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Abstract: The increasing impact of anthropogenic interference on river basins has facilitated the
development of the representation of human influences in large-scale models. The representation
of groundwater and large reservoirs have realised significant developments recently. Groundwater
and reservoir representation in the Global Water Availability Assessment (GWAVA) model have
been improved, critically, with a minimal increase in model complexity and data input requirements,
in keeping with the model’s applicability to regions with low-data availability. The increased
functionality was assessed in two highly anthropogenically influenced basins. A revised groundwater
routine was incorporated into GWAVA, which is fundamentally driven by three input parameters, and
improved the simulation of streamflow and baseflow in the headwater catchments such that low-flow
model skill increased 33–67% in the Cauvery and 66–100% in the Narmada. The existing reservoir
routine was extended and improved the simulation of streamflow in catchments downstream of
major reservoirs, using two calibratable parameters. The model performance was improved between
15% and 30% in the Cauvery and 7–30% in the Narmada, with the daily reservoir releases in the
Cauvery improving significantly between 26% and 164%. The improvement of the groundwater
and reservoir routines in GWAVA proved successful in improving the model performance, and the
inclusions allowed for improved traceability of simulated water balance components. This study
illustrates that improvement in the representation of human–water interactions in large-scale models
is possible, without excessively increasing the model complexity and input data requirements.

Keywords: large-scale model; hydrology; groundwater; reservoirs; Cauvery; Narmada

1. Introduction

Humans are increasingly altering the hydrological cycle through the construction
of reservoirs, changes in land-use, water abstractions, and urbanisation [1]. Accurate
quantification of freshwater flows and storage is therefore important to support water
management and governance in the near and far future [2]. Large-scale hydrological mod-
elling estimates water fluxes, such as evapotranspiration, river discharge, and groundwater
recharge, and water storage, including soil water, groundwater, and reservoirs [1,3,4] at a
basin or continental scale.

Groundwater accounts for approximately one-third of total water withdrawals glob-
ally, and an estimated two billion people rely on groundwater as their primary source
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of water. Additionally, more than half of the irrigation water globally is abstracted from
groundwater sources [5]. It is therefore important to select a model that can accurately
simulate the generation of groundwater, particularly in basins where the main source of
baseflow depends upon groundwater storage [6].

A better representation of groundwater processes needs to be included in large-scale
hydrological models to improve simulations and the understanding of feedback between
the human and natural systems [7–9]. Simple one-dimensional groundwater routines
currently exist within HiGW-MAT (Human Intervention and Groundwater coupled MAT-
SIRO) [8], H08 [10], PCRaster GLOBal Water Balance (PCR-GLOBWB) [11], Community
Water Model (CWatM) [12], WaterGAP [13], and Variable Infiltration Capacity (VIC) [14],
with the focus on quantity and change in groundwater storage. Most models allow for
groundwater to be recharged through rainfall, wetlands, and reservoirs. Groundwater
abstractions are incorporated to meet demand. As far as the author is aware, none of these
models, except VIC [9], consider lateral flow within the groundwater store without being
fully coupled to MOD-FLOW [15]. Using MOD-FLOW significantly increases the data and
computational requirements.

Approximately one-sixth of the annual river discharge globally available is stored
because of the construction of an estimated 70,300 reservoirs [16]. Reservoir operations
have a considerable impact on the natural discharge regime of a river. Simulating the
available storage, volume, and timing of reservoir releases pose a significant challenge to
hydrological modelling at a basin and continental scale [17]. Reservoir operational data are
rarely freely available, if at all. Therefore, hydrological models include various schemes to
estimate reservoir storage and releases.

A module that optimises reservoir outflow based on the operating purpose of the
reservoir is included in VIC [18], WaterGAP [19], and H08 using the Hanasaki reservoir
routine [20,21], and H08 has been updated to represent water transfers and local reser-
voirs [10]. The reservoir scheme used in Lund-Potsdam-Jena managed Land (LPJmL) [22]
combines aspects used in H08 [21] and VIC [18]. Monthly target releases are calculated for
each month of each operational year according to the primary purpose of the reservoir. The
reservoir scheme in PCR-GLOBWB [11] is based on that included with VIC [18] but uses
estimates of future inflows and demands via a weighted average of antecedent conditions.
CWatM utilises a function of three storage limits and three outflow functions to determine
reservoir releases. The storage limits are user-specified and depend on the physical char-
acteristics of the reservoir. Other examples of recent reservoir routine implementations
include, but are not limited to, the Soil & Water Assessment Tool (SWAT) [23], Distributed
Hydrology Soil Vegetation Model (DHSVM) [17], VIC [9], Modélisation Environnementale
Communautaire-Surface Hydrology (MESH) [24], and Hydrological Predictions for the
Environment (HYPE) [25].

Although the above-mentioned models are useful tools, in this study, GWAVA is
used because it is a water resource model specifically designed to work in low-data
environments. GWAVA is a large-scale gridded water resource model [26] that accounts
for natural hydrological processes (soils, land-use, and lakes), using a conceptual rainfall-
runoff model and anthropogenic stresses (groundwater abstraction, irrigation, domestic
and industrial demands, reservoir storage, and water transfers) via a demand-driven
routine. The model can be run at a daily or monthly time scale and is adaptable to the
data availability of the region. GWAVA was developed primarily for use in large, data-
scarce regions. The model comprises only eleven mandatory parameters: four parameters
pertaining to the physical parameters of the basin, three-time series pertaining to the
climate variables (precipitation, potential evaporation, temperature), and four calibratable
factors. The model further incorporates five reservoir parameters, nineteen water demand
constraints, and six characteristics of mountains and glaciers that are optional input when
the relevant data are available. GWAVA, however, does not comprehensively account for
groundwater processes or regulated reservoir releases.
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GWAVA has a simplistic representation of groundwater. The groundwater store for
each grid cell receives groundwater recharge from the soil moisture storage and produces
the baseflow component of streamflow. As a basic representation of deeper groundwater
processes, water can drain from the groundwater store; this water is lost from the system.
Water abstractions from the groundwater store are decoupled and are not abstracted in
each time-step but summed at the completion of the run. GWAVA simulates regulated
reservoir release using a non-linear equation utilising mean inflow, reservoir capacity, and
two outflow parameters.

GWAVA has proven to be a useful tool for assessing water resource management;
however, fundamental functionality for improving water resource estimations in highly
anthropogenically influenced basins needs revision. With the increasing reliance on ground-
water in semi-arid and arid regions and the continuous construction of major reservoirs
globally, there is a critical need for water resource assessment tools to accurately consider
these impacts, not only on the hydrological system but on water resource management. In
line with existing large-scale models and the requirements to accurately represent highly
anthropogenically influenced regions, this study aims to:

• Improve key components of GWAVA to better represent water management while
maintaining low input data requirements and model complexity.

• Test the improvements in suitable basins to determine the success of the incorporated
functionality.

• Use additional model output to gain insight into components of the basin water balance.

The GWAVA model is updated to better represent both groundwater abstraction,
artificial recharge, and regulated reservoir releases. These updates are based largely on
the principles of the AMBHAS-1D model and reservoir operations incorporating a routine
derived from the Hanasaki reservoir routine.

A groundwater routine based on AMBHAS-1D is included, introducing one cali-
bratable parameter regarding the groundwater depth below ground level and two input
parameters regarding the specific yield and depth of underlying geology. The Hanasaki
equations are modified to allow for two calibratable outflow parameters to replace physical
reservoir-engineering parameters. The addition of these two routines introduces only two
input parameters and three calibratable parameters into the model.

The original model and the revised versions of the models are applied in two highly
anthropogenically influenced basins, the Cauvery and Narmada Basins, India. The choice
of the basin was based on the Cauvery being subjected to a high degree of groundwater
pumping, while the Narmada houses three of the largest reservoirs in India. The overall
model performance is evaluated using the Kling-Gupta Efficiency, while the model’s ability
to represent the low-flow periods is evaluated using the Log-Nash Efficiency at a sub-
catchment scale. The change in reservoir outflows using the original GWAVA equation and
the new modified Hanasaki equations is evaluated using the Nash-Sutcliffe Efficiency and
the bias at the outlets of major reservoirs. Observed and simulated average sub-catchment
groundwater and major reservoir storage levels are directly compared.

2. Methodology
2.1. Catchment Descriptions

The Cauvery and the Narmada basins (Figure 1) are situated in Peninsula India and
are the fifth and sixth largest river basins in India, respectively. Both basins are snow-free,
highly anthropogenically influenced, and reservoir-regulated to sustain the livelihoods of
collective 45 million people. The basins experience a large degree of heterogeneity, not only
in topography and land-use but also in climate and economic development [27].
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Figure 1. Inset: the location of the Cauvery and Narmada Basins within India. Main maps: sub-catchment boundaries,
modelling grid, and locations flow gauges used for calibration and major reservoirs within the Cauvery Basin and the
Narmada Basin.

Both basins are highly regulated by reservoir releases, with a visible impact on down-
stream flows. The Narmada is sustained by the base flow through the dry periods, and the
domestic and agricultural activities in the Cauvery are highly dependent on groundwater
sources. Both basins suffer water scarcity, therefore the modelling and understanding of
water resources are important for water management. Thus, it is critical that both reservoir
releases and groundwater are accurately represented to undertake effective water resource
modelling exercises.

The Cauvery is considered semi-arid, with the southwest (SW) monsoon supplying
most of the water in the basin. The basin experiences distinct intra-annual seasons, namely,
the SW monsoon between June and August, the northeast (NE) monsoon in September
and October, and post-monsoon conditions in the winter. The upper basin receives rainfall
from both the SW and NE monsoons, whereas the lower basin only receives rainfall from
the NE monsoon. The mean annual rainfall varies from 6000 mm in the upper reaches
to 300 mm on the eastern boundary. The mean daily temperatures vary between 9 and
25 ◦C throughout the basin [28]. The Western Ghats form a rain shadow along the western
boundary, decreasing the precipitation gradient during the SW monsoon.

The current hydrological functioning of the Cauvery Basin has been significantly
altered over the last century by water supply infrastructure, urbanisation, land-use change,
and increased groundwater use. The Cauvery Basin is situated predominantly within
the federal states of Karnataka and Tamil Nadu [28], and has been identified as highly
water-stressed [29]. Despite rapidly developing urban and industrial centres, irrigation
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throughout the basin requires approximately 90% of the total water resources [30]. The
basin is highly regulated by aggressive groundwater pumping and reservoir release along
the tributaries and main channel, with surface water flows only reaching the Bay of Bengal
in years of strong monsoons [31]. Several hydrological modelling exercises have been
conducted in the Cauvery Basin or sub-catchments thereof. Remote sensing methods [32],
the artificial neutral network (ANN) model [32], GWAVA model [33,34], VIC model [34],
and SWAT model [34,35] have been applied in various sub-catchments of the Cauvery. At a
basin-scale, the SWAT [36–39], Soil Conservation Service Curve Number (SCS-CN) [40,41],
and Variable Infiltration Capacity macroscale hydrological model (VIC- MHM) [42] have
been used to simulate various components of the hydrological cycle.

The Narmada basin is subject to a tropical monsoon climate, with the southwest (SW)
monsoon between July and September. The monsoon supplies over 75% of the basin’s
annual precipitation, with a rainfall gradient of 650 mm per annum to more than 1400 mm
per annum in the upper regions. The mean daily temperatures vary between 18 and 32 ◦C
throughout the basin.

The Narmada Basin is facing numerous resource management challenges, including
state and sectoral competition for water. This highly regulated river flows through the
states of Chhattisgarh, Madhya Pradesh, Maharashtra, and Gujarat, housing more than
250 dams of various sizes and purposes [43]. More than half of the basin is used for
agriculture, with most of this land within designated irrigation command areas. The
agriculture within the command areas is highly intensified, with an average cropping
intensity of 135% [44]. The low flows in the basin are sustained by base flow and reservoir
releases. The Narmada has been modelled at the basin-scale using the SCS-CN method [45],
VIC-MHM [42], and geoinformatics [46]. Sub-catchments of the Narmada have been
represented using SHE [47], SCS-CN [48–50], and SWAT [51]. The above-mentioned studies
focussing on the Cauvery and the Narmada Basins highlight the minimal representation of
anthropogenic influences, groundwater abstraction, and reservoir operations within the
existing modelling exercises. GWAVA has been applied in both the Cauvery basin [33,34]
and the Upper Narmada basin [52]. These publications highlight the need for a more
comprehensive reservoir routine when modelling highly regulated basins, and for the
inclusion of a coupled groundwater module to account for the limitations of natural
groundwater resources and groundwater abstraction to meet anthropogenic demand.

2.2. Model Improvement

GWAVA has proven to be a useful tool for assessing water resource management,
however, the model should be extended to include the representation of processes and
to better represent groundwater and major reservoirs, due to the increasing reliance on
groundwater in semi-arid and arid regions and the continuous construction of major
reservoirs globally.

2.2.1. Representing Groundwater Processes

AMBHAS-1D [53] is a spatial groundwater model that determines a daily groundwater-
level based on equations from McDonald & Harbaugh (1988) [54]. AMBHAS-1D imple-
ments distributed transient groundwater modelling. The model is based on the ground-
water flow equation numerically solved, using the finite-difference scheme [55]. The
implementation of various AMBHAS versions in India was found to be highly success-
ful in simulating groundwater-levels across areas of Karnataka [56], in the Barembadi
catchment [57,58] and an idealised system based on the River River [10]. Additionally,
de Bruin et al. (2012) [59] utilised the results generated from AMBHAS-1D to guide
the set of SWAT groundwater parameters for use in the Jaldhaka Basin. The successful
application of AMBHAS-1D highlighted its suitability in India and other regions with
low-data availability.

In line with the AMBHAS-1D conceptualisation, additional groundwater processes
have been incorporated into GWAVA through the full coupling of the recharge, streamflow,
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water abstractions, and base flow (Figure 2). The groundwater store was conceptualised
as a vertically layered aquifer. Each layer was allocated a specific yield and depth and
can vary from cell to cell based on data available about local hydrogeology. The aquifer
can be recharged from soil moisture, the bottom of lakes, reservoirs, and small-scale
recharge interventions and leaking via the water supply infrastructure. Water can be
directly abstracted from the aquifer to its maximum depth. The groundwater contribution
to baseflow (BF) was calculated as follows:

BF =

{
γ × (GWstore − GWBF), GWstore > GWBF
0, GWstore ≤ GWBF

(1)

where γ is the routing coefficient, GWstore is the groundwater store, and GWBF is the level
of groundwater storage below which there is no baseflow. GWBF can be converted to an
aquifer depth below ground level by dividing by the specific yield.
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The implementation of the fully coupled groundwater functionality with GWAVA is
flexible. The necessary input is limited to the specific yield and aquifer depth. In areas
where data are limited, the aquifer characteristics can be agglomerated into a single layer,
whereas, in regions with more comprehensive data the aquifer can be divided into more
layers (with no upper limit).

2.2.2. Regulated Reservoirs

In practice, reservoir-operating rules are normally based on the specifications of
each reservoir, the hydrometeorological conditions of the basin, and the water demand
downstream. Hanasaki et al. (2006) [20] developed an algorithm to approximate reservoir-
operating rules within global hydrological and land-surface models. The algorithm reflects
these parameters and can be implemented with currently available global datasets (reser-
voir dimensions and purpose, simulated inflow, river discharge, water use, etc.).

A reservoir operation scheme is a valuable tool in regions where specific data about the
reservoir characteristics of the outflow volumes are not available. The algorithm consists of
two equations. The first is used when a consistent reservoir release is expected (i.e., when
used for hydropower or to meet domestic demand), and the second is for a seasonal release
(i.e., when used for irrigation).
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For consistent release reservoirs, the operating rules are set to minimise inter-annual
and seasonal reservoir releases. Hanasaki et al. (2006) [20] presents the equations as
follows.

When the reservoir capacity divided by the mean annual inflow (c) is greater than 0.5:

r =
Sini

0.85C
× imean (2)

When the reservoir capacity divided by the mean annual inflow (c) is less than or
equal to 0.5:

r =
(

C
0.5

)2
× Sini

0.85C
× imean +

[
1 −

(
C

0.5

)2
]
× i (3)

where r is the simulated reservoir release (m3/s), Sini is the simulated storage at the
beginning of the operational year (m3), C is the user input reservoir capacity (m3), imean is
the simulated mean annual inflow (m3/s) and, i is the simulated daily inflow (m3/s).

This algorithm has been successfully incorporated into H08 [61] and influenced the
reservoir routines of WATERGAP [1] and LPJmL [23]. The scheme is simple and designed
primarily to represent inter-annual and monthly fluctuations in reservoir release. This
approach has been demonstrated to be largely valid, but because reservoir operations are
highly complex and tend to be based on human decisions, there is inevitably a level of
uncertainty associated with its application.

The two new reservoir equations added to the GWAVA model are a simplified version
of the Hanasaki equations [20], while the existing reservoir routine is maintained as an
option [5]. Since GWAVA can account for irrigation water demand within the transfers’
routine, the equations for consistent reservoir release have been implemented. In the
original Hanasaki equation, imean was calculated as the mean inflow overall simulated
years, as Sini accounted for inter-annual variability. In Equation (5), imean has been changed
to reflect the yearly mean inflow to introduce inter-annual variability.

When the reservoir capacity divided by the mean annual inflow (c) is greater than 0.5:

r = α × iam (4)

When the reservoir capacity divided by the mean annual inflow (c) is less than or
equal to 0.5:

r = α × β × iam + [1 − β]× i (5)

where iam is the mean yearly inflow (m3/s) and α and β are user-set parameters between 0

and 1, replacing Sini
0.85C and

(
C

0.5

)2
from the original Hanasaki equations, respectively.

The user-set parameters can be manually calibrated to best fit either the observed
streamflow at the next downstream gauging point of the reservoir or the reported reservoir
outflow-data. The addition of the regulated reservoir routine includes an additional two
calibratable parameters (α and β) and thus does not increase the input data required to
incorporate this routine.

2.3. Data Acquisition

Input data were collected from several sources and extracted from global and regional
datasets. The sources and details of the data used in this modelling exercise can be found
in Tables A1 and A2, and in Appendix A.

2.4. Model Setup

The Cauvery and Narmada Basins were modelled at a spatial scale of 0.125 degrees
using four different versions of the GWAVA model.

• GWAVA—the original version of GWAVA [5]
• GWAVA-GW—the original version of GWAVA with groundwater coupling
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• GWAVA-Res—the original version of GWAVA with the regulated reservoirs
• GWAVA 5.1—the original version of GWAVA with both the groundwater coupling

and regulated reservoirs

A thirty-year simulation period of 1981 to 2010 was chosen. The Cauvery and Nar-
mada Basins were disaggregated into 444 and 653 modelling cells, respectively. Both
basins included domestic, irrigation, and livestock demand (with the inclusion of indus-
trial demand limited to the Cauvery due to data limitations in the Narmada), large-scale
water transfers, hydropower reservoirs, irrigation reservoirs, and agriculture within the
command and rural areas.

2.5. Model Calibration

Several gauges were included within each basin for the purpose of calibration: 14
in the Cauvery and 13 in the Narmada (Figure 1). Simulated streamflow was calibrated
against observed streamflow using the SIMPLEX auto-calibration routine. This routine
utilises four parameters (a surface and groundwater routing parameter, a Probability
Distributed Model (PDM) parameter that describes the spatial variation in soil moisture
capacity, and a multiplier to adjust rooting depths). The calibration gauges were selected
based on the completeness of the data, time of the data, and size of the sub-catchment. The
observed data were deemed sufficient when more than 50% of the values were identified
as “observed” and not “computed” and had at least five consecutive years available from
1981 until 2010. Additionally, sub-catchments smaller than 800 km2 (six GWAVA grid cells)
were nested into the larger sub-catchment in which they are located.

The reservoir outflow parameters were manually calibrated. Table 1 presents the
parameters for each reservoir that provided the best fit to either observed outflow-data,
where available, or downstream observed streamflow.

Table 1. Reservoir outflow parameters determined by a manual calibration for each major reservoir in the Cauvery and
Narmada basins.

Reservoir Basin Capacity
(109 m3)

Simulated Average Annual
Inflow (1010 m3/Year) c Equation α β

Hemavathy Cauvery 0.99 0.22 0.45 5 0.7 0.8
Krishna Raja Sagara (KRS) Cauvery 1.016 0.35 0.29 5 0.7 1

Kabini Cauvery 0.44 0.15 0.29 5 0.1 1
Bhavanisagar Cauvery 0.791 0.09 0.86 4 1

Mettur Cauvery 2.64 0.70 0.38 5 1 0.1
Bargi Narmada 3.18 0.32 1.01 4 0.3
Barna Narmada 0.539 0.21 0.26 5 0.3 0.3
Tawa Narmada 2.313 0.27 0.86 4 0.3

Indira Sagar Project (ISP) Narmada 10 3.03 0.33 5 0.1 1
Omkareshwar Sagar

Project (OSP) Narmada 0.987 1.40 0.07 5 0.1 1

Sardar Sarovar
Project (SSP) Narmada 9.5 3.69 0.26 5 0.5 0.3

Karjan Narmada 0.63 3.89 0.02 5 0.1 0.3

3. Model Evaluation

Due to the high variability of streamflow in both the Cauvery and Narmada basins,
several different metrics are used to quantify the model performance under various flow
regimes. In this study, the Kling- Gupta Efficiency (KGE) was used to determine the models’
ability to represent the entirety of the hydrograph, the Nash-Sutcliffe Efficiency (NSE) to
determine the model performance in representing the high flow periods, the Log-Nash
Efficiency (LNE) was used to determine the model’s performance in representing the low-
flow periods, and the bias was used to evaluate the model ability to estimate the total
volume of streamflow across the modelling period. The change in model skill was utilised
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to compare the performance of two model configurations (GWAVA and GWAVA-GW,
GWAVA and GWAVA-Res, and GWAVA and GWAVA 5.1).

3.1. Kling-Gupta Efficiency (KGE)

The KGE is based on correlation, variability bias, and mean bias, and is calculated
as follows:

KGE = 1 −

√
(r − 1)2 +

(
σs

σo
− 1
)2

+

(
µs

µo
− 1
)2

(6)

where r is the correlation coefficient between the simulated and observed data, σo is the
standard deviation of observation data, σs is the standard deviation of the simulated data,
µo is the mean of observation data, and µs is the mean of simulated data.

The KGE indicates the overall performance of the model. The metric allows some
perceived shortcomings with NSE to be overcome and has become increasingly popular
for the evaluation of hydrological model skill. A KGE of one indicates perfect agreement
between simulations and observations. However, there are many opinions as to where the
differentiation of “good” and “-poor” model performance thresholds lie within the KGE
scale. Negative KGE values do not always imply that the model performs worse than the
mean flow benchmark. For this study, and to be able to compare model performance, a
KGE score of less than 0.2 was deemed poor, between 0.2 and 0.6 was fair, and above 0.6
was good.

3.2. Nash-Sutcliffe Efficiency (NSE)

NSE is a popular metric to evaluate hydrological model performance because it
normalises model performance into an interpretable scale, and was calculated as follows:

NSE = 1 − ∑T
t=1
(
Qt

s − Qt
o
)2

∑T
t=1
(
Qt

o − Qo
)2 (7)

where Qt
s and Qt

o are, respectively, the simulated streamflow, and the observed streamflow
at time-step t; Qo is the average observed streamflow over all timesteps considered.

An NSE of one represents a perfect correspondence between the simulations and ob-
servations. An NSE of zero indicates that the model simulations have the same explanatory
power as the mean of the observations. An NSE of less than zero represents that the model
is a worse predictor than the mean of the observations. However, NSE does not provide an
equal benchmark for different flow regimes. Utilising the single NSE metric is not sufficient
for determining the performance of a model, however, it can provide context if utilised in
conjunction with additional model performance efficiencies. For this study, an NSE score
of less than 0.2 was deemed poor, between 0.2 and 0.6 was fair, and above 0.6 was good.

3.3. Log-Nash Efficiency (LNE)

LNE is used for model evaluation when low-flow performance is of importance and
was calculated as follows:

LNE = 1 −
∑T

t=1

(
Qt

s_log − Qt
o_log

)2

∑T
t=1

(
Qt

o_log − Qo_log

)2 (8)

With the following:
Qt

s_log = log10
(
Qt

s + c
)

(9)

Qt
o_log = log10

(
Qt

o + c
)

(10)

where Qt
s_log and Qt

o_log are, respectively, the log of simulated streamflow, and the log of

observed streamflow at time-step t; Qo_log is the average of log-observed streamflow over
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all timesteps considered. c is a positive constant equal to the 10th percentile of the observed
flow. The use of the constant c reduced emphasis on negligible flows, which tend to be
unreliable, and avoids numerical problems with attempting to calculate the logarithm of
zero flows. The LNE was interpreted in the same way as the NSE.

3.4. Bias

The bias is the average tendency of the simulated data to over-or under-estimate
the observed data (Equation (11). The optimal value for the bias is zero. Positive values
indicate a model under-estimation and negative values indicate an over-estimation. When
assessing a model’s ability to simulate streamflow, the bias indicates the ability of the
model to predict the overall streamflow volume across the modelling period.

Bias = ∑T
t=1(yo − ys)

∑n
t=1 yo

× 100 (11)

where yo is the observed data value, ys is the simulated data value, and t is the time-step.

3.5. Model Skill

The change in model skill, ∆skill, between the different model configurations for
streamflow prediction was calculated as follows:

∆skill =
R2 − R1

Roptimal − R1
(12)

where R1 and R2 are the efficiency values for the two model configurations being compared
and Roptimal is the best possible efficiency value for a given metric. A positive value of ∆skill
indicates that model configuration two performs better than model configuration one, a
zero value suggests similar performance, and a negative value demonstrates that model
configuration two performs less well than model configuration one.

4. Results
4.1. Streamflow

The ability of the four model versions to predict the observed streamflow was pre-
sented through the monthly KGE at each gauging station (Figure 3), to demonstrate the
model’s overall performance, and as an indication of the model’s skill in representing
the low-flows (Figures 3 and 4). The monthly bias, NSE, KGE, and LNE values for each
sub-catchment for each model version can be found in Table A3 in Appendix B

The model performance was higher in the Narmada compared to the Cauvery. In the
sub-catchments of the Cauvery and Narmada, GWAVA 5.1 outperforms GWAVA. However,
the performance of GWAVA-GW and GWAVA-Res varies between the sub-catchments. As
expected, in sub-catchments without major reservoirs, GWAVA produced the same results
as GWAVA-Res, and GWAVA-GW produced the same results as GWAVA 5.1.

All the simulated flows for the sub-catchments in the Narmada are classified as “good”
in performance, except for the simulation of Belkeri without the groundwater routine,
which was classified as “fair” (Figure 3). In the Cauvery, the results are more varied,
with eight sub-catchments classified as good and six sub-catchments as fair when using
GWAVA 5.1. The performance of the downstream sub-catchments, without the combination
of groundwater and the regulated reservoir routine, falls within the fair range (Figure 4).
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The ability of the model to represent the low-flow periods well is critical in basins that
suffer from water scarcity. In the Cauvery Basin, the aggressive pumping of groundwater
limits the baseflow released from the groundwater store to sustain the streamflow in the
dry season, and the large reservoirs store and release water in contrast to the seasonal
patterns. The inclusion of groundwater feedback into GWAVA improves the simulation of
the low-flows within the headwater sub-catchments, which is critical when assessing water
resources and surface water-groundwater interactions (Figure 5iii). The incorporation
of the regulated reservoir module allows for the release of water in the dry season. The
reservoir module markedly improves the simulation downstream of these major reservoirs
in the Cauvery (Figure 5ii). The combination of the groundwater processes and inclusion
of the regulated reservoirs improves the ability of GWAVA to represent the low-flows
throughout the basin (Figure 5i).
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The Narmada River is primarily groundwater-fed following the monsoon. Under-
standing the baseflow contribution to streamflow and the impact that the large reservoirs
have on the dry season flow poses a challenge for water managers. The inclusion of the
groundwater module improves the model’s representation of the low-flows within the
headwater sub-catchments (Figure 6iii). The inclusion of the groundwater processes al-
lows the model to better retain water within the groundwater store and release baseflow
throughout the year. The large reservoirs within the Narmada consistently release water
through the hydropower plants, and thus the incorporation of the regulated reservoir
routine allows the model to release water from the reservoirs throughout the year. The
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regulated reservoir routine produces a better match to the observed low-flow-data periods
compared to results using the original GWAVA reservoir routine (Figure 6ii). The dual
incorporation of the groundwater processes and the regulated reservoir routine provides a
better representation of the low-flow periods across the basin (Figure 6i).
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4.2. Groundwater

The average observed depth to groundwater (measured from ground level) is deeper
in the Cauvery than in the Narmada (Figure 7). In the Cauvery, the wetter, more pristine
sub-catchments along the western boundary (Western Ghats) have a shallower observed
groundwater-level (5 to 10 m below ground level), while the groundwater-level deepens
(11 to 35 m below ground level) throughout the remainder of the basin. In the Cauvery,
GWAVA 5.1 can represent shallower groundwater-levels with higher accuracy compared
to deeper levels, however, it systematically over-estimates the depth to groundwater
throughout the basin.
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Figure 7. Average observed groundwater-levels below ground level (legend), and the difference between the observed and
GWAVA 5.1 simulated groundwater-levels in meters (numerical values on maps), from 1981 to 2010 for the Narmada and
Cauvery sub-catchments.

The average observed groundwater depth within the Narmada basin is no deeper than
10 m below the ground level. GWAVA 5.1 can represent the average groundwater-levels
well throughout the sub-catchments, with the observed average differing a maximum
of two meters from the simulated average in the most downstream sub-catchment. The
representation was more accurate in the upstream sub-catchments where the water table is
shallower, and the landscape is less degraded.

4.3. Reservoirs

In the Narmada, GWAVA represents the daily reservoir releases well but over-estimates
the total volume of water released at Bargi, Tawa, and SSP (Table 2). The inclusion of the
regulated reservoir routine in the Narmada did not significantly improve the daily release
representation but did improve the total volume of water being released over the simu-
lation period. In the Cauvery, GWAVA represents daily release well at Kabini and KRS,
but poorly at Mettur. The total volume of water released from the major reservoirs in the
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Cauvery is under-estimated. When applying the regulated reservoir routine, the daily
releases and total volume of water released are significantly improved (Table 2).

Table 2. The percent bias and daily Nash- Sutcliffe Efficiency (NSE) at the outlets of the major
reservoirs for GWAVA and GWAVA-Res.

Reservoir
Outlet

Bias (%) Daily NSE

GWAVA GWAVA-Res GWAVA GWAVA-Res

Bargi 17.8 3.2 0.53 0.62
Tawa 7.57 0.4 0.74 0.7
SSP 16.09 4.35 0.62 0.65

Kabini −13.45 3.64 0.37 0.59
KRS −33.69 −15.43 0.38 0.52

Mettur −4.69 9.35 −0.25 0.39

The application of the regulated reservoir routine better represents the annual reservoir
releases throughout the observational time period at Kabini, Tawa, KRS, and SSP (Figure 8).
At Bargi, GWAVA-Res simulates the normal and dry years better than GWAVA, but under-
estimates the annual releases in wet years (Figure 8). The annual releases are improved
until 1995 at Mettur dam, but following 1995, GWAVA-Res has a better temporal pattern
and GWAVA a better representative release volume (Figure 8). Although the annual volume
at Mettur was better represented by GWAVA, at the daily scale, GWAVA-Res can capture
the regulated reservoir pattern significantly better than GWAVA (Figure 9).

GWAVA 5.1 represents the daily reservoir capacity during the monsoon period well at
Tawa and SSP. The model was depleting the reservoir storage through irrigation demand
during the dry seasons, which was not reflected in the observed data. The filling and
release temporal patterns were good at Tawa, accurately reflecting the observational data
(Figure 10). At SSP, the model tends to reach full capacity and begin releasing water earlier
in the monsoon than suggested by the observed data (Figure 10). At KRS, the observed
data demonstrate a depletion or near-depletion of reservoir storage during the dry season.
The model, however, was overestimating the volume of water remaining in the reservoir
during these times. GWAVA 5.1 does not capture the 2002–2003 drought period particularly
well in the upper regions of the basin (Figure 10). At the Mettur Dam, the model produces
a satisfactory temporal pattern; however, it over-estimates the volume in the dry season
and under-estimates it in the monsoon. The 2002–2003 drought was better captured by the
model in this reservoir compared to the upper regions of the basin (Figure 10).
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5. Discussion

The revision of the groundwater routine allows for the traceability of recharge, base-
flow, groundwater-levels, and volume of abstraction from groundwater resources. The
regulated reservoir routine allows for a release from the major reservoirs throughout the
year and the output of reservoir storage capacity throughout the simulation period. The
improved groundwater and reservoir routines were included in the GWAVA model, with
the addition of three and two input parameters, respectively.

The inclusion of the revised groundwater routine improved the simulation of stream-
flow in the headwater catchments, while the new reservoir routine improved the simulation
of streamflow in catchments downstream of major reservoirs in both the Cauvery and
Narmada. The regulated reservoir routine improves both the timing and volume of re-
leases from major reservoirs. In line with GWAVA 5.1, revisions to the reservoir routines
in SWAT [62], DHSVM [17], VIC [63], MESH [25], and HYPE [26] improved representa-
tion and parameterization of major operational reservoir outflows, illustrating that such
revisions in large-scale models can benefit both temporal and volumetric simulation of
streamflow downstream of reservoirs. GWAVA 5.1 can track the reservoir capacity through-
out the simulation period. In the Narmada, seasonality and filling of Tawa and SSP are
well represented; however, the model was drying out the reservoirs each year, which was
not reflected in reality. It is therefore necessary to introduce a user-defined limit into the
reservoir routine to restrict extraction and release below a realistic reservoir level. In the
Cauvery, at KRS, the opposite were occurring. The observed reservoir levels are reducing
to empty each year, but the model was simulating water in the reservoirs during this time.
At the Mettur Dam, the daily reservoir capacity was highly sensitive to the volume of
inflow. Although the temporal pattern was adequate, the model was overestimating the
volume of water in the reservoir during the dry season but underestimating the volume
during the monsoon.
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The streamflow in the Narmada is primarily base flow fed [64], and groundwater
pumping is limited to periods of drought. The groundwater tends to fluctuate within ten
meters of the ground level. The model accurately represented the average groundwater
depth within two meters of the observed average over the simulation period. The inclusion
of more comprehensive groundwater processes within the model structures allows for a
more accurate simulation of the hydrograph within the Narmada, especially during the
dry season.

Thomas et al. (2021) [64] applied SWAT in the Upper Narmada. This study allowed
irrigation demands to be met from shallow and deep aquifer stores. The reservoir simula-
tion required the engineering particulars of the reservoir and inflows into the reservoir to
estimate the probable flow at 50%, 75%, and 90% dependability for different months. In
the headwater catchments, GWAVA and GWAVA 5.1 outperform SWAT in the prediction
of streamflow. The original and revised groundwater routines with the original reservoir
equation perform well within these catchments where the reservoirs are small and the
steep topography results in the overland flow being the dominant streamflow generation
process. At Barmanghat, downstream of Bargi Dam (regulated reservoir) and with a larger
base flow contribution, SWAT performs better than GWAVA, but with the inclusion of the
more comprehensive groundwater and regulated reservoirs, GWAVA 5.1 performs better
than SWAT.

Goswami and Kar (2018) [65] represented the full extent of the Narmada basin using a
version of SWAT, where groundwater flow contribution to streamflow was simulated by
routing through a shallow aquifer store, but with no considerations for reservoirs within
the basin. GWAVA-GW and GWAVA 5.1 significantly outperform SWAT in streamflow
prediction at Garudeshwar. Pechlivanidis and Arheimer (2015) [66] applied India-HYPE in
the Narmada basin using a 15-parameter reservoir routine and a comprehensive, multi-
parameter, groundwater routine. All the versions of GWAVA presented in this study
outperform India-HYPE at Garudeshwar. The average groundwater depth estimations
by GWAVA 5.1 in the Hoshangabad district of Madhya Pradesh are consistent with those
simulated using a conceptual groundwater model by Nema et al. (2019) [67].

The satisfactory performance of GWAVA 5.1 to represent streamflow, groundwater-
levels, and reservoir fluxes throughout the basin, compared with observed data and
existing literature, demonstrates the value of the simple, low input routines incorporated
into GWAVA. Therefore, the inclusion of groundwater processes and regulation reservoirs
was justified when modelling basins with natural and anthropogenic characteristics similar
to that of the Narmada.

In the upper regions of the Cauvery, ANN [32,68], SWAT [34], and VIC [34] out-
perform both GWAVA and GWAVA 5.1, although the performance of GWAVA was im-
proved when the groundwater routine was applied to this region. GWAVA 5.1 under-
estimated the aquifer level across the basin. Collins et al. (2020) [69] demonstrated largely
under-simulated groundwater-levels compared to the observed data in the Berambadi
sub-catchment of the Cauvery, using a one-dimensional numerical transect model. It was
suggested that a poor representation of the India Meteorological Department (IMD) rainfall
in this region is a critical part of the poor simulations of both recharge to groundwater and
streamflow in this region [33].

Quantifying and managing uncertainty is a significant challenge in large-scale mod-
elling. The model structure allocates water to evaporative components first, and thus, the
evaporative processes are favoured in times of water stress. Along with the use of the Har-
greaves evaporation estimation method, the model architecture is one of the fundamental
reasons for the under-estimation of streamflow during the dry season.

The one-dimensional groundwater representation may not represent the groundwater
processes in regions with highly depleted aquifers and gneiss geomorphology as well as
those with underlying shale. The non-uniformity of the groundwater observation network
in both Narmada and Cauvery is a source of uncertainty for accurate calibration of the
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model. The conversion of point well data to a spatial average could be a significant source
of uncertainty, as groundwater-levels tend to be highly dynamic across small areas.

The simplified approach to representing the outflows of the regulated reservoirs has
proven largely valid, but inevitably carries uncertainty as actual reservoir operations are
more complex and highly individual. Although a more complex module could have
been incorporated, data availability and the fundamental low-data principle of GWAVA
were carefully considered. The performance of the modified Hanasaki routine is largely
dependent on the quality of the observed reservoir outflow or downstream streamflow
used in the calibration. In regions of poor data quality, the performance of the routine could
be compromised. Although the reservoir routine utilises daily inflows and consistently
updates reservoir storage, determining two parameters that influence reservoir outflow
over a period of time could cause stationarity issues when modelling future time periods.

Uncertainty arises from observation station mechanical errors and spatial distribution,
and various spatial and temporal interpolation methods. At some gauging points in the
basin, there is low confidence in the observed streamflow and reservoir outflow-data. On
occasion, the reservoir outflow-data do not resemble streamflow records in close proximity
downstream. Eye-witness accounts and some literature report drying out of streams in
the dry season, which is not reflected in the observed data. Additionally, in reality, rivers
downstream of significant urban and agricultural areas are often fed by a perennial stream
of human or livestock sewage [33]. Although the model represents return flows from
domestic demand, this may be under-estimated compared to the volume of effluent being
released into these rivers in reality.

The IMD gridded precipitation and temperature data are provided in a 0.5-degree
grid. Each 0.5-degree grid cell contains numerous terrain and gradient increments, and the
grid cells may fall over the basin boundary. This results in an inaccurate representation
of the distribution and total rainfall, and the distribution of the minimum and maximum
temperature in this region of the basin [33,34]. There is a known source of uncertainty
within the Western Ghats region, which acts as the headwaters for the larger Cauvery Basin.

GWAVA 5.1 potentially over-estimates water withdrawals in basins, particularly in the
Cauvery, where the exact anthropogenic water use was uncertain and poorly documented.
The depth to groundwater depends on the estimated water withdrawal of the region.
The potential over-estimation of demand could cause the early or complete depletion of
wells, not reflected in reality. The cost and availability of electricity are not considered
within GWAVA and thus does not form a realistic constraint when modelling the process of
groundwater abstraction. The under-estimation of the groundwater-levels and subsequent
base flow component hinders the ability of the model to accurately represent the streamflow.
There were low confidence in the data concerning the pumping depth and observed
groundwater-level data in this region [30,70].

When improving a low-data input hydrological model, such as GWAVA, caution must
be taken to not complicate the model beyond its underlying capability. The improvements
to GWAVA utilising simple modified routines demonstrate that adapting existing hydrolog-
ical models can be suitable for the improvement in the reliability of streamflow, reservoir,
and groundwater prediction.

6. Conclusions

Robust simulations of groundwater availability and reservoir storage and releases are
important for water resource management in semi-arid basins, where the groundwater
was an important water source during the dry season and streamflow in the main channel
of the lower reaches was largely reservoir-regulated.

The main conclusions from this study are:

• Key components of GWAVA were improved to better represent water management,
while maintaining low input data requirements and model complexity.

• The model improvements successfully improved model performance in both the
Narmada and Cauvery basins.
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• Simulated groundwater and reservoir storage levels were output to gain further
insight into components of the basin water balance.

Although these simplified routines improve model performance throughout the basin,
it is recommended that further application in a wider geographic area is necessary, to ensure
the new routines suitability represent a range of basin characteristics. Investigation into
multiple parameter configurations would assist in quantifying uncertainty, and potentially
improve abstractions and release parameters.
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Appendix A

Table A1. The spatial and temporal resolutions, periods, and sources of the input data used in the set-up of GWAVA in the
Cauvery (C) and Narmada (N) basins.

Input Data Basin Spatial
Resolution

Temporal
Resolution Time Period Source

Precipitation C, N 0.25 degree Daily 1951–2017 Indian Meteorological Department [71]

Maximum
temperature C, N 0.25 degree Daily 1951–2016 Indian Meteorological Department [71]

Minimum
temperature C, N 0.25 degree Daily 1951–2016 Indian Meteorological Department [71]

Streamflow
gauged data C, N Basin Daily 1971–2014

Water Resources Information System of India
(India-WRIS)

https://indiawris.gov.in/wris/#/ (accessed
on 22 December 2018)

Reservoir
characteristics

C Basin 2018 India-WRIS
N Basin 2020 Narmada Control Authority, India-WRIS

https://doi.org/10.5285/522309f8-59b1-4982-85df-cb3171c2a062
https://doi.org/10.5285/9fc7ab01-c622-46f1-a904-0bcd54073da3
https://doi.org/10.5285/9fc7ab01-c622-46f1-a904-0bcd54073da3
https://indiawris.gov.in/wris/#/


Water 2021, 13, 3067 21 of 26

Table A1. Cont.

Input Data Basin Spatial
Resolution

Temporal
Resolution Time Period Source

Reservoir inflow
and outflow-data

C Basin Monthly 1974–2017 India-WRIS
N Basin Monthly 2007–2017 Narmada Control Authority

Reservoir storage C, N Basin Daily 200–2010 India-WRIS

Water transfers C Basin Annual 2008 Ashoka Trust for Research in Ecology and the
Environment

N Basin Annual 2009 Narmada Control Authority

Groundwater
levels C, N District Monthly 1990–2017 Central Groundwater Board, India

Elevation C, N 0.003 degree 2000 NASA Shuttle Radar Mission Global 1 arc
second V003 [72]

Geology C, N Asia United States Geological Survey

Specific yield C, N India Central Groundwater Board, India

Soil type C 0.008 degree 1971–1981 Harmonized World Soil Database v1.2 [73]

N 1:10,000 1958–2020

Soil and Land-use Survey of India
https://www.india.gov.in/website-soil-and-

land-use-survey-india
(accessed on 7 April 2019)

Soil properties C, N Global 2010 Table 2—Allen et al. (2010) [74]

Land Cover
Land Use C, N 0.001 degree 2005 Decadal land-use and land cover across India

2005 [75]

Crops C Taluk 2000 National Remote Sensing Centre (NRSC)
N 5 arcmin 2010 Portmann (2010) [76]

Total and Rural
Population C, N Village 2001

Census of India 2001 (http://sedac.ciesin.
columbia.edu/data/set/india-india-village-

level-geospatial-socio-econ-1991--2001)
(accessed on 17 March 2019)

Livestock C 0.05 degree 2005 CGIR Livestock of the World v2 [77]

N Rural villages,
India 2012 19th Livestock Census-2012.

Government of India

Conveyance
losses C, N Village 2011

Household & Irrigation Census 2011-Town
and Village directory (https://censusindia.gov.

in/DigitalLibrary/TablesSeries2001.aspx)
(accessed on 17 March 2019)

Return flow C, N Village 2011

Household & Irrigation Census 2011-Town
and Village directory (https://censusindia.gov.

in/DigitalLibrary/TablesSeries2001.aspx)
(accessed on 17 March 2019)

Irrigation
efficiency C, N Continental 1986 Irrigation and Drainage Paper (FAO) No 1

Surface- water
fraction C Village 2011

Household & Irrigation Census 2011-Town
and Village directory (https://censusindia.gov.

in/DigitalLibrary/TablesSeries2001.aspx)
(accessed on 17 March 2019)

N 5 arcmin 2013

Global Map of Irrigation Areas-version 5.0
http://www.fao.org/aquastat/en/

geospatial-information/global-maps-
irrigated-areas/map-quality

(accessed on 7 April 2019)

Industrial
demand C Karnataka Currently

unknown

Industrial Plot Information System-Karnataka
Industrial Area Development Board (https:
//http://164.100.133.168/kiadbgisportal/)

(accessed on 17 March 2019)

https://www.india.gov.in/website-soil-and-land-use-survey-india
https://www.india.gov.in/website-soil-and-land-use-survey-india
http://sedac.ciesin.columbia.edu/data/set/india-india-village-level-geospatial-socio-econ-1991--2001
http://sedac.ciesin.columbia.edu/data/set/india-india-village-level-geospatial-socio-econ-1991--2001
http://sedac.ciesin.columbia.edu/data/set/india-india-village-level-geospatial-socio-econ-1991--2001
https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/map-quality
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/map-quality
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/map-quality
https://http://164.100.133.168/kiadbgisportal/
https://http://164.100.133.168/kiadbgisportal/
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Table A1. Cont.

Input Data Basin Spatial
Resolution

Temporal
Resolution Time Period Source

Livestock
demand C, N India 2006 FAO (2018) [78]

Domestic
demand C Village 2001

Household & Irrigation Census 2011-Town
and Village directory (https://censusindia.gov.

in/DigitalLibrary/TablesSeries2001.aspx)
(accessed on 17 March 2019)

N India AQUASTAT [78]

Table A2 presents the demand constraints selected for each basin. These values were
derived from the Indian Decadal Census and the Indian Irrigation Census.

Table A2. Input Demand Constraints for the Cauvery and Narmada Basins.

Demand Constraints Cauvery Narmada

Conveyance loss (%)—Urban 23 15
Conveyance loss (%)—Rural 25 15

Irrigation Efficiency (%) 44 70
Return flow (%)—Urban 62 45
Return flow (%)—Rural 0 45

Demand per head (L/d)—Cattle 77 40
Demand per head (L/d)—Sheep and goat 5 4

Surface water abstraction (%)—Urban 44 57
Surface water abstraction (%)—Rural 62 57

Surface water abstraction (%)—Industrial 80 80
Surface water abstraction (%)—Irrigation 31 47

Appendix B

Table A3. The percent bias, monthly Nash-Sutcliffe Efficiency (NSE), monthly log-Nash Efficiency (LNE), and the monthly
Kling-Gupta Efficiency (KGE) for each sub-catchment in the Narmada and Cauvery basins. The metrics are provided for
GWAVA (G), GWAVA-GW (G-GW), GWAVA-Res (G-Res), and GWAVA 5.1 (G 5.1).

Sub-Catchment
Bias (%) Monthly NSE Monthly LNE Monthly KGE

G G-
GW

G-
Res G 5.1 G G-

GW
G-

Res
G
5.1 G G-

GW
G-

Res G 5.1 G G-
GW

G-
Res

G
5.1

Narmada

Manot 11.37 4.24 11.37 4.24 0.95 0.92 0.92 0.93 0.78 0.86 0.78 0.86 0.83 0.84 0.83 0.83

Mohgaon 2.77 8.26 2.77 3.4 0.87 0.83 0.83 0.83 0.73 0.85 0.73 0.85 0.86 0.8 0.86 0.8

Patan 17.17 −0.77 17.17 12.3 0.9 0.83 0.83 0.91 0.59 0.83 0.59 0.91 0.77 0.75 0.77 0.83

Belkeri 33.9 2.94 33.9 2.46 0.84 0.85 0.85 0.84 0.6 0.62 0.6 0.71 0.39 0.81 0.39 0.8

Gadarwara 7.03 −1.8 7.03 1 0.92 0.82 0.82 0.83 −0.45 0.71 −0.45 0.83 0.87 0.7 0.87 0.72

Chhidgaon −12.36 −45 −12.36 −13.29 0.89 0.62 0.62 0.86 −0.33 0.66 −0.33 0.88 0.85 0.6 0.85 0.77

Kogaon 30.39 −19.5 30.39 2.03 0.79 0.74 0.74 0.79 −0.32 0.68 −0.32 0.76 0.57 0.66 0.57 0.72

Barmanghat 17.8 3.9 −2.88 3.2 0.74 0.7 0.82 0.81 0.51 0.78 0.8 0.81 0.58 0.75 0.74 0.82

Sandia 6.73 7.55 3.24 9.11 0.84 0.77 0.93 0.84 0.51 −0.04 0.84 0.88 0.72 0.82 0.85 0.77

Hoshangabad 7.57 −0.68 2.92 0.4 0.89 0.82 0.94 0.9 0.08 −0.94 0.85 0.90 0.83 0.84 0.84 0.78

Handia 14 4.75 11.17 9.92 0.89 0.82 0.95 0.91 −0.33 −1.94 0.84 0.90 0.81 0.84 0.82 0.77

Mandleshwar 10.6 4.25 4.73 4.35 0.9 0.84 0.95 0.92 0.71 −1.25 0.85 0.88 0.74 0.86 0.86 0.80

Garudeshwar 16.09 12.74 4.43 13.4 0.9 0.78 0.94 0.9 0.18 −1.8 0.84 0.89 0.74 0.83 0.85 0.80

Cauvery

Saklesphur −37 −46.4 −37 −46.4 0.77 0.57 0.77 0.57 0.31 0.81 0.31 0.81 0.59 0.53 0.59 0.53

Thimmanahali −58.1 −3.6 −58.1 −3.6 0.21 0.71 0.21 0.71 0.34 0.58 0.34 0.58 0.36 0.84 0.36 0.84

KMVadi −21 −50.3 −21 −50.3 0.21 0.14 0.21 0.14 0.14 −0.07 0.14 −0.07 0.29 0.25 0.29 0.25

https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
https://censusindia.gov.in/DigitalLibrary/TablesSeries2001.aspx
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Table A3. Cont.

Sub-Catchment
Bias (%) Monthly NSE Monthly LNE Monthly KGE

G G-
GW

G-
Res G 5.1 G G-

GW
G-

Res
G
5.1 G G-

GW
G-

Res G 5.1 G G-
GW

G-
Res

G
5.1

Kudige −43 −50.7 −43 −50.7 0.67 0.55 0.67 0.55 0.70 0.70 0.70 0.70 0.53 0.48 0.53 0.48

Munthankera −21.6 −25.4 −21.6 −25.4 0.8 0.78 0.8 0.78 0.74 0.89 0.74 0.89 0.73 0.73 0.73 0.73

Thengumarahada 1.2 −22.3 1.2 −22.3 0.07 0.43 0.07 0.43 0.22 0.59 0.22 0.59 0.50 0.57 0.50 0.57

T narasupiar −13.4 −12.0 3.6 −11.6 0.66 0.6 0.75 0.6 −9.83 −1.6 −0.4 −1.2 0.77 0.75 0.83 0.75

Kollegal −33.6 −16.9 −15.4 −24.9 0.54 0.56 0.70 0.56 −7.46 −2.18 0.69 0.56 0.58 0.7 0.68 0.65

Tbekuppe 2.6 −5.4 −12 −5.4 −0.81 −0.09 0.62 0.49 −23.97 −0.72 0.53 −0.72 0.21 0.41 0.38 0.41

TKHali 4.1 7.3 3.4 7.3 0.36 0.43 0.4 0.43 −1.68 −0.29 −0.91 −0.29 0.57 0.52 0.61 0.52

Bilingudulu −14.7 −2.2 12.1 −10.5 0.63 0.5 0.79 0.64 0.07 −0.77 0.69 0.65 0.76 0.74 0.73 0.77

Urachikottai −4.6 −11.5 21.0 9.3 0.09 −0.35 0.13 0.57 0.07 −0.77 0.69 0.71 0.56 0.34 0.56 0.66

Kodumodi −14.5 −22.7 20.0 −5.9 0.14 −0.3 0.52 0.64 −1.56 −3.80 0.41 0.51 0.52 0.25 0.56 0.76

Musiri −5.8 −6.8 18.2 −2.1 0.15 −0.45 0.14 0.66 −0.81 −1.69 −0.12 0.37 0.58 0.33 0.28 0.79
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