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Abstract

The physical, chemical and biological attributes of a soil combined with abiotic factors (e.g.

climate and topography) drive pedogenesis and some of these attributes have been used as

proxies to soil quality. Thus, we investigated: (1) whether appropriate soil quality indicators

(SQIs) could be identified in soils of Great Britain, (2) whether conventional soil classification

or aggregate vegetation classes (AVCs) could predict SQIs and (3) to what extent do soil

types and/ or AVCs act as major regulators of SQIs. Factor analysis was used to group 20

soil attributes into six SQI which were named as; soil organic matter (SOM), dissolved

organic matter (DOM), soluble N, reduced N, microbial biomass, DOM humification

(DOMH). SOM was identified as the most important SQI in the discrimination of both soil

types and AVCs. Soil attributes constituting highly to the SOM factor were, microbial quo-

tient and bulk density. The SOM indicator discriminated three soil type groupings and four

aggregate vegetation class groupings. Among the soil types, only the peat soils were dis-

criminated from other groups while among the AVCs only the heath and bog classes were

isolated from others. However, the peat soil and heath and bog AVC were the only groups

that were distinctly discriminated from other groups. All other groups heavily overlapped

with one another, making it practically impossible to define reference values for each soil

type or AVC. The two-way ANOVA showed that the AVCs were a better regulator of the

SQIs than the soil types. We conclude that conventionally classified soil types cannot predict

the SQIs defined from large areas with differing climatic and edaphic factors. Localised

areas with similar climatic and topoedaphic factors may hold promise for the definition of

SQI that may predict the soil types or AVCs.

Introduction

The multiple roles and functions of soil have resulted in many broad definitions of soil quality.

One of the most widely adopted definitions for soil quality (SQ) was proposed by a committee

for the Soil Science Society of America as: “the capacity of soil to function, within natural or
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managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance

water and air quality, and support human health and habitation” [1]. Soil quality is evaluated in

terms of measurable soil attributes that measure specific physical, chemical, and biological prop-

erties; also known as soil quality indicators (SQIs) [2–4]. Many of these properties are interre-

lated and the applicable SQIs are those that integrate and have the combined effect of several

properties or processes that affect the capacity of a soil to perform a specified function [5–7].

The quality of any soil has two parts: (1) the natural or inherent quality which is based on the

parent geological material and soil-state-factors (climate, topography, biota, and time) and is

rather static, and (2) the dynamic soil quality which encompasses those soil properties that can

change over relatively short time periods in response to human use and management [4, 6, 8,

9]. The inherent SQs, are used in taxonomic soil classification while the dynamic SQs are used

to monitor temporal trends on the same soil. For that reason, measurement of key SQIs over

time can be used to establish whether the quality of a soil under a given land use and manage-

ment system is improving, declining or stable [2, 4, 10, 11]. The SQIs which respond over the

medium term (sensitive over few years and decades) to land uses and management practices,

may be the most useful for indicating such changes as opposed to those which change either

very rapidly (e.g. seasonally) or very slowly (e.g. over centuries) [7, 12, 13].

Even though dynamic SQIs are not used in taxonomic classifications and soil surveys, they

are greatly controlled by soil types [14]. Studies by Parkin [15], Buyer et al. [16], Girvan et al.

[17] and Ulrich and Becker [18] have shown that soil type is a key factor determining many

SQIs. Another key regulator of SQIs in the environment is the type and quantity of biota [19,

20]. The type and quantity of biota (vegetation cover) determines the kind and quantity of

organic materials that are returned in the soils which in turn regulates many biophysical and

chemical soil attributes. The biota type influences the spatial distribution of the organic materi-

als in the soils. For instance over 12 Mg ha-1 dry matter may be added to the soil in natural

grassland compared to 2–5 Mg ha-1 through the leaf drop in trees each year [20].

Currently, SQIs are mostly based on so-called sum or black-box parameters and generally

include microbial indicators such as microbial biomass, activity and biodiversity [13, 21, 22].

Recently, an alternative has been proposed, based on the use of specific ratios that report on func-

tion such as the quotients of microbial respiration-C-to-microbial biomass-C (qCO2) and the

microbial biomass-C-to-Soil organic matter-C ratio (qMic) [22, 23]. These indicators avoid the

problems of comparing trends in soils with different organic matter or microbial biomass content

and appears to provide a more sensitive indicator of soil changes than either activity or popula-

tion measurements alone [23, 24]. In this study, we included these in the total data set (TDS) of

20 physico-chemical and biological soil properties. We used multivariate statistical methods to

identify SQIs and explore the relationships between the SQIs and the soil type/vegetation cover.

The selection of the 20 parameters for use in this study was based on the frequency of use of these

parameters in literature (i.e. how often the parameters appear in scientific papers) and their avail-

ability. Using factor analysis the 20 variables were reduced to 6 uncorrelated factors (linear func-

tions) also called soil quality factors or SQIs. The specific objectives of the study were to: (1)

identify appropriate soil SQIs in soils of Great Britain, (2) determine whether soil types (conven-

tional soil classifications) or aggregate vegetation classes (AVCs) could predict SQI and (3) deter-

mine to what extent do soil types and/ AVCs may act as major regulators of SQI.

Materials and methods

Soil sampling and preparation

Soil samples were collected throughout the Great Britain (GB; -England, Scotland and wales)

as part of the Centre for Ecology and Hydrology Countryside Survey (CS) 2007 [25] with sites
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representing the main types of landscape and soil groups. To encompass all the major soil and

land use types, a total of 304 soil samples were collected throughout the GB, based on a strati-

fied random sample of 1 km squares at grid points on a 15 km grid using the Institute of Ter-

restrial Ecology (ITE) Land Classification (S1 Table/descriptions) as the basis of the

stratification [26]. S1 Fig shows the general location and distribution of samples across Great

Britain. At each grid intersection, a 1 km2 sample area was selected. Within the 1 km2 sample

area, 3 plots (5 × 5 m2) were randomly located and a single 15 cm long × 4 cm diameter soil

sample was collected from each of the plots. Top soils were only selected for sampling to reflect

standard practice in national monitoring schemes [27] such as Soil Survey England and Wales

handbook [28], the National Soil Monitoring Network [29] and the UK Soil Monitoring Net-

work [30].

The soil leachate was collected according to Emmett et al. [31]. The soil leachate repli-

cate cores were first wetted to field capacity with artificial rainfall (125 μM NaCl, 15.7 μM

CaCl2, 1.3 μM CaSO4, 15.3 μM MgSO4, 12.3 μM H2SO4) in the dark at 10˚C until the soils

were fully wetted. The cores were then sprayed with artificial rainfall until a further 150

ml of leachate had been collected resulting in a solution with a pH of approximately 4.6.

After washing out the cores, a small amount of suction was applied to drain larger pores.

Cores were then incubated under anaerobic conditions for 4 weeks, at 10 0C, approxi-

mately UK mean summer soil temperature Cores were then extracted with 1molar KCl,

and ammonium and nitrate concentrations were determined as a measurement of minera-

lisable N using a TOC-VCSH/CSN analyser (Shimadzu Corp., Kyoto, Japan) as describe

below.

Across all land uses and aggregate vegetation class (AVC) categories, the dominant soil

types (% of total) were: brown soils (32%), groundwater gleys (13%), surface water gleys (19%),

lithomorphic soils (8%), peats (15%), pelosols (2%) and podzolic soils (11%) (S2 Table). See S2

Table for their equivalents in the WRB classification. All the sites were characterised by a tem-

perate climate with a North-South mean annual temperature range of 7.5 to 10.6˚C and East-

West mean annual rainfall range of 650 to 1700 mm.

Aggregate vegetation classes

The vegetation data from the plots were analysed using the classification by Aggregate Vegeta-

tion Classes (AVCs). The AVCs were the vegetation types produced from a quantitative hierar-

chical classification of the different species found in sample plots. The eight AVCs used for

assessing vegetation condition are listed in Table 1. Across all the soils sampled, the AVCs rep-

resented (% of the total): 18% crop and weeds, 17% fertile grasslands, 22% heath and bogs,

20% infertile grasslands, 2% lowland woodland, 10% moorland grass mosaics, 4% tall grass

and herbs and 7% upland woodland.

Soil analysis

Soil pH was determined in soil-distilled water extracts (1:2.5 w/v soil to water soil ratio) using

a glass electrode (Gelplas general purpose electrode, BDH) and HI-209 pH meter (Orion

research, Boston, MA, USA). Soil moisture was determined by weight loss after oven drying at

105˚C overnight (>16 h). Water content at field capacity was estimated by saturating the soil

followed by measuring the water retained in the soil at -33 kPa. Bulk density was calculated

(mass/volume) on the oven dry soil after removal of stones from the cores (>2 mm in diame-

ter). Soil organic carbon (SOC) was determined from loss on ignition (LOI). LOI was mea-

sured on a 10 g sub sample of oven dry soil by combusting at 375˚C for 16 h. SOC was
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calculated according to the method of Ball [33] as:

SOC ¼ ð0:458� g LOIÞ � 0:4 ½Eq 1�

Phosphorus was determined by the Olsen P method according to Emmett et al. [30]. Total

C and N were determined using UKAS accredited method SOP3102 on an Elementar Vario-

EL elemental analyser (Elementaranalysensysteme GmbH, Hanau, Germany) according to

Emmett et al. [22, 31].

Soil respiration (SR) was determined on a 15 cm long, 2.5 cm diameter soil cores with a

1250 cm3 head space. The soils were incubated at 10˚C for 1 h (at which linearity was estab-

lished). Subsequently, the head space gas was analysed for CO2 concentration using a Clarus

500 Gas Chromatograph (Perkin Elmer Corp., Beverley, MA). The CO2 flux was established

by comparing the CO2 concentration before and after incubation. Soil microbial biomass C

and N were estimated on moist soil samples (10 g) using the modified chloroform-fumigation-

extraction (CFE) method of Vance et al. [34]. For each soil 10g of the control and the fumi-

gated samples were extracted with 1 M KCl. The TOC and TON in the 1 M KCl extracts was

determined using a TOC-VCSH/CSN analyser (Shimadzu Corp., Kyoto, Japan). Extraction

efficiency correction factors of 0.45 and 0.54 were used for microbial C and N, respectively [9,

35, 36]. Soil microbial biomass was therefore calculated according to the formula: Cmic = EC/

kEC, where EC = (TOC in fumigated samples—TOC in control samples) and kEC = 0.45, and

Nmic = EN/kEN, where EN = (total N in fumigated samples–total N in control samples) and

kEN = 0.54. The microbial C:N ratios were subsequently calculated from these values.

The metabolic and microbial quotients were calculated indices. The metabolic quotient or

coefficient was calculated as the ratio between the CO2-C from basal respiration and the

microbial biomass-C (CO2-Cresp-to-Cmic), expressed as μg CO2-C mg-1 biomass-C h-1. It is

also known as the specific respiration rate (qCO2) [37]. The microbial quotient was calculated

as the ratio between the microbial biomass-C-to-total organic C (Cmic-to-Corg).

Table 1. Summary of the aggregate vegetation classes (AVCs) used for assessment of vegetation condition.

Aggregate vegetation class

(AVC) +(abrev)

Description

1. Crops and weeds (Craw) Weedy communities of cultivated and disturbed ground, including species-poor

arable and horticultural crops.

2. Tall grass and herbs (Tgah) Less intensively managed tall herbaceous vegetation typical of field edges,

roadside verges, stream sides and hedge bottoms.

3. Fertile grassland (Frtg) Agriculturally improved or semi improved grassland. Often intensively managed

agricultural swards with moderate to high abundance of perennial rye grass.

4. Infertile grassland (Infg) Less-productive, unimproved and often species rich grasslands in a wide range of

wet to dry and acid to alkaline situations.

5. Lowland wooded (Lwlw) Vegetation dominated by shrubs and trees in neutral or basic situations,

generally in lowland Britain. Includes many hedgerows.

6. Upland wooded (Uplw) Vegetation of broadleaved and conifer woodland often in more acidic situations,

generally in upland Britain.

7. Moorland grass mosaics

(Mrgm)

Extensive, often unenclosed and sheep grazed hill pastures throughout Britain.

8. Heath and bog (Htab) Vegetation dominated by heathers. Includes drier heaths as well as bog. Mostly

in the uplands.

The brackets indicate the abbreviation of the vegetation class (adapted from Smart et al., [32].

https://doi.org/10.1371/journal.pone.0248665.t001
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Leachate analysis

Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in leachate were

measured using a TOC-VCSH/CSN analyser (Shimadzu Corp., Kyoto, Japan) and the DOC:

TON ratio subsequently calculated. Nitrate and ammonium concentrations were measured

with a Skalar SAN++ segmented-flow autoanalyser (Skalar, Breda, Netherlands), based on

the cadmium (Cd) reduction method [38, 39] and the modified Berthelot reaction [40]

respectively. Electrical conductivity (EC) was measured with a standard platinum 1 cm elec-

trode on a 4520-EC meter (Jenway Ltd, Dunmow, Essex, UK). pH was measured using a

glass electrode (Gelplas general purpose electrode, BDH) on a HI-209 pH meter (Orion

research, Boston, MA, USA). Total free amino acids were determined using the fluoromet-

ric OPAME procedure of Jones et al. [41] and a Cary Eclipse Fluorescence Spectrophotome-

ter (Varian Inc., Australia) using a leucine standard. Humic substances were determined by

measuring the absorbance of 350 μl of leachate at 254 and 400 nm (UV and visible range

respectively) on a PowerWave XS scanning microplate spectrophotometer (BioTek1

Instruments, Winooski, VT, USA). The absorbance of deionised water was used as a con-

trol. A humification index (HIX) was calculated by dividing the absorbance at 254 nm by

the absorbance at 400 nm [42, 43]. Soluble phenolic concentrations were assayed using a

modification of the method of Box [44] and Ohno and First [45] using Na2CO3 (1.9 M) and

the Folin-Ciocalteu reagent (Sigma-Aldrich, Poole, Dorset) [46]. The blue-coloured pheno-

lics were measured at 750 nm using a PowerWave XS scanning microplate spectrophotome-

ter (BioTek1 Instruments, Winooski, VT, USA).

Statistical analyses

ANOVA, factor, discriminant and cluster analyses were all determined using SPSS version

15.0 (SPSS Inc., Chicago, IL) and GenStat version 8 (VSN International Ltd, Hemel Hemp-

stead, UK). They were used to analyse the measured attributes to investigate the effect of soil

types and AVCs on the SQIs identified. To identify significant differences between treatments,

post hoc multiple comparison (pair-wise) tests were made using the Gabriel test where homo-

geneity of variance was assumed and Games-Howell procedure where unequal variance

occurred. For the cluster analysis, the average linkage method and a squared Euclidean dis-

tance measure were used with a rescaled distance cluster combined measure on the similarity

axis. The variables were standardized to minimize the effect of scale differences since the vari-

ables possessed different units.

Results

Biological, physical and chemical properties in the soils of Great Britain

The variability of individual soil quality indicators across the range of soil types is shown in Fig

1 (panel I-X) and Fig 2 (panel XI-XX). The box plots show the spread of each measured soil

property for each soil type. From the box plots, most of the soil quality indicators did not show

differentiations among the soil types save for the following: microbial quotient, SOC and soil

respiration which separated the peats from the rest; pH and C:N leachate separated the peats

and the podzols from the rest, while the bulk density grouped the soils in three groups of pelo-

sols, the browns, ground-water gleys and the surface-water gleys (ave = 1.1Mg m-3) in one

group; podzols and lithomorphics (ave = 0.5 Mg m-3) in the second group and peats (ave = 0.2

Mg m-3) in the third group. All other property values measured could not effectively differenti-

ate the soil types.
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Relationships among soil properties

Correlation analysis of the twenty soil attributes representing soil biological, physical and

chemical properties resulted in significant correlation (P< 0.05) in 112 of the 190 soil attribute

pairs (Table 2). Of these, the highest significant (P< 0.01) positive correlations was between

humic substances at 254 nm versus those at 400 nm (r = 0.97). Other highly significant

Fig 1. Box plots (panel I-X) showing the spread of each measured soil property for each of the major soil types from 304 individual

soil samples. GWG and SWG represent groundwater and surface water gley soils respectively.

https://doi.org/10.1371/journal.pone.0248665.g001
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(P< 0.01) positive correlations were between the absorbance at 254 nm or 400 nm versus

DOC (r = 0.78 and r = 0.71 respectively); leachate DON versus NO3
- (r = 0.78), and bulk den-

sity versus pH (r = 0.70). Additional notable significant (P< 0.01) positive correlations

(r> 0.50) were between: microbial-N versus microbial-C, SOC versus soil respiration, the

leachate C:N ratio versus SOC, electrical conductivity versus both nitrate and DON, phenolics

versus absorbance at 254 nm and DOC versus absorbance at 400 nm. The highest significant

(P< 0.01) negative correlation was between bulk density versus SOC (r = - 0.83). Other nota-

ble significant (P< 0.01) negative correlations were between: bulk density versus either micro-

bial biomass C (r = -0.42), soil respiration (r = -0.51) or the leachate C:N ratio (r = -0.47); SOC

versus qMic (r = -0.47) and pH versus either SOC (r = -0.66), UV-visible absorbance spectros-

copy at 400 nm (r = -0.42), leachate DOC (r = -0.40) or leachate C:N ratio (r = -0.47).

Fig 2. Box plots (panel XI-XX) showing the spread of each measured soil property for each of the major soil types

from 304 individual soil samples.

https://doi.org/10.1371/journal.pone.0248665.g002
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Extraction and identification of factors or SQIs

Due to differences in the units of individual variables, factor analysis (FA) was performed

using a correlation matrix on the standardised values of the measured 20 attributes. The gener-

alised least-squares method was used to extract factors because it is robust and requires no

assumptions of sample coming from a multivariate normal distribution [47]. The first six fac-

tors with eigenvalues > 1 were retained for interpretation, whilst factors with eigenvalues < 1

explained less total variation than individual soil attributes [48]. The retained factors

accounted for > 61% of the total variance in the measured attributes; see Table 3.

Table 2. Correlations among physical, chemical and biological soil attributes.

Variable qMic qCO2 Mic C Mic N Mic CN SR SOC Nitrate Ammonium-N pH

qMic 1

qCO2 -0.07 1

Mic C 0.23�� -0.07 1

Mic N 0.17�� -0.05 0.63�� 1

Mic CN 0.18�� -0.02 0.03 -0.24�� 1

SR -0.26�� -0.01 0.31�� 0.09 -0.02 1

SOC -0.47�� -0.04 0.39�� 0.09 0.04 0.61�� 1

Nitrate-N 0.21�� -0.01 -0.15�� -0.12� 0.20�� -0.22�� -0.33�� 1

Ammonium-N -0.05 -0.04 0.08 0.06 -0.03 0.02 0.04 0.06 1

pH 0.35�� 0.08 -0.31�� 0 -0.11� -0.39�� -0.66�� 0.25�� -0.18�� 1

Ec 0.03 0.06 -0.09 0.01 0.17�� -0.08 -0.03 0.59�� 0.03 0.12�

Phenols -0.23�� -0.01 0.19�� 0.08 -0.01 0.27�� 0.39�� -0.19�� 0.38�� -0.36��

Absb @ 254 -0.24�� -0.01 0.10� -0.03 0.05 0.22�� 0.34�� -0.19�� 0.23�� -0.42��

Absb @ 400 -0.23�� -0.01 0.10� -0.06 0.05 0.21�� 0.35�� -0.19�� 0.23�� -0.42��

HIX 0.06 0.02 0 0.11� 0.13�� -0.07 -0.14�� 0.24�� 0.01 0.10�

amino acids -0.04 -0.03 0.09 -0.04 0.28�� 0.03 0.11� -0.02 0.48�� -0.15��

DOC_L -020�� 0.01 0.12� -0.02 0.06 0.29�� 0.35�� -0.18�� 0.32�� -0.40��

DON_L 0.18�� 0.02 -0.08 -0.05 0.24�� -0.14�� -0.21�� 0.78�� 0.11� 0.09

CN_L -0.25 �� -0.04 0.16�� -0.02 0.03 0.33�� 0.50�� -0.33�� -0.04 -0.47��

BD 0.46�� 0.05 -0.42�� -0.22�� -0.07 -0.51�� -0.83�� 0.35�� -0.14�� 0.70��

Variable Ec Phenols Absb @ 254 Absb @ 400 HIX amino acids DOC_L DON_L CN_L BD

Ec 1

Phenols 0.04 1

Absb @ 254 -0.04 0.58�� 1

Absb @ 400 -0.08 0.60�� 0.97�� 1

HIX 0.37�� -0.09 -0.04 -0.22�� 1

amino acids -0.01 0.23�� 0.09 0.09 0.11� 1

DOC_L 0.01 0.56�� 0.78�� 0.71�� 0.08 0.23�� 1

DON_L 0.66 �� -0.08 -0.13�� -0.14�� 0.31 �� 0.05 -0.05 1

CN_L -0.05 0.34�� 0.38�� 0.37�� -0.06 0.02 0.38�� -0.25 �� 1

BD 0.10� -0.38�� -0.35 �� -0.33�� 0.04 -0.17 �� -0.37�� 0.21�� -0.4�� 1

Note

�Correlation is significant at P < 0.05 level, and

�� at the P< 0.01 level; qMic, microbial quotient; qCO2, metabolic quotient; Mic C, microbial biomass C (mg C kg-1); Mic N, microbial biomass N (mg C kg-1); Mic C:

N, microbial biomass C:N ratio; SR, soil respiration (mg C kg-1 h-1); SOC, soil organic carbon (mg C kg-1); NO3
-, nitrate N (mg N l-1); NH4

+, ammonium N (mg N l-1);

EC, (μS cm-1); Phenols, Soluble phenolics (mg l-1); Abs @ 254 and 400, UV-visible absorbance spectroscopy of soil solution at 254 and 400 nm; HIX, humification index;

Am acids, Free amino acids (μM); DOC/N -L, dissolved organic carbon/nitrogen in leachate (mg l-1); BD, bulk density.

https://doi.org/10.1371/journal.pone.0248665.t002
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The retained factors were subjected to a varimax rotation. A varimax rotation redistrib-

utes the variance of significant factors and minimizes the number of variables that have

high loadings on each factor, thereby simplifying the interpretation of the factors [47].

The relative importance of each soil attribute, in terms of its contribution to all of the fac-

tors, was judged by its communality value [49, 50] and is shown in Table 4. The six factors

explained > 90% variance in UV-visible absorbance spectroscopy @ 254 and 400

(absb@254 and 400), microbial biomass carbon (Mic C), and soil organic carbon (SOC);

> 80% in dissolved organic nitrogen in leachate (DON_L) and bulk density (BD); > 70%

in microbial biomass nitrogen (Mic N), nitrate N, ammonium N, electrical conductivity

(EC), and total organic carbon in leachate (TOC_L); > 60% in microbial quotient (qMic),

pH and humification index (HIX); > 50% microbial biomass C/N ratio (Mic CN), soil res-

piration (SR), and phenolics; and < 50% C/N ratio of the leachate (CN_L) and microbial

metabolic quotient (qCO2) (Table 4). Attributes with the low communality estimates (e.g.

qCO2 and leachate C:N) were the least important for interpreting factors. The magnitudes

of the loadings were used as a criterion for interpreting the relationship between the soil

attributes and the factors. Soil attributes were assigned to the factor for which the loadings

were highest.

The first factor explained 16.7% (see Table 3) of the total variance. It was named soil

organic matter (SOM) because it had high positive loading for SOC (0.92), soil respiration

(0.61) and leachate C:N ratio (0.47), a high negative loadings for bulk density (-0.86), pH

(-0.68) and moderately on qMic (-0.54). Grouping qMic with the SOM factor rather than

factor 4 was as a result of its stronger correlation with attributes constituting the SOM factor

namely, soil respiration (r = -0.26), SOC (r = -0.47) and bulk density (r = 0.46) rather than

with microbial biomass-C (r = 0.23) and microbial biomass-N (r = 0.17) of factor 4

(Table 3). The second factor explained 15% of the total variance with a high positive loading

for soluble phenolics (0.52), leachate UV-visible absorbance spectroscopy at 254 nm (0.98),

400 nm (0.96) and leachate DOC (0.71) and consequently, was termed dissolved organic

matter (DOM). The third factor explained 11% of the total variance with high positive load-

ings for nitrate N (0.81), leachate DON (0.91) and electrical conductivity (0.74) and was

therefore termed soluble nitrogen factor. The fourth factor explained 8% of the total vari-

ance and had positive loadings for microbial biomass-C (0.89), microbial biomass-N (0.75)

and a moderately loading for qMic (0.45), and was termed microbial biomass. The fifth fac-

tor explained 6.6% of the total variance and had positive loading for ammonium-N (0.78)

and amino acids (0.66) and was termed reduced N. The sixth factor explained only 4% of

the total variance and had a high positive loading for HIX (0.76) and was termed DOM

humification (DOMH).

Table 3. Total variance (eigenvalue), proportion and cumulative variance (prop var and cum var) explained by factor analysis using correlation matrix (standard-

ized data) on the measured attributes.

Factors Initial eigenvalues Extraction sums of squared loadings Rotation sum of squared loadings

Total Prop of Var (%) Cum Var (%) Total Prop of Var (%) Cum Var (%) Total Prop of Var (%) Cum Var (%)

Factor 1 5.31 26.6 26.6 3.60 18.0 18.0 3.35 16.7 16.7

Factor 2 2.64 13.2 39.8 3.22 16.1 34.1 2.96 14.8 31.5

Factor 3 2.03 10.1 49.9 2.14 10.7 44.8 2.28 11.4 42.9

Factor 4 1.73 8.7 58.6 1.56 7.8 52.6 1.65 8.3 51.2

Factor 5 1.31 6.6 65.1 0.65 3.3 55.9 1.32 6.6 57.8

Factor 6 1.18 5.9 71.1 1.15 5.7 61.6 0.76 3.8 61.6

https://doi.org/10.1371/journal.pone.0248665.t003
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Effect of soil types on soil attribute means and factor scores

One way ANOVA revealed that most of the soil attributes and factors (indicators) scores var-

ied significantly with soil types (Table 5). However, pairwise comparison showed that the effect

of soil types on most attributes was very small. In most cases, only the peat soils were clearly

significantly (P< 0.01) different from all the other soil types. Only SOM and microbial bio-

mass factors (Factors 1 and 4 respectively) varied significantly (P< 0.05) with soil type. SOM

factor mean scores were negative for brown, GWG, SWG and pelosol soils and positive for

lithomorphic, peat and podzolic soils. Peats had the highest score and were significantly differ-

ent from all other soil types on the SOM factor. Furthermore, peat soils had the highest SOC

content to which the analysis also confirmed. The mean scores for SOM factor did not vary

significantly (P> 0.05) among browns, GWGs and pelosols soils. Similarly, the lithomorphic,

podzolic and SWG soils could not be differentiated by the SOM. The microbial biomass factor

varied significantly (P< 0.05) between browns versus GWGs and lithomorphics only. Mean

scores for DOM, soluble N, reduced N and DOM humification did not vary significantly

(P> 0.05) among all soil types.

Prediction of soil quality indicators across soil types

Discriminant analysis of the six statistical factors in relation to soil types, indicated that the

SOM was the most powerful in discriminating among the seven soil type groups based on the

magnitude of their discriminant coefficients (Eq 2). The first canonical discriminant function

explained 90% of the total variance based on Wilks’s Lambda, (P< 0.001) and therefore was

the most important canonical discriminant function for discriminating soil types using the soil

quality factors identified. Although the second canonical discriminant function was also

Table 4. Proportion of variance (loadings) using varimax rotation and communality estimates for soil attributes of the retained factors.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality extraction

qMic -0.54 -0.13 0.12 0.45 -0.01 -0.07 0.67

qCO2 0.05 -0.05 -0.05 -0.18 0.01 0.00 0.10

Microbial biomass C 0.29 0.03 -0.04 0.89 0.09 -0.03 0.90

Microbial biomass N 0.05 -0.04 -0.08 0.75 -0.02 0.14 0.73

Microbial biomass C:N 0.07 0.05 0.30 -0.03 0.11 0.01 0.51

Soil respiration 0.61 0.06 -0.07 0.09 0.03 -0.06 0.50

Soil organic C 0.92 0.16 -0.08 0.08 0.01 -0.06 0.91

Nitrate N -0.27 -0.09 0.81 -0.04 0.01 0.04 0.77

Ammonium N 0.01 0.23 0.05 0.05 0.78 0.01 0.72

pH -0.68 -0.28 0.02 -0.06 -0.18 0.05 0.68

Elec. conductivity 0.03 0.00 0.74 -0.03 -0.05 0.22 0.70

Soluble phenolics 0.29 0.52 -0.03 0.06 0.32 -0.10 0.55

Absorb @ 254 nm 0.17 0.98 -0.06 -0.01 0.04 0.03 1.00

Absorb @ 400 nm 0.17 0.96 -0.05 -0.02 0.04 -0.20 0.99

HIX -0.06 -0.06 0.25 0.07 0.05 0.76 0.69

Amino acids 0.11 0.06 0.02 0.01 0.66 0.05 0.56

DOC (leachate) 0.24 0.71 -0.02 0.00 0.29 0.18 0.73

DON (leachate) -0.12 -0.06 0.91 0.01 0.09 0.07 0.87

C:N (leachate) 0.47 0.26 -0.17 -0.02 -0.06 0.02 0.42

Bulk density -0.86 -0.19 0.13 -0.18 -0.11 -0.05 0.87

https://doi.org/10.1371/journal.pone.0248665.t004
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significant (P = 0.03), it accounted for only 4% of the total variance and was therefore not

used.

Y1 ¼ 1:43 ðSOMÞ þ 0:29 ðDOMÞ þ 0:08 ðmicrobial biomassÞ þ 0:03 ðreduced NÞ
� 0:14 ðsoluble NÞ � 0:22 ðDOMHÞ ½Eq 2�

Therefore the group differences across soil types shown by ANOVA can be explained in

terms of SOM, judging from the discriminant coefficient which was five-fold larger than the

coefficient for the DOM factor and several fold greater than the rest of the factors. Discrimi-

nant analysis of the measured attributes constituting to SOM i.e. microbial quotient (qMic),

soil respiration (SR), soil organic C (SOC), pH and bulk density (BD) indicated that qMic was

the most powerful attribute discriminating the soil types followed by BD (Eq 3).

Y2 ¼ 8:75� 10� 6 ðSOCÞ � 1:99 ðqMicÞ � 0:50 ðBDÞ � 0:04 ðpHÞ � 0:05 ðSRÞ ½Eq 3�

The discriminant coefficient for qMic was four-fold larger than the coefficient for bulk den-

sity and more than 40-fold for the rest. The qMic was significantly correlated with bulk density

(0.46) at P<0.01, SOC (-0.47) at P<0.01, pH (0.35) at P<0.01 and soil respiration (-0.26) at

Table 5. Soil attribute means and factor scores in the different soil types.

Soil attributes Soil types SEM ANOVA

Brown Groundwater gley Lithomorphic Peat Pelosols Podzolic Surface water gley

Microbial quotient (ratio) 0.018a 0.026a 0.014ac 0.003b 0.014abc 0.010c 0.018a 0.003 <0.01

qCO2 (ratio) 0.073 0.002 0.001 0.011 0.01 0.002 0.003 0.012 NS

Microbial biomass-C (g kg-1) 0.59a 1.00ab 1.03ab 1.37b 0.54a 1.02ab 0.89ab 0.13 <0.01

Microbial biomass-N (g kg-1) 0.085a 0.119ab 0.148b 0.113ab 0.071ab 0.111ab 0.099ab 0.016 0.03

Microbial biomass C:N 12.4 19.6 18.9 19.7 36.3 29.9 33.2 12 NS

Soil respiration (mg kg-1 h-1) 0.63a 1.10a 0.93a 3.35b 1.63ab 1.58ab 1.18a 0.45 <0.01

Soil organic C (g kg-1) 42a 45a 132b 377c 92ab 151b 98b 23 <0.01

Nitrate (mg N l-1) 3.00a 2.04ac 2.32ac 0.13b 1.13c 0.37bc 3.08a 0.39 <0.01

Ammonium (mg N l-1) 0.25 0.18 0.3 0.27 0.17 0.31 0.3 0.05 NS

pH 6.55a 6.56a 6.24ac 4.71b 6.18ac 5.08b 5.73c 0.2 <0.01

Elect. conductivity (μS cm-1) 129 107 124 99 74 81 116 16 NS

Soluble phenols (mg l-1) 0.33ac 0.26a 0.68bc 1.10b 0.56abc 1.20b 0.46c 0.16 <0.01

Absorbance @ 254 nm 0.25a 0.28a 0.29ab 0.47b 0.45ab 0.48b 0.32ab 0.48 <0.01

Absorbance @ 400 nm 0.028a 0.033a 0.032ab 0.061b 0.047ab 0.061b 0.036ab 0.009 <0.01

Humification index (HIX) 9.0ab 9.0ab 8.7ab 8.2a 8.3ab 8.6ab 9.3b 0.3 0.03

Amino acids (μM) 1.52 1.83 1.67 1.95 1.15 3.1 2.08 0.4 NS

Leachate DOC (mg l-1) 7.5a 6.9a 8.2ab 12.0b 12.8ab 12.3b 9.8ab 2.2 <0.01

Leachate DON (mg l-1) 5.82a 3.47ac 3.16ac 0.78b 1.62c 1.81bc 6.69a 0.8 0.01

Leachate C:N 4.6a 5.5a 7.2a 19.0b 9.1ab 17.5b 9.7a 2.4 <0.01

Bulk density (g cm-1) 1.10a 1.11a 0.63b 0.19c 1.08a 0.58b 0.81b 0.06 <0.01

Factors Factor scores

Factor 1 (SOM) -0.52a -0.63a 0.15b 1.58c -0.59a 0.2b -0.07b 0.12 0

Factor 2 (DOM) -0.17 -0.05 -0.13 0.22 -0.46 0.44 0 0.15 NS

Factor 3 (Soluble-N) 0.09 -0.1 -0.06 -0.13 -0.4 -0.28 0.23 0.11 NS

Factor 4 (Microbial biomass) -0.24a 0.36b 0.30b 0.03ab -0.21ab 0.01ab 0.02ab 0.19 0.04

Factor 5 (Reduced-N) -0.05 -0.22 -0.03 -0.11 -0.2 0.36 0.14 0.17 NS

Factor 6 (DOMH) 0.06 -0.1 0.17 -0.3 -0.29 -0.2 0.23 0.18 NS

Superscripts letters indicate significant between soil groups at P<0.05 level.

https://doi.org/10.1371/journal.pone.0248665.t005
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P<0.01 while BD was significantly correlated with SOC (-0.83) at P<0.01, pH (0.70) at P<0.01
and soil respiration (-0.53) at P<0.01 meaning that qMic and bulk density, though correlated,

were the most important and dominant attributes for assessing soil quality across soil types.

The mean comparisons using the Games-Howell approach indicated that the BD had similar

discriminating power as the SOM factor among the soil types. qMic mean values varied signifi-

cantly with soil types separating peat < podzols < browns, GWGs and SWGs soils in increas-

ing order (Table 5).

Effect of aggregate vegetation class on factor scores and selected soil

attributes

Aggregate vegetation class (AVC) showed more effects on factor scores than the soil types. The

significant effects were observed in SOM, DOM, microbial biomass and DOMH. The soluble

N and reduced N factors showed no significant variation among the AVCs (Table 6). The

SOM factor had the highest mean factor scores (P< 0.01) in heath and bog. Mean scores

between moorland grass mosaics and upland woodland were not significantly (P> 0.05) dif-

ferent; neither was it different (P> 0.05) among fertile grasslands, infertile grassland, lowland

woodland and tall grass mosaic. The mean scores were lowest in crop and weeds and were sig-

nificantly different (P< 0.01) from all other AVCs except in tall grass and herbs.

Means scores for DOM factor varied significantly (P< 0.01) between crop and weeds verses

herb and bog, and infertile grasslands; all other pairs did not vary significantly. For microbial

biomass factor, crop and weeds and tall grass and herbs varied significantly (P< 0.01) against

the fertile grassland, infertile grasslands, heath and bog, and moorland grass mosaics, while all

other pairs were not significantly different (P> 0.05). The DOM humification factor showed

that the mean scores varied significantly (P< 0.01) among crop and weeds versus infertile

grassland and moorland grass mosaics versus lowland woodland only.

Table 6. Effect of Aggregate Vegetation Class (AVC) on factor scores and soil attribute means.

Average vegetation class mean factor scores

Factors Crops &

weeds

Fertile

grasslands

Heath &

bog

Infertile

grassland

Lowland

woodland

Moorland grass

mosaics

Tall grass &

herbs

Upland

woodland

SEM ANOVA

Factor 1 (SOM) -0.80a -0.54 b 1.43 c -0.50 b -0.40 b 0.62 d -0.64 ab 0.20 bd 0.1 <0.01

Factor 2 (DOM) -0.40 a -0.11 ab 0.30 b 0.02 b 0.41 ab -0.11 ab -0.06 ab 0.51 ab 0.19 <0.01

Factor 3

(Soluble-N)

0.34 0.07 -0.09 -0.03 0.05 -0.34 0.12 -0.28 0.14 NS

Factor 4 (Mic.

biomass)

-0.49 a 0.16 b 0.07 b 0.27 b -0.19 ab 0.28 b -0.61 a -0.21 ab 0.16 <0.01

Factor 5

(Reduced-N)

-0.39 0.09 0.13 0.02 -0.12 0.22 -0.2 0.18 0.14 NS

Factor 6

(DOMH)

-0.29 a 0.04 ab -0.35 ab 0.13 b 1.15 c 0.18 b 0.38 bc 0.63 bc 0.17 <0.01

Soil attributes Soil attribute mean values

SR (mg kg-1 h-1) 0.29a 1.00 b 3.22 c 0.77 b 0.67 ab 1.44 b 0.43 ab 1.41 b 0.23 <0.01

SOC (g kg-1) 16.7 a 43.6 b 350.2 c 43.8 b 46.4 b 185.6 c 25.0 ab 119.8 c 11.2 <0.01

pH 7.3 a 6.4 b 4.6 c 6.3 b 6.2 abd 5.2 d 6.6 ab 4.7 dc 0.2 <0.01

BD (Mg m-1) 1.37 a 1.06 b 0.21 c 0.95 b 0.89 b 0.41 d 1.22 ab 0.48 d 0.05 <0.01

qMic (ratio) 0.021a 0.023 a 0.005 b 0.021 a 0.015 ab 0.009 b 0.015 ab 0.010 ab 0.003 <0.01

Superscripts letters indicate significant between soil groups at P<0.05 level.

https://doi.org/10.1371/journal.pone.0248665.t006
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Prediction of soil quality indicators across Aggregate Vegetation Classes

(AVC)

The first canonical discriminant function of the discriminant analysis of the six factors across

the AVCs explained 94% of the total variance (Wilks’s Lambda, P< 0.01) whose coefficients

were used in the equation below:

Y3 ¼ 2:12 ðSOMÞ þ 0:49 ðDOMÞ þ 0:30 ðmicrobial biomass CÞ þ 0:36 ðreduced NÞ
� 0:35 ðsoluble NÞ � 0:20 ðDOMHÞ ½Eq 4�

From the discriminant coefficients in Eq 4 [Eq 4], SOM factor was the most powerful dis-

criminating among the eight different AVCs. The SOM factor was more than four-fold larger

than the coefficients of all others soil quality factors under consideration.

The discriminant analysis of the measured attributes constituting the SOM factor showed

that BD and qMic were the most powerful discriminating soil attributes among the seven

AVCs [Eq 5].

Y4 ¼ 3:27 ðBDÞ þ 0:70 ðpHÞ þ 0:08 ðSRÞ � 2:45 ðqMicÞ � 2:75� 10� 6 ðSOCÞ ½Eq 5�

Bulk density possessed similar discriminating power as the SOM factor among the AVCs.

Bulk density values were significantly different (P< 0.01) among AVCs with the lowest mean

values in heath and bog (0.21 Mg m-3)<moorland grass mosaic (0.41 Mg m-3) and upland

wooded (0.48 Mg m-3)< lowland wooded (0.89 Mg m-3), < infertile grass (0.95 Mg m-3), <

fertile grass (1.06 Mg m-3),< tall grass and herbs (1.21 Mg m-3) and crop and weeds (1.37 Mg

m-3; Table 6).

Main and interactions effect of soil types and AVCs

The results of the two-way ANOVA on the first canonical discriminate function on all 20 vari-

ables showed significant (P< 0.01) main and interaction effects. The main effect of soil types

and the effect of soil types � AVCs interaction on the attribute’s scores was very small (Partial

Eta Square = 0.09 and 0.16 respectively), while the main effect of the AVCs was large (Partial

Eta Square = 0.42; Table 7).

The cross tabulation of AVCs versus soil types (S3 Table), showed that 27 out of 56 combi-

nations or cells, the soil types were sampled less than the calculated expected counts in the

AVCs. In 16 combinations, the soil types were not at all represented in the AVCs. The most

affected were the lowland woodland and tall grass and herbs where, only brown and SWGs

were samples in the former and only browns, GWG and SWGs in the latter.

Table 7. Tests of between-subjects effects.

Source Type IV sum of squares Df Mean Square F Sig. Partial eta squared

Corrected model 553.14 38 14.56 36.36 0.001 0.844

Intercept 3.42 1 3.416 8.532 0.004 0.032

Soil Type � AVC_Desc 18.98 25 0.759 1.896 0.008 0.157

Soil Type 10.36 6 1.726 4.311 0.001 0.092

AVC_Desc 73.97 7 10.57 26.39 0.001 0.420

Error 102.09 255 0.400

Total 655.24 294

Corrected Total 655.24 293

Notes: Dependent variable: 1st Canonical Discriminant function scores of all the soil attributes measured. AVC_desc means AVC description; Soil Type�AVC_Desc

means the interaction between the soil type and AVC effects.

https://doi.org/10.1371/journal.pone.0248665.t007
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Discussion

Identification of SQI

A set of 20 correlated soil attributes were grouped into six factors called soil quality factors,

using factor analysis. The factors identified contribute to one or more key soil functions and

could be considered soil quality indicators [48, 51]. The SQI identified were SOM, DOM, solu-

ble N, reduced N, microbial biomass, and DOMH with their associated attributes (namely

SOC, qMic, BD, pH, SR) for each category of groups (Soil types/AVC) (see Eqs 2–5). The dis-

criminant analysis of these provides information on how sites differ with each other (if sites

are similar in nature or not) and which SQIs and attributes contribute to site classification/dis-

crimination [52]. These identified SQI are related to either the quantity of organic matter or its

decomposition state and processes. This is because SOM is known to play vital roles in the

maintenance and improvement of many soil properties and processes [53] and exerts a strong

effect on soil function [54].

Effect of soil types and AVCs on the factors or soil quality indicators

As we know, soil quality is a complex concept because it is determined by multiple parameters

[19]. The soil quality factors are not measured directly [48, 55], therefore, the effect of soil

types and the AVCs on these factors were inferred by analysing soil attributes that comprised

them. Not all the soil quality factors varied significantly with soil types or with AVCs. Only

SOM and microbial biomass factors varied significantly (P< 0.001) by soil types. SOM was

able to discriminate the highest number of soil groups, separating the peats (1) with the highest

scores, from lithomorphics, podzols, and SWGs (2) with intermediate scores, and from

browns, GWGs and pelosols (3) with the lowest scores (Table 5), thus rendering three distinct

soil type groupings. The microbial biomass factor had a minor effect, discriminating the

browns from GWGs and lithomorphics only. The soil attributes constituting to these soil qual-

ity factors (SR, SOC, pH, BD, qMic, microbial biomass C and N) showed significant (P< 0.01)

variations discriminating at most three groups of soil types. In all the attributes considered,

browns, GWGs and pelosols were grouped together. SOM factor, SOC and bulk density attri-

butes separated the peats as a unique soil group from all other soil types, which is not entirely a

surprising result, since the peats are highly organic in nature with low BD as opposed to min-

eral soils with low OM content and higher bulk densities. The most important soil quality indi-

cator associated with specific soil types or groups was the SOM factor with qMic > bulk

density as the most important attributes.

Similarly, the most important Factors (SQIs) differentiating the AVCs across Great Britain

was the SOM factor with bulk density > qMic attributes being the most important attributes.

Four distinct AVC groups were separated based on SOM factor and BD attribute. Heath and

bog was exclusively separated as one group (1). Other groups were: (2) Crop and weeds with

tall grass and herb; (3) Fertile grassland, infertile grassland, lowland woodland, tall grass and

herbs, and upland woodland; (4) Moorland grassland mosaic with upland woodland. The

upland woodland and tall grass and herbs were intermediate habitats classifying in more than

one of these groups. The rest of the factors and attributes discriminated three or less groups.

The soil attributes were generally better in discriminating the AVCs than the factors (SQIs)

(Table 6)

Since qMic and bulk density were moderately correlated (r = 0.46��), they may be redun-

dant as indicators to be used together. If only one attribute were to be used to monitor soil

quality in soil types and AVCs, qMic and BD respectively seems to offers the greatest potential

judging from their high weights on the respective prediction models. However the qMic may
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be a ‘MUST be included’ soil attribute in the minimum data set, due to its important role in

several soil functions, being a fraction of SOC. SOC influences a wide range of soil functions

including bulk density, infiltration, pesticide buffering, aeration, aggregate formation, pH,

buffer capacity, cation-exchange properties, mineralization, and the activity of soil organisms

[51, 56, 57]. However, since the measurement of bulk density is reasonably easy to obtain, it is

therefore reasonable to consider it together with SOC, microbial and biomass C as minimum

data set for assessing soil quality across average vegetation classes in the study area.

Pedogenesis has taken place over thousands of years in the UK. During this period there has

been a range of climate change related vegetation colonization phases starting from tundra heath

and cycling through a range of forest types [58]. During this period parent material/topography,

climate and vegetation would have been stable for long periods of time leading to the differentia-

tion of soils. This was followed by progressive forest clearance which started approximately 1000–

3000 years ago with vegetation cover becoming more grassland and heathland dominated. The

last 200 years, however, has seen intense management of these soils with the addition of fertilisers,

lime and organic wastes combined with mechanical mixing of the soils which has reversed centu-

ries of acidification and soil horizon development. This homogenisation of the soil has led to shifts

between soil types even over short timescales (e.g. humic-podzolic to brown soils on improved

upland grasslands) and the loss of peat soils in intensive agricultural areas (e.g. East Anglia; [59].

One key question is therefore whether it is historical soil type or current vegetation that is more

important in driving soil processes in the short term (e.g. over a 10–25 year timescale)? Here we

found that more soil quality factors showed an AVC effect rather than a soil type effect. All soil

quality factors varied significantly (P< 0.01) by AVCs except soluble N and reduced N factors

though none discriminated more than four groups. Similarly, Peng et al. [19] and Guan and Fan

[60] found strong evidence that different vegetation restoration types accounts for significant vari-

ations in the soil quality in different areas. It is possible that some of the soil quality factors that

were insensitive to vegetation may represent inherent soil qualities that are controlled by other

key factors of soil formation (e.g. parent material/topography), while those which significantly

varied by AVCs may represent dynamic soil qualities, possessing great potential for assessing

management practices on soil quality [4, 56, 61–63]. Most indicators available in literature have

not been validated nor their sensitivity tested in a wide range of situations [64]. Some of the attri-

butes measured and the soil quality indicators identified in this work are not usually used in the

monitoring of soil quality, but are candidates for potential alternatives [22].

Prediction of SQI by soil type or AVC

The question is: Can a combination of variables be used to predict group membership in soil

type or AVC? The results from discriminant analysis was used to seek out a linear combination

of SQI for each treatment group (soil type/AVC) that maximizes the difference between treat-

ment groups for proper classification [52]. The analysis provides a classification function that

determines to which groups an individual belongs. Eqs 2–5 shows the SQI and attributes that

maximises the difference between groups in both the soil types and AVCs. The SQI identified

were SOM, DOM, soluble N, microbial biomass, reduced N and DOMH with their associated

coefficients and attributes for each category groups. The clusters from this multivariate classifi-

cation are “natural” groups, which uses the “minimum-variance” solution; where a population

is partitioned into cluster subsets by minimizing the total within group variation while maxi-

mising between groups variance [65]. The groups/cluster formed from the multivariate analy-

sis need to have no significant overall spread. Even though SQIs were changes from one soil

group to another [66], most of our cluster modes defined by soil types were not always distinct.

Most of them were separated from each other by significant “noise” data, making it impossible
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to resolve all the clusters. Thus, the definition of the reference values for each soil type or AVC

was ambiguous, since most soils types or AVC groups could not be differentiated (Fig 3).

Forming, describing and defining the groups could involve the use all measured attributes

even though only a few could be differentiating [67]. Even when a few soil quality factors/indi-

cators and attributes were used, most of the groups/clusters could still not be resolved. From

the discriminant plots and the dendrograms in Fig 3 three groups can be defined in soil types

and four groups in the AVC.

An attempt to define unique property ranges in soil type groups could be based on bulk

density attribute for the first group, a combination of SR and SOC attributes for the second

group, and a combination of qMic, soil respiration, SOC, pH and bulk density attributes for

the third group. Nguemezi et al. [66] in their study also identified SOC and pH among the

most influential soil attributes that differentiated soil groups their study area in Cameroon.

The pelosols were the most dispersed and unreliable group in terms of attribute membership

prediction, probably due to the fact that they were under sampled, considering that only six

samples were included in the analysis. The classification of the AVCs using discriminate and

cluster analyses on key attributes yielded four clusters. Defining differentiating criteria for

these groups could involve the use of a combination of SR, SOC, and pH attributes to define

property ranges for the first, second and fourth groups and bulk density attribute for the third

group. Tall grass and herbs and lowland wooded were under sampled (with 11 and 6 samples

respectively; S3 Table) which greatly compromised their predictive accuracy as can be

observed from the large 95% confidence circles which overlapped with other AVC groups.

To what extent do soil types and/ or AVC act as major regulators of SQI?

From the results, it’s clear that both soil types and AVCs regulate the physical, chemical and

biological properties. The interaction of soil type × AVC (Table 7) reveal differences in their

influence on the soil attributes. The ‘practical’ significance of each term from Partial Eta

Square values indicates that AVCs (with a large Partial Eta Square = 0.42), were a better regula-

tor of the SQIs than soil types (with a weak Partial Eta Square = 0.09). The effect size for the

interaction was equally relatively weak (Partial Eta Square = 0.16). The conclusion of the sig-

nificant (P< 0.01) interaction effect of soil type × AVC is that the soil type differences in the

attributes partly depended on the AVCs where the soil was sampled. A multiple comparison of

all soil type groups with AVC groups would be required to draw specific conclusions regarding

the interaction effects, which is quite complex and is beyond the scope of this research. Suffice

to say that there was a partial and varied soil type × AVC interaction across all levels. Corre-

spondingly, studies by Setala et al. [68] and Xu et al. [69] reported similar interactions between

soil types and vegetation types. They established that vegetation types, greatly modify the soil

biogeochemistry of pH, %OM, %C, and %N and the C/N ratio, translating to significant varia-

tion in soil properties and processes among the vegetation types. In addition, Soil colour, pH,

and electric conductivity (EC) are interlinked and controlled by the organic matter content of

soil [70] and the quantity and quality of organic matter depends on the vegetation type. There-

fore, soil organic matter is one of the most important determinants of soil quality and has a

close association with soil productivity and fertility [71]. These interactions results are in

accordance with Jenny’s [62] theory of soil formation which states that the biotic factor (of

which vegetation plays a major role) is amongst others an important soil forming factor. How-

ever, the results from the cross tabulation indicated that not all soil types were well represented

in the AVCs going by the calculated expected counts. In some cases, soil types were not at all

represented (S3 Table). This problem can contribute to the complexity and diminished accu-

racy in the interpretation of the interaction effect observed above.
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Conclusions

The SQIs or attributes that contribute to the site discrimination in GB environment were iden-

tified as SOM, DOM, soluble N, microbial biomass, reduced N and DOMH with their associ-

ated attributes. The dominant SQIs from factor analysis or attributes varied by both soil type

Fig 3. Discrimination plots showing 95% confidence circles around the means for soil types (Panel A) and AVCs (Panel C). Panels B and D are the respective

cluster analyses dendrograms using a complete linkage method.

https://doi.org/10.1371/journal.pone.0248665.g003
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and AVC of which the SOM factor was the most discriminating factor. The qMic and BD were

the most discriminating measured attributes which produced three fairly homogenous groups

for soil types and four groups for AVCs. However, it was impossible to define reference values

in the SQIs or attributes for separate individual soil types or AVCs, as property ranges greatly

overlapped due to large between group variability (probably due to integrating large spatial

areas). This suggests that soil types or AVCs are poor predictors for SQIs across different

regions of differing climatic conditions and edaphic factors making it impossible to select a

universal optimum set of indicators that define them. Localised areas with similar climatic and

topoedaphic factors may hold promise for the definition of SQI that may predict the soil types

as some of the differences observed in soil types (with regard to soil attributes) were in part

dependent on the AVCs differences. A few workers [2, 48, 50, 63, 64, 67] in different regions

have attempted to define sets of SQI with reasonable success.

For further research, it might be worthwhile to make special consideration for the climatic,

spatial and parent material variability in the sampling designs in addition to the inclusion of

other promising soil attributes. The sampling design, should ensure equal and adequate repre-

sentation of soil types in the aggregate vegetation classes in order to accurately capture the

interaction effect. Other key soil quality indicators, may include measures of key soil enzymes

(e.g. cellulase, protease, phosphatase, sulfatase), their potential to release N2O and CH4.
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