannot be ascertained with certainty (espe-
cially the starting clay composition), it likely 
passed through a typical prograde sequence of 
mineral reactions for an aluminum-rich pelite 
(e.g., see Bucher and Grapes, 2011), leading to 
the observed succession of soft-tissue replace-
ments (Fig. 4).

DISCUSSION
Silicified soft-bodied biotas are scarce in 

the Phanerozoic; they rarely preserve labile 
soft tissues (e.g., muscle) and are confined to 
exotic non-marine settings (e.g., Trewin et al., 
2003). By contrast, early diagenetic silicifica-
tion was active in diverse marine environments 
in the Ediacaran and has been implicated in the 
preservation of several of its soft-bodied bio-
tas (Muscente et al., 2015; Tarhan et al., 2016). 
This dichotomy has led to the suggestion that 
a silicification taphonomic window may have 
persisted into the Cambrian and been respon-
sible for silicifying soft tissues in the Sirius 
Passet Lagerstätte (Strang et al., 2016a, 2016b; 
Topper et al., 2018). Our petrographic and iso-
topic data refute this idea and reveal instead 
that silicification was a product of very low- to 
low-grade metamorphism, consistent with its 
late-stage formation in other BST Lagerstätten 
(e.g., Powell, 2003; Lerosey-Aubril et al., 2018). 
Evidence for multiple episodes of silicification 
in the Sirius Passet Lagerstätte (e.g., before and 
after chloritoid formation) is consistent with the 
release of silica from the host sediment during 
successive clay mineral transformations (van de 
Kamp, 2008; Fig. 4).

Textural relationships indicate that preserved 
muscle and digestive systems were initially stabi-
lized by early diagenetic apatite (cf. Wilby et al., 
1996; Butterfield, 2002) prior to being progres-
sively replaced by other minerals. Overall, the 
mineralogy, isotopic composition, and texture 
of the soft tissues have converged on those of 
the host sediment, and the primary preservation 
mode of the soft tissues has been irrevocably 
altered. Likewise, the originally phosphatized 
guts have been replaced by quartz and clays, sup-
porting an alternate explanation for apparently 
sediment-filled guts (Butterfield, 2002), which 
have been used elsewhere to invoke deposit-
feeding habits in certain arthropods (cf. Hou and 
Bergström, 1997; Lerosey-Aubril et al., 2012). 
Each new replacing mineral retains a particular 
level of detail and is focused in discrete anatomi-
cal regions (Figs. 1C and 2A), imposing signifi-
cant biases on the ultimate survival and fidelity of 
preservation of different tissues. Muscovite and 
chloritoid growth were especially deleterious, 
suggesting that aluminum-rich protoliths, such 
as the Burgess Shale (Powell, 2003), have the 
least potential for conserving labile soft tissues 
during very low- to low-grade metamorphism. 
By contrast, pyrite is unaffected, meaning that 
this taphonomic pathway at least is reliably con-
served (now weathered).

Phosphorus released during successive min-
eral transformations was redistributed into new 
accessory phosphates. Accessory monazite is 
widely reported in other BST biotas (Conway 
Morris, 1990; Moore and Lieberman, 2009; 
Broce and Schiffbauer, 2017), implying that 
phosphatized soft tissues may have been lost 

Figure 3.  δ30Si values for silicified muscle (closed circles) and matrix (open square) samples 
from the Sirius Passet Lagerstätte (North Greenland) compared to published ranges (see the 
Supplemental Material [see footnote 1] for references. Minimal variability within Sirius Passet 
samples and their distinction from alternative potential sources suggest a matrix-derived 
source for soft-tissue silicification.
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from these too and have been a more impor-
tant component of BST preservation than 
their present distribution suggests (Daley and 
Edgecombe, 2014; Paterson et al., 2015). The 
sum of evidence, including other examples of 
late-stage overprint (e.g., Gaines et al. 2019), 
demonstrates the potential for deep burial and 
metamorphism to modify primary taphonomic 
signals and biological information, and empha-
sizes the need for site-specific characterization 
of the BST preservation.

CONCLUSIONS
Silicified soft tissues in the Sirius Passet 

Lagerstätte are a product of progressive altera-

tion of originally phosphatized soft tissues during 
very low- to low-grade metamorphism. Contrary 
to previous assertions, they do not record a novel 
mode of primary BST preservation, but rather 
an extreme example of a spectrum of late-stage 
processes that operated in other BST Lagerstät-
ten. The mineralogy and chemistry of Sirius 
Passet fossils have converged on those of the 
host sediment, preferentially destroying certain 
tissues and inducing a reduction in resolution of 
others. Growth of muscovite and chloritoid was 
especially destructive, suggesting that protolith 
composition has a bearing on the ultimate fate 
of soft tissues during metamorphism. Accessory 
monazite formed in response to the replacement 

of the originally phosphatized soft tissues and 
may serve as a useful proxy for the former pres-
ence of such tissues elsewhere.
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