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A B S T R A C T   

Long-term urban heat island (UHI) observations are uncommon and where available, are 
generally unable to distinguish changing climate drivers from urban expansion; neither driver is 
treated independently. We overcome this limitation using a generalized additive model to learn 
the variability in UHI intensity (UHII) at a central London weather station (St James’s Park) over 
a 10-year observation period (2010–2019). We then use the model to reconstruct 70 years 
(1950–2019) of monthly night-time UHII variability using ERA5 reanalysis data both as a 
reference in UHII calculation and for the predictors. We find considerable variability both 
seasonally and annually within the UHII time series (monthly mean maximum UHIIs are 
1.4–2.9 ◦C). Applying extreme value analysis to the time series we show that monthly mean 
maximum UHIIs are likely to exceed 2.75 ◦C once every 11 years. Considering that most studies 
observe or model UHIIs for less than a year, they will likely misrepresent this UHII variability. 
Nevertheless, despite moving to a warmer background climate, London’s UHII has not signifi-
cantly changed across the period of analysis (1950–2019). The data-driven methods we create in 
this study are easily transferable to other cities.   

1. Introduction 

The local warming from urban modifications to the Earth’s surface, known as the urban heat island (UHI) effect, can adversely 
impact our health and infrastructure (e.g. Santamouris, 2020). While there has been substantial research into UHIs (Masson et al., 
2020), in concert with unrelenting global urbanisation, many knowledge gaps remain. Key among these is the inability to define 
adequate UHI climatologies. Most UHI studies are too short in length to define climatologies, lasting only days, with long-term studies 
being rare, stemming from difficulties taking representative urban observations. Where long-term studies exist, they are unable to 
distinguish between the key drivers of UHI change over time: (i) urban morphology and/or (ii) climate. Notwithstanding, state-of-the- 
art data science methods exist and these can be applied to the urban climate field to address these limitations. Here, we create a 
methodology using a Generalized Additive Model (GAM) to separate the impacts of these two drivers, and use it to reconstruct a 70- 
year monthly UHI intensity (UHII; urban minus non-urban temperature difference) time-series in London, UK, that is driven solely by 
changes in climate. GAMs are an emerging data-science method that can learn complex, non-parametric relationships in data and deal 
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with many predictors, while retaining a strong interpretability of results. GAMs are an extension of generalized linear models that 
apply non-linear (if present) smoothing functions to the predictors before combining them. They have a diverse range of applications 
within the environmental sciences, such as estimating spatial patterns in soil organic carbon (Thomas et al., 2020) or air quality (Munir 
et al., 2019). 

Our data-driven methodology is grounded in our process understanding. UHIIs are largely controlled by background climate, e.g. 
wind speed and cloud cover (Zhao et al., 2014), or city size (Oke, 1973). Faster wind speeds or increased cloud cover are effectively 
proxies for a well-mixed boundary layer that can efficiently transport heat away from cities (Bassett et al., 2016), and UHIIs are most 
pronounced at night during calm, anti-cyclonic conditions. Considering the Atlantic, frontal-driven nature of UK climate (characterised 
by a high through-flow of different weather conditions), variability in UHII is to be expected. Modifying urban morphology, density, 
construction materials and sky view factors (radiation trapping) will also change UHIIs. This usually results in warming, despite 
methods existing to mitigate UHIs, such as cool roofs (Georgescu et al., 2014). However, only a small subset of UHI studies contain 
suitable temporal observations to assess long-term UHI climatology (e.g. London, UK (Wilby, 2003); Manchester, UK (Levermore et al., 
2018); New York, U.S. (Gaffin et al., 2008); Reno, U.S. (Hatchett et al., 2016); Rome, Italy (Salvati et al., 2019); Toronto, Canada 
(Mohsin and Gough, 2010); Turin, Italy (Garzena et al., 2019)). 

In London, UK St. James’s Park weather station has urban observation records since 1903. Considering the land use immediately 
surrounding the station has not experienced major changes since pre 1900, it is ideally suited to defining and exploring a long-term 
UHI climatology. For instance, trend analysis at St James’s Park by Wilby (2003) showed a spring and summer nocturnal UHII 
warming of 0.12 ◦C decade− 1 between 1959 and 1998. Conversely, later analysis by Jones and Lister (2009) and Wilby et al. (2011) did 
not find any trends (1903–2006), finding that St James’s Park is warming at the same rate as surrounding rural stations. Wilby et al. 
(2011) additionally reconstructed a UHII time series at St James’s Park back to 1880 using Lamb’s (1972) weather classification as 
predictors, although their method was unable to capture all the variability in UHIIs, explaining only half the variance. Critically, we 
argue that the methods used in these long-term studies at St James’s Park (and the other cities listed above) are unable to distinguish if 
long-term changes in UHII are urbanisation or climate driven. Surface instrumentation UHII calculation requires both urban and rural 
references that are reliable and long term. While urbanisation at St James’s Park largely occurred pre 1900, this same case cannot be 
made for the rural reference stations used in their analysis. Reference stations are often compromised in UHI studies, such as by 
downwind urban heat advection that can extend a cities warming influence far beyond its boundaries (Bassett et al., 2016; see also 
discussion by Martin-Vide et al. (2015)). The UK, like many other global regions, is also experiencing rapid rural to urban land-use 
change (Bassett et al., 2020; Chowienczyk et al., 2020) and this may impact the rural references used in these studies (we confirm 
this in Section 2.2). For the St James’s Park station, anthropogenic heat fluxes will have changed over the last century (e.g., the 
introduction of motorised vehicles), despite the physical built infrastructure remaining constant around. Furthermore, as we report 
below, the St James’s Park weather station contains temporal observational inhomogeneities that will limit interpretations from these 
earlier analyses. 

Here, we take a novel data-driven approach to reconstruct a UHII time series in central London between 1950 and 2019 to 
overcome limitations of previous studies. We firstly build and test a GAM to learn the relationships between the UHII data in London 
and independent atmospheric variables like wind speed over a 10-year period. We use the resulting GAM to hindcast UHII a 70-year 
period where UHII observations are not available, allowing us to explore long-term trends in UHII and apply extreme value theory to 
the time series. This is made possible by using the ERA5 re-analysis climate data for the independent predictor variables in the model, 
that is available from 1950 onwards. Through use of ERA5 re-analysis data in substitution of the more traditional (but compromised) 
rural reference station in our UHII calculation, our analysis is independent of rapid urbanisation effects currently occurring in Great 
Britain (Bassett et al., 2020). This allows us to make an assessment of changes in UHII in London over time that are driven solely by 
changes in background climate. The method we present is highly reproducible and can be equally applied to extend UHII time series in 
other cities globally, where suitable data are available. 

Fig. 1. Location of SJP weather station with surrounding urban land use (grey) in 10 km (left) and 1 km radiuses (middle) using the GHS 2014 built 
data and 1 km radius for LCZs (right) using mapping from Demuzere et al. (2019). 
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2. Methods 

2.1. Data sources 

Air temperature data for London were taken from the UK Met Office weather station in St James’ Park, (Met Office, 2019), herein 
referred to as SJP. The location of the SJP station (51.5048◦ N, 0.13109◦ W, 5 m elevation) is shown in Fig. 1. SJP has long records 
dating back to 1903. For our purposes we require hourly data and find adequate records since 1997, providing a 23-year period to base 
our analysis on. Despite presenting our final analysis at a monthly time resolution, we built our model from hourly data; the largest UHI 
intensities are found at night, and a daily value for minimum and maximum temperatures will not capture this. 

Global gridded climate observations were taken from the ECMWF ERA5 atmospheric reanalysis at 0.25◦ (~25 km) resolution, 
available hourly from 1950 (Hersbach et al., 2018). Climate reanalysis products use data assimilation to combine model forecasts and 
observations to provide a consistent, although not error free, record of the recent state of the atmosphere. We extracted the following 
surface variables: 2 m air temperature, total cloud cover, 10 m wind speed and mean sea level pressure. We additionally downloaded 2 
m dewpoint temperature and used this to calculate relative humidity. 

2.2. UHI intensity calculation 

We defined London’s UHII as the air temperature difference between SJP and the ERA5 reanalysis data. SJP is located on the right 
edge of the overlying grid cell, therefore we took the mean of the overlying cell and the adjacent cell to the right for the ERA5 baseline. 
We interpreted ERA5 as the background “rural” temperature. Note, ERA5 is at a horizontal resolution of ~25 km and only a repre-
sentation of what the background rural temperatures might be without the presence London. Therefore, the resulting UHII or urban 
effect on climate presented in this paper should be interpreted as a temperature anomaly and not the absolute UHII for London. 

Our observation minus reanalysis approach has been adopted in previous studies exploring the impacts of urbanisation on UHII (e. 
g. Kalnay and Cai, 2003; Zhou et al., 2004; Goddard and Tett, 2019; Wang et al., 2017). The theory is that reanalysis data is inde-
pendent of land surface processes like urbanisation. Indeed, ECMWF’s model currently represents urban surfaces as either grassland or 
forest, although an upgrade to include urban processes is anticipated (Hogan et al., 2017). However, we concede that the London ERA5 
grid cell may still contain an urban bias from the surface observations used in the data assimilation process. We checked this by plotting 
the night-time (16:00–08:00) mean temperature across the UK between 1950 and 2020, where we do not see any urban warming 
impact on ERA5 by comparing London to surroundings (see Supplementary Fig. S1). We would expect to see the grid cells in and 
around Greater London to be warmer than surroundings (and similarly for other UK cities) if an urban bias is present. This is not the 
case, thus ERA5 is considered a suitable rural baseline. 

Although the SJP station has recorded UHIs up to 7 ◦C (Wilby, 2003), we also concede that the park location of SJP may lower UHIIs 
relative to surroundings. Indeed the local climate zone (LCZ; Stewart and Oke, 2012) classification at SJP is scattered trees (data from 
Demuzere et al., 2019). However, representative observations in the urban environment is a known challenge (Muller et al., 2013) and 
most urban stations will be compromised to a degree, such as being located on roof tops. The SJP station is located at one end of a park, 
approximately 100 m to boundary with urban land use (see Fig. 1). At this distance the air will be well mixed with the additional 
warmth from the surroundings. Furthermore, in the 1 km radius surrounding SJP LCZs are primarily urban, constituting of: compact 
midrise (50.0%), open midrise (21.6%), scattered trees (11.3%), water (9.0%), large lowrise (7.7%) and dense trees (0.45%); see Fig. 1. 
A 3D satellite image of SJP’s surroundings is provided for further reference in Supplementary Fig. S2. Using data from the 2014 Global 
Human Settlement (GHS) built layer (Corbane et al., 2018), we additionally calculated an urban fraction (0 rural / 1 urban) of 0.84 
from the urban land use in a 1 km radius surrounding SJP, shown in Fig. 1. GHS is a 38 m resolution global urban land use dataset 
derived from Landsat images covering the periods 1975, 1990, 2000 and 2014. 

While the immediate land use surrounding SJP has remained constant since before 1900 (Jones and Lister, 2009), the GHS data 
further enables us to check for urbanisation around SJP in the last few decades. In a 1 km radius from SJP the urban fractions are 0.82, 
0.83, 0.83 and 0.84 for 1975, 1990, 2000 and 2014 respectively, and for a 10 km radius 0.85, 0.86, 0.86, and 0.88. Despite GHS data 
not yet being available after 2014 (at the time of writing), these urban fraction values suggest very little change in urban land use 
around SJP (1975–2014) and may be within GHS uncertainty (Pesaresi et al., 2016). As the focus of our study is the variability in UHII 
caused by climate, using a station with little land-use change limits effects from urbanisation-induced warming. A limitation of the 
GHS data is that it is unable to show changes to anthropogenic heat emissions over time. However, in Section 2.4 we develop our model 
over only 10 years of observations which will minimise impacts from urbanisation and anthropogenic heat changes. 

Within the analysis period, peripheral areas around London have been rapidly urbanising and subsequently warming (Bassett et al., 
2020). This will effectively weaken the calculated UHII signal reported by previous long-term observational studies in London (Jones 
and Lister, 2009; Wilby, 2003; Wilby et al., 2011) due to urbanisation induced warming at their rural reference stations. Using GHS, we 
checked for urbanisation at the rural reference stations used in these previous long-term UHI analyses in London. At the Wisley station 
(51.3108◦N, 0.47634◦W), we found that the urban fraction has increased between 1975 and 2014 from 0.07 to 0.16 in a 1 km radius, 
and from 0.16 to 0.27 in a 10 km radius. Similarly at Rothamsted (51.8067◦N, 0.36017◦W), over the same period, the urban fraction 
increased from 0.17 to 0.26 in a 1 km radius and from 0.15 to 0.19 in a 10 km radius. Considering the urbanisation around these 
stations, we would expect a resulting warming. Therefore, these stations may not be suitable for a rural reference, nor for analysis of 
background climate change without accounting for this bias. The use of ERA5 reanalysis data as a baseline in our UHII calculation 
avoids these issues. 

R. Bassett et al.                                                                                                                                                                                                         
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2.3. Station inhomogeneity 

We performed two sets of quality control checks on the data. Firstly, following the UHII calculation we note several instances of 
spurious data with implausible UHIIs. These data points were removed by not including any UHIIs outside the 0.001 and 0.999 
quantiles, in addition to 12 h either side of these points. Secondly, we checked the diurnal mean UHII profile for each year at SJP 
(Supplementary Fig. S3). We found three distinct diurnal profiles corresponding to the time periods 1997–2002, 2003–2009 and 
2010–2019. These periods coincide with instrumentation changes at SJP (see station details at archive.ceda.ac.uk/cgi-bin/midas_ 
stations/station_details.cgi.py?id=697&db=midas_stations). We speculate that from 1997 to 2002 the instrumentation was not 
housed correctly in a radiation shield (e.g., see the UHII spike at 9 am in Supplementary Fig. S3). From 2003, SJP shows a more typical 
diurnal UHII profile. A further instrumentation change occurred in 2010, and whilst the pattern is similar to the 2003–2009 period, the 
UHI range is more consistent between each year. Considering these clear periods, we conducted our analysis with data from 2010 
onwards only. We note station inhomogeneity in long-term records will lead to an erroneous UHII trend analysis and any similar study 
should make appropriate data checks. 

2.4. Generalized additive model configuration 

We used a generalized additive model (GAM) to uncover the relationships between the UHII in SJP and its predictor variables (e.g. 
wind speed) over a 10-year period at SJP (2010–2019). Here, we use the R package “mgcv” (Wood, 2020) to fit a GAM to the monthly 
mean maximum night-time UHII. This was calculated for each month by taking the average of daily maximum UHIIs between 16:00 
and 08:00, with these hours chosen as they represent the maximum night length in winter and timing of the maximum UHII (see 
diurnal profiles in Supplementary Fig. S3). The predictors used in the model are the ERA5 variables: 10 m wind speed, mean sea level 
pressure, 2 m air temperature and relative humidity. Each were calculated as a monthly mean between 16:00 and 08:00 inclusive. 
Additionally, a monthly mean of the temperature range (maximum – minimum temperature between 16:00 and 08:00) was calculated 
and included in the GAM. The structure of the GAM is given below. 

g(UHII) = β0 + s(wind speed) + s(pressure) + s(temperature range) + s(temperature) + s(relative humidity) + ℇ  

where β0 is the intercept; s is the series of unspecified smoothing functions (we use tensor smoothing as the predictors are on different 
scales); g is the link function (log selected) that relates the mean of the observations to the predictor variables; and ℇ is the error term in 
the model. The GAM was configured using a default Gaussian distribution. We also used REML (random effects of maximum likeli-
hood) estimation for smoothing the parameters, with this option being preferable as it reduces incidences of severe undersmoothing 
(Wood, 2020). 

3. Results 

This section details the observed UHII at SJP during a 10-year period before using a GAM to learn the UHII behavior and subse-
quently hindcast a 70-year time series based on ERA5 predictor variables. The time series is then analysed for variability and trends. 
Our results should be free from urbanisation, and changes to the time series we present are driven by climate drivers only. In reality the 
UHIIs change as a function of both climate and land use. 

Fig. 2. Distribution of monthly mean maximum UHII for each month. The monthly mean night-time wind speed from ERA5 data is shown as the 
dashed line. The lines on the boxplots represent 1.5*IQR and dots are the actual UHII values observed in each month. 
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3.1. Observed urban heat island 

We find a mean maximum UHII of 2.11 ◦C (standard deviation, s.d. 0.80 ◦C) at SJP over our 10-year analysis period (2010–2019). 
The UHII maximum is calculated as the largest intensity between 16:00 and 08:00. The all-time daily maximum UHII is 5.07 ◦C, and 
daily maximum UHIIs exceeding 3.7 ◦C occur approximately 18 times per year. As SJP is located in an urban park, albeit near the edge, 
the UHII in the surrounding urban street canyons may be higher; cities contain a patchwork of internal UHIIs that can be defined by 
LCZs (Skarbit et al., 2017). For example, observational studies in other UK cities have recorded 8 ◦C in Birmingham (Bassett et al., 
2020) and 10 ◦C in Manchester (Knight et al., 2010). 

Fig. 2 shows the mean maximum UHIIs at a monthly time-resolution together with the monthly mean wind speed. The time series 
for the observed period can be found in Fig. 4. The largest UHIIs are observed between March and July, with lower UHIIs found in 
August and September followed by the boreal autumn and winter months. This annual pattern is shown to follow the reverse pattern of 
monthly mean wind speeds; that is, lower wind speeds occur in the summer months coinciding with larger UHIIs. Fig. 2 also indicates 
considerable interannual variability. For example, March contains observed monthly mean UHIIs ranging from 1.94 to 2.94 ◦C within 
the 10-year data period. The distributions for each month at a daily resolution are provided in Supplementary Fig. S4. 

3.2. The GAM 

We built a GAM to predict monthly mean maximum UHII, using predictor variables from ERA5 reanalysis (listed in Table 1 along 
with their individual significance and variable importance). The smoothed predictor variables used in the GAM are shown in Sup-
plementary Fig. S5. We additionally tested running the model including monthly mean cloud cover; however, this was not found to be 
significant and removed. The fit between the observed and predicted UHIIs is illustrated in Fig. 3, and we achieve an r2 of 0.82 (n =
120) and a root mean square error of 0.13 ◦C. Overall we do not find any bias between the GAM model and observations. Prior to 
running the final GAM configuration, we also tested the model performance by randomly splitting the data into training (80%, n = 96) 
and test (20%, n = 24) data sets and subsequently running a new GAM on each. This further highlights the skill of the GAM approach 
with r2’s between observed and predicted test values ranging between 0.7 and 0.9 (shown in Supplementary Fig. S6). 

Over the 10-year period both the observed mean maximum UHII and forecasted are both 2.1 ◦C. Goddard and Tett (2019), using a 
comparable observation minus reanalysis method, estimated a similar mean UHII in London of 1.7 ◦C. A comparison between our 
reconstructed time series using the GAM and the observed values between 2010 and 2019 is shown in Fig. 4, where the predicted time 
series closely follows the observed. 

3.3. Reconstructed UHII time series 

The reconstructed monthly mean maximum UHII time series (referred to as UHII′max from here in) from 1950 to 2019 that uses the 
UHII GAM developed in the previous section and with ERA5 reanalysis variables as input is shown in the top row in Fig. 6. The time 
series data are additionally provided as a supplementary attachment. The length of our hindcasted time series is rare among UHI 
studies and this allows for a unique insight into UHII trends in the following section. 

Across the 70-year time series we find a mean UHII′max of 2.09 ◦C (s.d. 0.25 ◦C) and considerable inter-annual and seasonal fluc-
tuations, with UHII′max ranging between 1.38 and 2.94 ◦C. To highlight the seasonal variability, the UHII′max distributions for each 
month across the 70-year period are presented in Fig. 5. Within each month, large distributions in UHII′max values are found, i.e. each 
distribution contains 70 months and represents the inter-annual variability. The largest UHII′max’s are found in April–August (similar to 
the earlier observed distributions shown in Fig. 2), where mean UHII′max are ~2.23 ◦C. In September–February, UHII′max values are 
~1.95 ◦C. 

Table 1 
Predictor variables used in the daily GAM UHII model. These are night time means 
(16:00–08:00) with exception of temperature range that is the difference the 
maximum and minimum temperatures within the same period. The variables are 
ranked by the F statistic (ratio between the variance explained by the predictors and 
unexplained variance) which can be used as a proxy for their relative importance in 
the GAM model. The EDF (effective degrees of freedom) indicates the “wiggliness” of 
the predictor variables: a value close to 1 would be linear and greater than would be 
nonlinear (see Supplementary Fig. S5). Significance of the GAM smooth terms: * p <
0.05, ** p < 0.001.   

EDF F 

Wind speed** 1.0 51.1 
Temperature** 3.2 26.0 
Temperature range** 1.0 25.4 
Pressure* 1.1 5.0 
Relative humidity* 1.0 4.3  
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3.4. UHII trend 

The stationarity of the reconstructed 70-year time series (UHII′max) was firstly tested using linear regression, where no significant 
trend was found (p = 0.24). Secondly, we decomposed the UHII′max time series using the R package “forecast” (Hyndman and Khan-
dakar, 2008). This uses the STL (Seasonal and Trend decomposition using Loess) additive method developed by Cleveland et al. (1990) 
and splits the time series into seasonal variations, the trend and residuals (i.e. random noise). The results are shown in Fig. 6. We ran a 
non-parametric Mann-Kendall test (Kendall, 1955) on the time series (1950–2019) where the null hypothesis was accepted (p = 0.22), 
the UHII′max time series is stationary. 

Although the overall UHII′max time series is stationary, we further checked if there is any trend in each season since, for example, 
opposing summer and winter trends may counteract each other when viewed annually. It is also important to consider seasonal trends 
separately because adverse UHI impacts are more likely in summer months when background temperatures are already warm. The 
results show a slight upward UHII′max trend in spring and summer months, and decrease in winter months (Fig. 7), although we do not 
find any significant correlations using linear regression (p: winter 0.06, spring 0.77, summer 0.26, autumn 0.07) nor using the Mann- 
Kendall test. 

3.5. UHII monthly extremes 

While the trend in mean UHII has remained stationary, extreme UHIIs are those more likely to adversely impact on society 
(Santamouris, 2020). We first used a peak over threshold approach. This essentially subsets the time-series to high-magnitude events 
and enables us to check if the number of these events are increasing or decreasing over time. This approach is similarly used in 

Fig. 3. GAM model performance between observed and predicted monthly mean maximum UHII (r2 
= 0.82). The grey line is the 1 to 1 ratio.  

Fig. 4. GAM predicted monthly mean maximum UHII compared with observed between 2010 and 2019. The 95% confidence intervals from the 
GAM model are provided in orange shading. 

R. Bassett et al.                                                                                                                                                                                                         



Urban Climate 40 (2021) 100990

7

hydrology (e.g. Janes et al., 2018), yet is less common in UHI analysis due to short observation periods. We show the annual frequency 
of UHII′max exceeding a 75th percentile threshold value of 2.25 ◦C in Fig. 8. Between 1950 and 2019 the trendline in Fig. 8 suggests a 
decreasing frequency of extreme UHIIs; however, we do not find this to be significant using linear regression (p = 0.34) or the Mann- 
Kendall test (p = 0.49). We note the largest numbers of monthly mean maximum UHIIs exceeding 2.25 ◦C to occur in the arid (i.e., 
heatwave / drought) years of 1955, 1959, 1976, 1990, 1995 and 2003; these are highlighted in Fig. 8 and where aridity index values 
from Marsh et al. (2007) exceed 1.75. Note the 1990 drought extended to 1992. We also test increasing the peak over threshold UHII′max 
value to the 90th percentile of 2.42 ◦C, shown in Fig. 8, where no significant trends are found. 

Although we do not find any significant trend in the 1950–2019 UHII′max time series, there is still considerable inter-annual 
variability (Fig. 6). Considering that UHIs can adversely impact on urban citizens and infrastructure, it is important to understand 
the likelihood (or return time) of UHIIs exceeding threshold values. To investigate this, we extracted generalized extreme value 

Fig. 6. UHII′max time-series decomposition using the R package “forecast”.  

Fig. 5. Monthly UHII′max distributions. Each month effectively contains 70 monthly repeats between 1950 and 2019. The vertical axis within each 
month is the density (a common bandwidth is used for all months). 
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maximum likelihood estimates on the UHII′max time series using the R package “extRemes” (Gilleland and Katz, 2016). This is a further 
statistical technique used to show the return periods of high-magnitude events, i.e. the tails of distribution. Extreme value analysis is 
used in the environmental sciences (e.g. Towe et al., 2020; Cheng et al., 2014), but, with exceptions (Steeneveld et al., 2011), it is 
seldom used for UHI analysis. 

The results from the extreme value analysis applied to the UHII′max time series are shown in Fig. 9a, using all monthly data points, 
and Fig. 9b, where they are split seasonally. For all data, we can expect that a UHII′max of 2.46 ◦C will occur once a year on average, 
while any month exceeding 2.75 ◦C (99th percentile) would only be expected to occur approximately once in 11 years. Split seasonally, 
Fig. 9b shows that UHII return periods are smaller in the spring (MAM) and summer (JJA) months. For example, the equivalent annual 
UHII′max return periods for winter months (DJF) are 0.47 ◦C lower than spring (MAM). 

Fig. 7. UHII′max split into each season: December, January, February (DFJ); March, April, May (MAM); June, July, August (JJA); September, 
October, November (SON). While we include the linear regression trend lines, no significant correlations are found in any season. 

Fig. 8. Annual frequency of UHIIs exceeding a 75th and 90th percentile peak over threshold UHII′max value of 2.25 ◦C and 2.42 ◦C respectively. The 
trendline corresponds to the 75th percentile extremes frequency, however it is not significant. The orange vertical lines correspond to notably 
arid years. 
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4. Discussion and conclusions 

We have overcome limitations in exploration of long-term UHI changes by using a Generalized Additive Model (GAM) to learn how 
night-time UHII varies with key predictors at a Central London weather station (St James’s Park, SJP) before using the GAM to 
reconstruct a 70-year time series (1950–2019). The GAM-UHII approach is a significant improvement over earlier attempts to 
reproduce a UHII time series at SJP. Previously, it was only possible to explain half the variance (Wilby et al., 2011) where, at monthly 
resolution, our GAM achieved an r2 of 0.82 (n = 120). We acknowledge that there are some limitations to our reconstructed time series. 
Firstly, our estimates may underestimate the absolute UHII intensity due to the park siting of SJP; an urban fraction of 0.84 is found 
within a 1 km radius. Therefore, it may be warmer within nearby urban street canyons, hence our stated UHIIs should not be treated as 
absolute. Secondly, our results are for a single location only and may not be representative of changes in UHII climate drivers in other 
cities. Finally, while our GAM-UHII method is able to capture the majority of variability in the observed data (r2 = 0.82), our time 
series analysis is ultimately a reconstruction. Despite long observational records at SJP, hourly back to 1997 and daily to 1903, we 
found a discontinuity in the hourly observations, these occurring at instrumentation changes. As such our GAM was developed over 10 
years of consistent data (2010–2019). A benefit of this shorter period is that it acts to limit longer-term warming from urbanisation or 
anthropogenic heat changes around the station. Moreover, our checks did not find any notable urbanisation trends immediately 
surrounding the SJP station in the model development period; our checks showed urban fraction change between 2000 and 2014 was 
0.83 to 0.84. Furthermore, the GAM does not use time as a predictor, hence it would not include urbanisation changes at SJP, if any, 
during this period. Our methodology means the trend in the monthly mean maximum UHII (UHII′max) reconstructed time series is based 
on climate drivers only (like wind speed). 

We estimate a mean UHII′max of 2.09 ◦C over the reconstructed analysis period. This value is similar to previous estimates for 
London, albeit using different methods (1.9 ◦C (Wilby, 2003); 1.6 ◦C (Jones and Lister, 2009); 1.7 ◦C (Goddard and Tett, 2019)). 
However, while past attempts have been made to explore long-term UHII trends and variability (e.g. Wilby et al., 2011), they were 
unable to differentiate between the different land use and/or climate change drivers of UHII change. We found that the traditional 
rural references used in previous long-term UHI studies in London are susceptible to urbanisation and therefore need to be evaluated 
carefully. Throughout our reconstructed time series, considerable variability in UHII was found, both between and within seasons, 
with UHII′max ranging between 1.38 and 2.94 ◦C (1950–2019). Most UHI studies are too short in length (usually less than a year) to 
capture these UHII fluctuations (see Figs. 4 and 5); that is, two months are rarely alike. As such, short UHII studies will not adequately 
represent long-term means and likely miss high-magnitude events. As a caveat, the UK climate is influenced by large, Atlantic driven 
fluctuations in weather patterns that will drive UHII variability. Other global regions, e.g. more arid areas, may experience less 
variability in the UHII climate drivers and hence UHII, and therefore shorter study periods may be appropriate. 

Over the 70-year UHII′max reconstructed time series we did not detect any significant trends in London’s UHII, even if the seasons 
were treated separately; this was tested using both linear regression and the non-parametric Mann-Kendall test. This apparent sta-
tionarity of London’s UHII is in agreement with previous long-term studies (Jones and Lister, 2009; Wilby, 2003; Wilby et al., 2011). 
Yet, while those studies argued that the land use at the SJP weather station has not changed since pre 1900, the same is not true for 
their rural reference stations: London’s peripheries are rapidly urbanising. Simultaneously with our reconstructed time series, the 
ERA5 background 2 m air temperature in London warmed over 1950–2019 at 0.25 ◦C decade− 1 (see Supplementary Fig. S7), which is 
comparable to NOAA estimates (NOAA, 2021). Therefore, our results indicate that the mean UHII in London has not changed despite 

Fig. 9. UHII′max return periods. (a) All months included. The orange shading represents the 0.05 confidence intervals. (b) Split into seasons, note 
confidence intervals are not show. 
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moving to a warmer climate. UHII stationarity in other UK cities due to a changing climate has also been reported using regional 
climate modelling (McCarthy et al., 2012) and little or no change other cities worldwide (Kusaka et al., 2012; Lauwaet et al., 2016). 
However, future projections contain uncertainty in UHII drivers, summer night-time UHIIs in London have equally been modelled to 
increase by 2080 (Eunice Lo et al., 2020). 

While the overall UHII trend is stationary in London (1950–2019), we used peaks over threshold analysis to check for any change in 
frequency of high-magnitude events. Over the entire period, despite the trend in extremes over time appearing to increase we did not 
find this to be significant. We note that years with the highest frequency of high magnitude events occurred in heatwave / drought 
years, e.g. 2003. This year contained an exceptional heatwave that encompassed most of Europe and resulted in thousands of excess 
deaths (Robine et al., 2008). Heatwave conditions are characterised by calm conditions that lead to increased UHIIs. Future climate 
projections indicate there will be an increasing number of similar heatwaves in the UK by 2100 (Christidis et al., 2020). Through 
applying extreme value analysis to the time series, we estimate the current return period for a UHII′max exceeding 2.75 ◦C (99th 
percentile) is approximately 11 years. Return periods for high-magnitude events are found to be shorter for spring and summer months; 
more intense UHIs occurring in periods when background temperatures are already warm mean thresholds for heat risks to vulnerable 
citizens are more likely to be reached. 

Overall, we have developed and shown the effectiveness of applying emerging data-science techniques, in this case a GAM, to 
complex urban climate data. Through reconstructing a 70-year UHII time series, this has allowed a unique insight into the long-term 
changes in London’s UHII that are solely due to UHII climate drivers. Despite moving to a warmer background climate between 1950 
and 2019, we show that the mean UHII has not changed. The simplicity of our approach means it can easily be adapted to other 
locations, providing that there is enough observational data available to create a GAM or equivalent data science model. Based on our 
findings we additionally emphasise two important messages to the urban climate community concerning UHI methodologies: (i) UHIIs 
may have large monthly and annual fluctuations, and short studies will not adequately capture these, and (ii) to fully understand long- 
term changes in UHII, the drivers of UHII, urbanisation or climate should be treated independently. 

Data availability 

Data for St James’s Park weather station is accessible through the Met Office MIDAS Open: UK Land Surface Stations Data (1853- 
current) http://catalogue.ceda.ac.uk/uuid/dbd451271eb04662beade68da43546e1 

ECMWF ERA5 atmospheric reanalysis data is available from doi:10.24381/cds.bd0915c6 
The monthly mean reconstructed UHII time series may be found as a supplementary attachment. All code to reproduce our finds 

may be obtained from the authors at reasonable request. 
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