
1. Introduction
Ice shelves, the floating extensions of ice sheets, form the interface between the ocean and the Antarctic 
Ice Sheet. Ice shelves melt at their base due to heat supplied by relatively warm ocean waters and buoyant 
freshwater from subglacial discharge (Jenkins, 1991; Le Brocq et al., 2013; Thoma et al., 2008). Melting is 
often concentrated in ice-shelf basal channels, where a buoyant meltwater plume entrains relatively warm 
ambient water, enhancing melting within the channel (Dallaston et al., 2015; Jenkins, 1991). Ice-shelf basal 
channels, hereafter referred to as basal channels, have been detected in satellite imagery (Alley et al., 2016; 
Le Brocq et  al.,  2013), digital surface elevation models (Berger et  al.,  2017; Chartrand & Howat,  2020; 
Dutrieux et al., 2013; Howat et al., 2019; Shean et al., 2019), satellite altimetry (Alley et al., 2016; Gourmel-
en et al., 2017; Wei et al., 2020), ice-penetrating radar (Drews, 2015; Drews et al., 2017; Langley et al., 2014; 
Rignot & Steffen, 2008; Vaughan et al., 2012), and subshelf cavity observations (Dutrieux et al., 2014, 2016). 
Basal channels may be initiated upstream of the grounding line (Gladish et al., 2012), by topographic basal 
highs (Jeofry et al., 2018) or focused subglacial drainage (Le Brocq et al., 2013; Wei et al., 2020). Channelized 
melting may also be initiated by variations in ice-shelf thickness (Dow et al., 2018; Sergienko, 2013).

Modeling and observations indicate that ice-shelf basal melting reduces buttressing to grounded ice (Gold-
berg et al., 2019; Gudmundsson et al., 2019; Pritchard et al., 2012; Reese et al., 2018). Moreover, concen-
trated melting in basal channels has been observed to influence the flow and stability of ice shelves. Shear 
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can increase at a basal channel where the ice is thinner and high strain rates reduce effective viscosity 
(Drews, 2015; Lhermitte et al., 2020). Surface and basal crevasses have been observed to form aligned with 
basal channels (Vaughan et al., 2012). Large fractures perpendicular to ice flow can be initiated at basal 
channels where the ice shelf is thinner (Dow et al., 2018). Furthermore, channels found in ice-shelf shear 
margins have been implicated in triggering iceberg calving (Alley et al., 2019). Finally, linear extrapolation 
of current incision rates suggest that basal channels could melt through ice shelves completely, significant-
ly reducing buttressing (Gourmelen et al., 2017; Rignot & Steffen, 2008), although this process is yet to be 
observed.

In Antarctica, surface meltwater can be produced at low elevations near grounding lines (Kingslake 
et al., 2017; Lenaerts et al., 2017; Stokes et al., 2019; Trusel et al., 2013). Elongated surface depressions, 
formed when the ice-shelf surface lowers in response to channelized basal melting, potentially allow water 
to drain downstream from these spatially restricted ablation zones (Spergel et al., 2021) into areas where 
the ice shelf is vulnerable to hydro-fracture (Bell et al., 2018; Dow et al., 2018; Kingslake et al., 2017; Lai 
et al., 2020). Alternatively, they may drain water off the ice-shelf surface and directly into the ocean (Bell 
et al., 2017).

Ice-shelf basal melting is often inferred using remote-sensing observations of ice surface elevation and 
velocity (Adusumilli et al., 2018; Berger et al., 2017; Dutrieux et al., 2013; Gourmelen et al., 2017; Paolo 
et al., 2018; Rignot et al., 2013; Shean et al., 2019). These calculations account for the thinning/thickening 
of the ice due to horizontal flux divergence/convergence and surface melting/accumulation to determine 
basal melting/freeze-on, assuming horizontal flow is vertically uniform and the ice shelf is freely floating 
(Paolo et al., 2018; Pritchard et al., 2012).

Ice-shelf flow is induced by gradients in ice-shelf thickness. The large-scale flow can be calculated using 
the Shallow-Shelf Approximation (SSA; MacAyeal, 1989), which assumes horizontal gradients in ice thick-
ness are small and horizontal flow is vertically uniform. However, near a basal channel, where gradients in 
ice thickness are large, the SSA may not apply. The flow of ice induced by a basal channel is referred to as 
ice-shelf secondary flow (Bassis & Ma, 2015), with primary flow corresponding to the large-scale ice-thick-
ness gradient. Using a 3D full-Stokes ice-flow model, Drews (2015) showed that after concentrated melting 
channels gradually close due to inflow from the surrounding ice. Furthermore, Drews et al. (2020) showed 
that the evolution of a basal channel and associated internal stratigraphy is controlled by spatial variations 
in both basal melting and surface accumulation.

Here, we systematically investigate basal-channel evolution using a full-Stokes ice-flow model. Secondary 
flow increases with channel size and reduces the growth rate of basal channels. We assess the assumptions 
used to infer ice-shelf basal melting from remote-sensing observations and discuss the implications of sec-
ondary flow for projections of channel incision.

2. Methods
2.1. Full-Stokes Numerical Model

We use the full-Stokes numerical ice-flow model ELMER/Ice (Gagliardini et al., 2013) to simulate the evo-
lution of a basal channel. We consider a 2D vertical plane aligned perpendicular to a basal channel. We 
assume the domain is advected in the primary flow direction, but do not simulate strain in that direction. 
This simplification allows us to isolate and explore the physics of secondary flow, while avoiding the com-
putation costs of three-dimensional simulations (Drews, 2015).

The domain is 50 km wide ( 𝐴𝐴 𝐴𝐴 = −25 to 𝐴𝐴 𝐴𝐴 = 25 km) with high horizontal grid resolution (120 m) across the 
center of the domain and split vertically into 11 evenly spaced layers (see Figure S1 in Supporting Informa-
tion S1). ELMER/Ice solves the Stokes equations with free upper and lower boundaries that move due to 
mismatches between buoyancy, vertical velocity and prescribed surface accumulation and basal melting. 
An idealized melt rate, 𝐴𝐴 𝐴𝐴 , is imposed at the ice-shelf base using a Gaussian function centered at 𝐴𝐴 𝐴𝐴 = 0 km 
with peak melt rate ( 𝐴𝐴 𝐴𝐴𝑃𝑃 ) and a characteristic width ( 𝐴𝐴 𝐴𝐴𝑚𝑚 ; Figure S1c in Supporting Information S1),

𝑚𝑚 = 𝑀𝑀𝑃𝑃𝑒𝑒
− 𝑥𝑥2

2𝑥𝑥2𝑚𝑚 . (1)
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Surface accumulation, 𝐴𝐴 𝐴𝐴 , is spatially uniform and is either set so that the total accumulation matches the 
total basal melting (allowing possible steady state),

𝑎𝑎 = 1
50 ∫

25

−25
𝑀𝑀𝑃𝑃𝑒𝑒

− 𝑥𝑥2

2𝑥𝑥2𝑚𝑚 𝑑𝑑𝑥𝑥𝑑 (2)

or a fixed value is prescribed: 𝐴𝐴 𝐴𝐴 = 1 m 𝐴𝐴 yr−1 . There is no flow across the lateral boundaries, simulating a 
laterally confined ice shelf. The ice rheology is specified by Glen's Flow Law, with a uniform rate factor ap-
propriate for ice at − 𝐴𝐴 10◦ C ( 𝐴𝐴 𝐴𝐴 = 3.5 × 10−25 s−1 Pa−3 Cuffey & Paterson, 2010) and flow-law exponent 𝐴𝐴 𝐴𝐴 = 3 .

Each simulation is initiated with an ice shelf of uniform thickness, 𝐴𝐴 𝐴𝐴0 , and is run for one characteristic 
time ( 𝐴𝐴 𝐴𝐴𝐶𝐶 ): the time for cumulative accumulation to equal the ice thickness ( 𝐴𝐴 𝐴𝐴0 = 𝑎𝑎𝑎𝑎𝐶𝐶 ). Model timesteps are 

𝐴𝐴 𝐴𝐴𝐴𝐴 = 𝑇𝑇𝐶𝐶∕500 (see Section S2 in Supporting Information S1). We vary 𝐴𝐴 𝐴𝐴0 , 𝐴𝐴 𝐴𝐴𝑃𝑃 , and 𝐴𝐴 𝐴𝐴𝑚𝑚 between simulations. 
If the channel incises completely the simulation stops. We perform additional simulations using ELMER/
Ice's age solver (Gagliardini et al., 2013) to simulate the internal stratigraphy.

2.2. Inferring Basal Melt Rates From Ice Thickness and Surface Velocity Observations

To mimic satellite observations, we use the surface elevation ( 𝐴𝐴 𝐴 ), ice thickness ( 𝐴𝐴 𝐴𝐴 ), and surface velocity ( 𝐴𝐴 𝐴𝐴𝑠𝑠 ) 
calculated in ELMER/Ice (Section 2.1). We test whether the following assumptions used to infer basal melt 
rates hold in the vicinity of a basal channel: (a) that the horizontal velocity is vertically uniform and there-
fore equal to the surface velocity; and (b) that the ice shelf is in hydrostatic equilibrium: 𝐴𝐴 𝐴𝐴 = (1 − 𝜌𝜌𝑤𝑤∕𝜌𝜌)ℎ , 
where 𝐴𝐴 𝐴𝐴𝑤𝑤 and 𝐴𝐴 𝐴𝐴 are the density of seawater and ice, respectively. The inferred basal melt rate, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 , is calcu-
lated using the continuity equation:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+𝜕𝜕 𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝑎𝑎(𝜕𝜕) − 𝑚𝑚𝑖𝑖𝑖𝑖(𝜕𝜕), (3)

This approach has the advantage of avoiding additional uncertainties in observations associated with sur-
face mass balance and firn densification. We investigate how the spatial resolution of observations affects 
the accuracy of the inferred melt rate by varying the resolution of the surface observations through linear 
interpolation on to grids with 0.25, 0.5, and 1 km spacing.

3. Results
3.1. Evolution of Basal Channels and Secondary Flow

The evolution of a basal channel with 𝐴𝐴 𝐴𝐴0 = 500 m, 𝐴𝐴 𝐴𝐴𝑃𝑃 = 8 m 𝐴𝐴 yr−1 and 𝐴𝐴 𝐴𝐴𝑚𝑚 = 2.5 km, is shown in Figure 1. 
Total surface accumulation matches the total basal melting ( 𝐴𝐴 𝐴𝐴 = 1 m 𝐴𝐴 yr−1 ). Initially the height of the basal 
channel, 𝐴𝐴 𝐴𝐴𝐶𝐶 , increases due to melting (Figure 1a). In response, secondary flow increases with flow directed 
toward the center of the channel. After 90 years, secondary flow reaches a maximum of approximately 50 m 

𝐴𝐴 yr−1 and the height of the basal channel reaches 99% of its steady-state value. The mean speed continues to 
adjust, reaching a constant value after approximately 140 years (Figure 1b). A constant geometry is main-
tained despite continued melt, with secondary flow balancing melting. The steady-state normalized basal 
channel height 𝐴𝐴 �̂�𝐻 is 0.6 (normalized by 𝐴𝐴 𝐴𝐴0 = 500 m). In the absence of secondary flow, the channel would 
melt through the entire ice shelf in approximately 70 years (Figure 1b).

The age-depth field (Figure 1c) shows isochrones, which are often assumed to be well represented by the 
internal reflecting horizons imaged with ice-penetrating radar (Drews, 2015; Drews et al., 2017, 2020; Lang-
ley et al., 2014; Vaughan et al., 2012). The simulation has been extended to twice the characteristic time 
( 𝐴𝐴 2𝑇𝑇𝐶𝐶 = 1000 year) to show isochrones throughout the ice thickness. Isochrones dip down toward the chan-
nel and intercept the base where ice has been removed by melting. (Compare with isochrones with higher 
curvature for 𝐴𝐴 𝐴𝐴0 = 500 m, 𝐴𝐴 𝐴𝐴𝑃𝑃 = 4 m 𝐴𝐴 yr−1 and 𝐴𝐴 𝐴𝐴𝑚𝑚 = 1 km: Figure S3 in Supporting Information S1).

3.2. The Impact of Ice Thickness, Melt Rate, and Channel Width

For low melt rates ( 𝐴𝐴 𝐴𝐴𝑃𝑃 = 4 and 8 m 𝐴𝐴 yr−1 ; Figure 2a), 𝐴𝐴 �̂�𝐻 increases monotonically in time, initially approx-
imately linearly then slowing as secondary flow increases until a steady state is reached. Steady-state 𝐴𝐴 �̂�𝐻 
increases with increasing melt rate, until the basal channel fully breaks through ( 𝐴𝐴 𝐴𝐴𝑃𝑃 = 24 and 32 m 𝐴𝐴 yr−1 ; 
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Figure 2a). The timing of breakthrough is delayed (by approximately 6 years or 35%, and 4 years or 30%) in 
comparison to the linear extrapolation of the melt rate.

Where steady-state 𝐴𝐴 �̂�𝐻 is large ( >0.8 ), 𝐴𝐴 �̂�𝐻 temporarily grows to exceed its steady-state value. This “overshoot” 
occurs because secondary flow is dependent on the geometry of the basal channel. The basal channel is ini-
tially wider than the steady-state geometry. Horizontal flow narrows the channel, which leads to an increase 
in vertical velocity and acts to close the channel toward steady state (Figure S5 in Supporting Information S1).

For constant melt rate ( 𝐴𝐴 𝐴𝐴𝑃𝑃 = 16 m 𝐴𝐴 yr−1 ; Figure 2b), thicker shelves (750 and 1,000 m) reach a steady state 
monotonically. Again, overshoot in 𝐴𝐴 �̂�𝐻 occurs for ice shelves with steady-state 𝐴𝐴 �̂�𝐻 𝐻 0.8 . For thinner shelves 
(250 and 300 m; Figure 2b), secondary flow is insufficient to balance melting; however, there is a delay in 
breakthrough time (approximately 2.5 years or 16%, and 4 years or 21%, respectively).

Surface accumulation is held constant ( 𝐴𝐴 𝐴𝐴 = 1 m 𝐴𝐴 yr−1 ) and 𝐴𝐴 𝐴𝐴0 = 400 m with varying 𝐴𝐴 𝐴𝐴𝑃𝑃 in Figure 2c. For 
𝐴𝐴 𝐴𝐴𝑃𝑃 > 8 m 𝐴𝐴 yr−1 there is net mass loss and the basal channel breaks through the ice shelf. For high 𝐴𝐴 𝐴𝐴𝑃𝑃 (24 and 

32 m 𝐴𝐴 yr−1 ) there is only a small delay in the breakthrough time. However, for lower 𝐴𝐴 𝐴𝐴𝑃𝑃 (12 and 16 m 𝐴𝐴 yr−1 ) 
there is a substantial increase in the breakthrough time (by a factor of 5 for 12 m 𝐴𝐴 yr−1 ). For ice shelves where 
there is a net mass gain ( 𝐴𝐴 𝐴𝐴𝑃𝑃 > 8 m 𝐴𝐴 yr−1 ), 𝐴𝐴 �̂�𝐻 initially grows as melting incises a channel, but then decreases 
as secondary flow increases and the ice shelf thickens.

Figure 1. (a) Transient evolution of a basal channel and secondary flow: 𝐴𝐴 𝐴𝐴0 = 500 m, 𝐴𝐴 𝐴𝐴𝑃𝑃 = 8 m 𝐴𝐴 yr−1 and 𝐴𝐴 𝐴𝐴𝑚𝑚 = 2.5 km. Color scale shows magnitude of 
secondary flow, and streamlines show direction. (b) Evolution of normalized basal channel height ( 𝐴𝐴 �̂�𝐻 ) (solid blue curve; colored dots correspond to intervals 
in panel (a)). Linear incision (blue dashed line). 𝐴𝐴 �̂�𝐻 = 1 indicates breakthrough of basal channel (black dashed line). Mean secondary flow speed (averaged over 
domain: −25 to 25 km) (red curve). (c) Age-depth field around a basal channel after 1,000 years.
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In Figures 2a–2c stars indicate the ice-shelf residence time, the time taken for ice to be advected from the 
grounding line to the calving front, for a selection of Antarctic ice shelves (Figure S6 in Supporting Infor-
mation S1). For ice shelves with short residence times ( 𝐴𝐴 𝐴 80 years; Pine Island and Thwaites glaciers), high 
melt rates ( 𝐴𝐴 𝐴 16 m 𝐴𝐴 yr−1 ) and thin ice ( 𝐴𝐴 𝐴 400 m) are required for basal-channel breakthrough before reaching 
the calving front. For ice shelves with longer residence times ( 𝐴𝐴 𝐴 80 years) secondary flow becomes highly 
significant for melt rates less than 16 m 𝐴𝐴 yr−1 , with breakthrough time increased to several times the rate 
expected from linearly extrapolation. In these cases, secondary flow prevents channel breakthrough within 
the residence time.

Figure 2d shows a phase space of ice-shelf thickness and melt rate with the time for basal-channel break-
through as a multiple of the linearly extrapolated incision rate (e.g., a value of 4 indicates 4 times the lin-
ear rate). Accumulation is constant ( 𝐴𝐴 𝐴𝐴 = 1 m 𝐴𝐴 yr−1 ). The largest delays are achieved for thicker ice shelves 
with smaller melt rates, where secondary flow can be sustained without thinning the ice rapidly. For thin 
ice shelves ( 𝐴𝐴 𝐴𝐴0 < 400 m), only small delays in breakthrough time are possible as the ice shelf is not thick 
enough to produce substantial secondary flow. For thicker ice shelves, 𝐴𝐴 𝐴𝐴0 > 600 m, the breakthrough time 
is substantially increased to over four times the linear incision rate. In all cases in Figure 2d ( 𝐴𝐴 10 ≤ 𝑀𝑀𝑃𝑃 ≤ 50 
m 𝐴𝐴 yr−1 ) there is net mass loss and eventually channel breakthrough. Melting balances accumulation for 

𝐴𝐴 𝐴𝐴𝑃𝑃 = 8 m 𝐴𝐴 yr−1 , and hence the breakthrough time approaches infinity, for 𝐴𝐴 𝐴𝐴0 > 400 m, toward the left ver-
tical boundary.

Figure 2. (a)–(c) Evolution of normalized basal channel height ( 𝐴𝐴 �̂�𝐻 ) (solid curves). Dashed black line indicates basal-channel breakthrough ( 𝐴𝐴 �̂�𝐻 = 1 ) and 
dashed colored lines denotes linear incision. Stars indicate residence times for: Pine Island Glacier (PIG); Thwaites (TIS); Crosson (CIS) and Dotson (DIS) ice 
shelves (see Section S6 in Supporting Information S1). (a) and (b) accumulation balances total melt rate. (a) 𝐴𝐴 𝐴𝐴0 = 400 m and 𝐴𝐴 𝐴𝐴𝑃𝑃 is varied. (b) 𝐴𝐴 𝐴𝐴𝑃𝑃 = 16 m 𝐴𝐴 yr−1 
and 𝐴𝐴 𝐴𝐴0 is varied. (c) and (d) 𝐴𝐴 𝐴𝐴 = 1 m 𝐴𝐴 yr−1 . Accumulation balances melt for 𝐴𝐴 𝐴𝐴𝑃𝑃 = 8 m 𝐴𝐴 yr−1 . (c) 𝐴𝐴 𝐴𝐴0 = 400 m and 𝐴𝐴 𝐴𝐴𝑃𝑃 is varied. (d) Phase space of ice thickness and 
melt rate depicting breakthrough time with secondary flow normalized by linear incision rate.
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All simulations in Figure 2 feature melting with characteristic width 𝐴𝐴 𝐴𝐴𝑚𝑚 = 2.5 km. Figures S7c and S7f in 
Supporting Information S1 show the effect of changing 𝐴𝐴 𝐴𝐴𝑚𝑚 on the evolution of 𝐴𝐴 �̂�𝐻 . In all cases decreasing 𝐴𝐴 𝐴𝐴𝑚𝑚 , 
but maintaining 𝐴𝐴 𝐴𝐴𝑃𝑃 , leads to a decrease in 𝐴𝐴 �̂�𝐻 , as narrower channels induce a larger vertical flow.

3.3. Comparing Numerical Model and Shallow-Shelf Approximation

To compare the SSA and full-Stokes model, we consider the instantaneous velocity in the absence of accu-
mulation or melting (Section S8 in Supporting Information S1; Figure 3). The SSA viscosity parameters for 
Newtonian and Glen's Flow Law rheologies are uniform across the domain and are chosen to match the 
peak magnitude in horizontal surface velocity from ELMER/Ice (Figure 3a). The SSA vertical velocities are 
approximately half the magnitude of the ELMER/Ice velocity at 𝐴𝐴 𝐴𝐴 = 0 km, and larger than the ELMER/Ice 
velocities either side of the central peak ( 𝐴𝐴 𝐴𝐴 = ±1.5 to 𝐴𝐴 𝐴𝐴 = ±5 km; Figure 3b).

While the SSA disagrees significantly with the full-Stokes ELMER/Ice simulation, a separate question is 
whether there is a large deviation from vertically uniform flow. This question is important because re-
mote-sensing estimates of ice-shelf basal melting assume horizontal flow is vertically uniform. A steady-
state ELMER/Ice simulation ( 𝐴𝐴 𝐴𝐴0 = 400 m, 𝐴𝐴 𝐴𝐴𝑃𝑃 = 8 m 𝐴𝐴 yr−1 , 𝐴𝐴 𝐴𝐴𝑚𝑚 = 2.5 km and 𝐴𝐴 𝐴𝐴 = 1 m 𝐴𝐴 yr−1 ) shows that hori-
zontal flow varies by less than 1% with depth (Figure 3d), with the most significant variation aligned with 
the highest curvature of channel geometry (onset and peak of channel). The presence of horizontal and 
vertical shear (Figure S9 in Supporting Information S1) emphasizes the fact that despite near uniform hori-
zontal flow, higher-order stresses, neglected in SSA, are important here.

3.4. Inferring Basal Melt From Remote-Sensing Observations

Using 𝐴𝐴 𝐴𝐴 allows the mismatch between the inferred and imposed melt rate due to spatial resolution to be 
assessed without additional impacts from non-hydrostatic effects (Figures 4a and 4b). Spatial resolution 
of 250 m leads to a slight underestimate of the peak melt rate of 2.5%, and this increases to 10% and 30% 

Figure 3. (a and b) Comparing velocities from the full-Stokes ELMER/Ice simulations and the SSA, for a prescribed basal channel geometry ( 𝐴𝐴 𝐴𝐴𝐶𝐶 = 180 m, 
𝐴𝐴 𝐴𝐴0 = 400 m; Figure S8 in Supporting Information S1), with no melting or accumulation. (a) Horizontal velocity at the ice surface. (b) Vertical velocity at the 

ice surface (solid lines) and base (dashed lines). (c and d) Steady-state ELMER/Ice simulation with 𝐴𝐴 𝐴𝐴0 = 400 m, 𝐴𝐴 𝐴𝐴𝑃𝑃 = 8 m 𝐴𝐴 yr−1 and 𝐴𝐴 𝐴𝐴𝑚𝑚 = 2.5 km ( 𝐴𝐴 𝐴𝐴𝐶𝐶 ≈ 300 m, 
𝐴𝐴 𝐴𝐴0 = 400 m). (c) Horizontal velocity. (d) Vertical variation in horizontal flow from surface velocity.
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when the resolution is reduced to 500 m and 1 km. At the channel margins ( 𝐴𝐴 𝐴𝐴 = ±1 to 𝐴𝐴 𝐴𝐴 = ±4 km) the melt 
rate is overestimated. These mismatches result from linear interpolation of ice-shelf thickness and surface 
expression of secondary flow, with the exact pattern and magnitude of the mismatch depending on the 
ice-shelf thickness and the channel geometry (Figure S10 in Supporting Information S1). The largest errors 
result from the interpolation of secondary flow across the basal channel (Figure S11 in Supporting Informa-
tion S1) where there is the largest gradient in horizontal velocity (Figure 3a).

The mismatch increases to 25% when the incorrect assumption of hydrostatic equilibrium is used to deter-
mine 𝐴𝐴 𝐴𝐴 (Figures 4c and 4d; 250-m resolution). Melt rate is underestimated at the channel center, but over-
estimated in the flanks ( 𝐴𝐴 |𝑥𝑥| > 2.5 km). The magnitude of the mismatch varies with 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴𝑃𝑃 (Figure S12 
in Supporting Information S1). In general, for smaller 𝐴𝐴 �̂�𝐻 , the mismatch is reduced because the ice is closer 
to hydrostatic equilibrium. Prior to reaching steady state, the mismatch increases as the channel grows 
(Figure S12 in Supporting Information S1). The largest errors are aligned with the channel walls, where 
bridging stresses become significant and inaccuracies in the ice-thickness gradient contribute the most to 
the mismatch (Figure S13 in Supporting Information S1). Despite these spatial patterns of large mismatch, 
integrated over the whole domain, the mismatch in total melting is less than 1%.

4. Discussion
Secondary flow counteracts the growth of ice-shelf basal channels formed by concentrated submarine melt-
ing. This not only allows basal channels to close once melting has stopped (Drews, 2015), but also reduces 
the growth rate of channels as they enlarge. Secondary flow is dependent on the basal-channel geometry 
and increases for larger channels, potentially stabilizing a basal channel despite continued melting.

Where an ice shelf experiences net mass balance, secondary flow can prevent the complete incision of a 
basal channel through the ice shelf. Where ice shelves experience net mass loss, secondary flow extends 
the time until basal-channel breakthrough, up to multiple times the rate calculated by linear extrapolation 
of incision rates. The exact delay depends on the net mass balance, the geometry of the ice shelf and the 
basal channel. Therefore, secondary flow should be accounted for when estimating future growth of basal 

Figure 4. Inferred (colored curves) and imposed (dashed black curve) melt rates for 𝐴𝐴 𝐴𝐴0 = 400 m and 𝐴𝐴 𝐴𝐴𝑃𝑃 = 8 m 𝐴𝐴 yr−1 with steady-state 𝐴𝐴 �̂�𝐻 ( 𝐴𝐴 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0.1 m 𝐴𝐴 yr−1 ) 
(see Figure 3c for thickness profile). Different colored curves correspond to resolution of synthetic data. (a) Inferred melt rate using ice thickness 𝐴𝐴 𝐴𝐴 . (b) The 
mismatch between inferred and imposed melt rate in (a). Panels (c), (d) same as (a), (b) but the surface elevation 𝐴𝐴 𝐴 is used to determine ice thickness assuming 
hydrostatic equilibrium.
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channels and, in turn, ice-shelf stability. In the case of a basal channel identified in the Dotson Ice Shelf 
(Gourmelen et al., 2017), secondary flow may increase the time until channel breakthrough by 30% (8 years; 
Figure S14 in Supporting Information S1).

For the fastest flowing ice shelves (e.g., Pine Island Glacier and Thwaites Glacier), secondary flow can pre-
vent the complete breakthrough of a basal channel within the ice-shelf residence time (i.e., for 𝐴𝐴 𝐴𝐴0 > 400 
m and 𝐴𝐴 𝐴𝐴𝑃𝑃 = 16 m 𝐴𝐴 yr−1 ) or significantly increase the time until breakthrough for higher melt rates. For 
the majority of ice shelves with residence times greater than 200 years (Figure S6 in Supporting Informa-
tion S1), secondary flow has the potential to prevent breakthrough of basal channels, with the exact results 
dependent on the magnitude of melting, ice-shelf thickness and net mass balance.

Ice-shelf secondary flow is encoded into the age-depth structure of the ice shelf (Figure 1c). Isochrones 
imaged with ice-penetrating radar have the potential to reveal the history of basal melting and surface ac-
cumulation (Catania et al., 2006, 2010; Drews et al., 2020; Wearing & Kingslake, 2019). Future work could 
develop the potential to invert basal-melt history from isochrone stratigraphy.

Our assessment considers a basal channel aligned in the primary flow direction with no additional ex-
tension stress acting across the channel. However, if a channel is aligned perpendicular to flow, we might 
expect additional extensional stresses across it to reduce secondary flow and, if large enough, ultimately 
prevent it (Bassis & Ma, 2015). In contrast, compression across the channel would enhance, channel clo-
sure. Our idealized model neglects extension in the primary flow direction. To first order, this would lead to 
ice-shelf thinning inside and outside of the channel, proportional to the local ice thickness, decreasing the 
gradient in ice-shelf thickness and in turn reducing secondary flow.

Ice fracturing may become important as the channel approaches breakthrough. Our results show extension-
al and shear stresses that are less than the critical stress required for fracturing ( 𝐴𝐴 ≈ 100 kPa; Vaughan, 1993; 
Figure S4 in Supporting Information S1). However, if the basal channel geometry is instantaneously im-
posed, high extensional stresses, capable of fracturing, are found above the apex of the channel and at the 
surface in the channel flanks (Vaughan et al., 2012). Channels aligned perpendicular to the primary flow 
may experience additional extensional stress due to the large-scale flow of the ice shelf, which can induce 
concentrated ductile deformation and potential crevassing (Bassis & Ma, 2015). The fracture reported by 
Dow et al. (2018) on the Nansen Ice Shelf occurred perpendicular to the channel axis and primary flow 
direction, with the thinner ice acting as the initiation site for fracture. Similar processes likely occur in ice-
shelf shear margins (Alley et al., 2019). Although stresses generated by along-flow basal channels may not 
trigger fracturing on their own, the presence of thinner ice at a basal channel may allow full-depth pene-
tration of fractures induced by the large-scale stress regime. This may be particularly important where the 
ice is thin ( 𝐴𝐴 𝐴 400 m) and secondary flow is insufficient to delay incision, potentially triggering the iceberg 
calving. Channelized basal melting has been implicated in the increase in ice damage in the shear margins 
of Pine Island Ice Shelf (Lhermitte et al., 2020), which consequently led to large calving events and ice ac-
celeration (Joughin et al., 2021).

Despite the small variation in horizontal flow with depth (Figure 3d), secondary flow at a basal channel 
cannot be determined using the SSA. This is because large ice-thickness gradients around a basal channel 
induce higher-order stresses that are neglected in the SSA. However, ice-surface velocity and thickness data 
that are spatially well-resolved ( 𝐴𝐴 ≤ 250 -m) can be used to infer the basal melt rate, assuming vertically uni-
form velocity (Equation 3), with errors of less than 5%. This accuracy decreases significantly when the ice 
thickness is determined from surface elevation assuming hydrostatic equilibrium. The mismatch increases 
as basal channels enlarge and ice is held out of hydrostatic equilibrium. The accuracy decreases further as 
the spatial resolution of the data is reduced, which effectively smooths gradients in the horizontal velocity 
and ice-shelf thickness across the channel, with the largest errors resulting from linear interpolation of 
secondary flow. This is important for accurately resolving the spatial patterns of melting, but the integrated 
effect on total melt rate is small.

Using synthetic data has allowed us to assess the impacts of data resolution and non-hydrostatic ice on 
estimates of basal melting. However, when using remote-sensing data, additional uncertainties are intro-
duced in the form of spatial and temporal changes in surface mass balance and firn density. These process-
es impact calculations of ice-shelf surface elevation change and ice-shelf thickness under the hydrostatic 
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assumption. Future work could include these processes to provide a comprehensive assessment of the un-
certainties associated with inferring melt rates from remote-sensing observations.

We have imposed a simple melt rate with a Gaussian profile, further complexity may arise through de-
pendence on depth, basal slope, along-flow position, ocean heat content, plume entrainment rates, Coriolis 
effects and ice-shelf cavity circulation (Dallaston et al., 2015; Dutrieux et al., 2013; Jenkins, 1991; Millgate 
et al., 2013; Sergienko, 2013; Slater & Straneo, 2018). In some simulations, we set total surface accumula-
tion equal to total basal melting, so that a steady state can be achieved. This is unrealistic for large melt 
rates ( 𝐴𝐴 𝐴𝐴𝑃𝑃 ≥ 25 m 𝐴𝐴 yr−1 , 𝐴𝐴 𝐴𝐴𝑚𝑚 = 2.5 km) when accumulation is larger than observed on Antarctic ice shelves ( 

𝐴𝐴 𝐴𝐴 ≥ 2.5 m 𝐴𝐴 yr−1 ). However, increasing the width of the domain would act in a similar manner to increased 
accumulation rates. Similar limitations apply to calculating delayed breakthrough (Figure 2d), where the 
results would vary quantitatively with the width of the embayment and the accumulation rate. Further-
more, future work could quantify the impact of varying ice rheology parameters 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 on the stabilizing 
effect of secondary flow.

5. Conclusion
Ice-shelf secondary flow acts to counter the growth of basal-melt channels. The magnitude of secondary 
flow is dependent on the channel geometry and increases for larger basal channels. This delays the time for 
a channel to completely incise through an ice shelf and, depending on the net mass balance, can stabilize a 
basal channel in the presence of continuous melting.

Close to ice-shelf calving fronts, where the ice is thin ( 𝐴𝐴 𝐴 400 m), secondary flow cannot significantly delay 
basal-channel breakthrough. Here, basal channels may act as the initiation point for fracturing leading to 
iceberg calving. However, further upstream in areas of thicker ice, secondary flow can substantially reduce 
channel incision.

High resolution ( 𝐴𝐴 ≤ 250-m) observations of ice-shelf thickness and surface velocity can be used to infer ba-
sal-melt patterns with errors of less than 5%. However, this accuracy is dependent on correctly determining 
ice-shelf thickness.

Despite only small variations in horizontal velocity with depth, the SSA is unable to accurately predict 
secondary flow because higher-order stresses become important near channels where the ice thickness 
gradient is large. Furthermore, linear extrapolation of a channel incision rate or the SSA is unable to accu-
rately determine the timing of channel breakthrough. It is necessary to consider the dynamics of secondary 
flow to accurately predict the future growth of basal channels and their effect on ice-shelf stability and the 
longevity of ice shelves.

Data Availability Statement
ELMER/Ice program files and model results corresponding to simulations presented in Figure 1 is available 
at: https://hdl.handle.net/10283/3893.
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