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Abstract

1. Studies of spatial point patterns (SPPs) are often used to examine the role that density 

dependence and environmental filtering play in community assembly and species coexistence 

in forest communities. However, SPP analyses often struggle to distinguish the opposing 

effects that density dependence and environmental filtering may have on the distribution of 

tree species.

2. We tested percolation threshold analysis on simulated tree communities as a method to 

distinguish the importance of thinning from density dependence versus environmental filtering 

on SPPs. We then compared the performance of percolation threshold analysis results and a 

Gibbs point process model in detecting environmental associations as well as clustering 

patterns or overdispersion. Finally, we applied percolation threshold analysis and the Gibbs 

point process model to observed SPPs of 12 dominant tree species in a Puerto Rican forest to 

detect evidence of density dependence and environmental filtering. 

3. Percolation threshold analysis using simulated SPPs detected a decrease in clustering due to 

density dependence and an increase in clustering from environmental filtering. In contrast, the 

Gibbs point process model clearly detected the effects of environmental filtering but only 

identified density dependent thinning in two of the four types of simulated SPPs. Percolation 

threshold analysis on the 12 observed tree species’ SPPs found that the SPPs for two species 

were consistent with thinning from density dependent processes only, four species had SPPs 

consistent with environmental filtering only, and SPP for five reflected a combination of both 

processes. Gibbs models of observed SPPs of living trees detected significant environmental 

associations for eleven species and clustering consistent with density dependent processes for 

seven species. 

4. Percolation threshold analysis is a robust method for detecting community assembly processes 

in simulated SPPs. By applying percolation threshold analysis to natural communities, we 

found that tree SPPs were consistent with thinning from both density dependence and 

environmental filtering. Percolation threshold analysis was better suited to detect density 

dependent thinning than Gibbs models for clustered simulated communities. Percolation 

threshold analysis improves our understanding of forest community assembly processes by A
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quantifying the relative importance of density dependence and environmental filtering in 

forest communities. 

Resumen

1. Los estudios de patrones de puntos espaciales (SPP) se utilizan a menudo para examinar el 

papel que juegan la dependencia de la densidad y el filtrado ambiental en el ensamblaje y la 

coexistencia de especies en las comunidades forestales. Sin embargo, los análisis de SPP a 

menudo tienen dificultades en distinguir los efectos opuestos que la dependencia de la 

densidad y el filtrado ambiental suelen tener en la distribución de las especies arbóreas.

2. Probamos el análisis del umbral de percolación en comunidades de árboles simuladas como 

método para distinguir la importancia de la dependencia de la densidad frente al filtrado 

ambiental en los SPP. Luego comparamos el desempeño de los resultados del análisis de 

umbral de percolación y un modelo de proceso puntual de Gibbs para detectar asociaciones 

ambientales, así como patrones de agrupamiento o sobre-dispersión. Finalmente, aplicamos el 

análisis de umbral de percolación y el modelo de proceso puntual de Gibbs a las SPP 

empíricas de 12 especies de árboles dominantes en un bosque de Puerto Rico con la meta de 

detectar evidencia de dependencia de la densidad y filtrado ambiental.

3.  El análisis del umbral de percolación utilizando SPP simulados detectó una disminución en la 

agrupación debido a la dependencia de la densidad y un aumento en la agrupación por filtrado 

ambiental. Sin embargo, el modelo de proceso puntual de Gibbs detectó claramente los efectos 

del filtrado ambiental, pero solo identificó la reducción dependiente de la densidad en dos de 

los cuatro tipos de SPP simulados. El análisis del umbral de percolación en los SPP de las 12 

especies de árboles en Puerto Rico encontró que los SPP para dos especies eran consistentes 

con la reducción de procesos dependientes de la densidad solamente, cuatro especies tenían 

SPP consistentes solo con el filtrado ambiental y el SPP para cinco reflejaba una combinación 

de ambos procesos. Los modelos de Gibbs de SPP de árboles vivos detectaron asociaciones 

ambientales significativas para once especies y agrupaciones consistentes con procesos 

dependientes de la densidad para siete especies.
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4. El análisis del umbral de filtración es un método sólido para detectar procesos de ensamblaje 

de la comunidad en SPP simulados. Al aplicar el análisis del umbral de percolación a las 

comunidades naturales, encontramos que los SPP de los árboles eran consistentes con la 

dilución tanto por la dependencia de la densidad como por el filtrado ambiental. El análisis del 

umbral de percolación fue más adecuado para detectar dilución dependiente de la densidad 

que los modelos de Gibbs para comunidades simuladas agrupadas. El análisis del umbral de 

filtración mejora nuestra comprensión de los procesos de ensamblaje de comunidades 

forestales al cuantificar la importancia relativa de la dependencia de la densidad y el filtrado 

ambiental en las comunidades forestales.

Introduction

Spatial point pattern (SPP) analysis (Baddeley et al., 2015; Wiegand & Moloney, 2014) has become 

an established method for examining the ecological processes driving plant species coexistence and 

community assembly (Condit, 2000; McIntire & Fajardo, 2009; Sterner et al., 1986; Velázquez, 

Martínez, et al., 2016). Specifically, SPP analyses have been used to quantify the role that density 

dependent processes (DD; e.g., Janzen-Connell effects and competition) and environmental filtering 

(EF) play in shaping community assembly in natural forest communities (McIntire & Fajardo, 2009; 

Velázquez, Martínez, et al., 2016).

Generally, negative DD decreases spatial clustering of trees (Connell, 1971; Janzen, 1970; 

Moeur, 1997; Velázquez, Kazmierczak, et al., 2016) by decreasing the survival of individuals due to 

increased herbivory or resource competition with nearby individuals (i.e., crowding). In contrast, EF 

increases clustering of trees (Bagchi et al., 2011; Getzin et al., 2008; Shen et al., 2013) by decreasing 

the survival of individuals in marginal or poor habitats. While EF typically refers to abiotic conditions 

that prevent the establishment and presence of species across sites (Kraft et al., 2015), we are defining 

EF to be the process by which small spatial-scale abiotic heterogeneity prevents the within-site 

establishment and survival of species (e.g., abiotic heterogeneity within forest plots related to 

topography (Tateno & Takeda, 2003) and soil nutrients (Uriarte et al., 2015)). 

The majority of SPP analyses have focused on detecting one clustering process at a time 

because DD and EF generate different clustering patterns (but see Bagchi et al., 2011; Shen et al., 

2013), or on separating the effects of DD or EF from other clustering mechanisms, such as dispersal A
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limitation (Russo et al., 2006; Seidler & Plotkin, 2006). However, the spatial distribution of species is 

likely to reflect the combined effects of both DD and EF, highlighting the need for an approach that 

will simultaneously account for both processes, or at the very least, identify which processes 

predominate.

One approach to distinguish between DD and EF relies on examining the SPPs of individuals 

of the same tree species based on size classes or status (i.e., living/dead). Typically, these analyses 

compare differences in spatial clustering or spatial association with environmental covariates (Bagchi 

et al., 2011; Condit, 2000; Getzin et al., 2008; Moeur, 1997; Sterner et al., 1986; Velázquez, Martínez, 

et al., 2016). Density dependence can also affect the growth and survival of trees (Comita et al., 2009; 

Coomes & Grubb, 1998; Lewis & Tanner, 2000; Uriarte et al., 2009) and reduce the cluster density of 

living and large trees compared to dead or small trees (Bagchi et al., 2011; Getzin et al., 2008; Moeur, 

1997; Murrell, 2009; Velázquez, Kazmierczak, et al., 2016). In contrast, EF can increase clustering of 

living and large trees compared to dead or small trees (Bagchi et al., 2011; Getzin et al., 2008; Shen et 

al., 2013; Wiegand et al., 2009) by increasing the survival and growth of trees in suitable 

environments (Clark et al., 1998; Comita & Engelbrecht, 2014). Although differences in tree 

clustering by size or status can detect DD or EF in specific circumstances, conclusions from these 

studies are often limited by insufficient sample sizes or by the difficulty of capturing relevant 

environmental heterogeneity using spatial covariates (Baddeley et al., 2015; Bagchi et al., 2011). 

Another challenge in identifying EF is that unlike DD, which is strongest at small scales, EF within 

sites may act at several spatial scales depending on the specific filter.

Percolation threshold theory is a method to examine point clustering at various spatial scales 

and provides an estimated probability that individual points occupy the same cluster (Hall, 1987; 

Plotkin et al., 2002). In percolation theory, clusters are defined by connecting points closer than a 

specified distance, such that there is a percolation threshold distance dc above which all points 

amalgamate into one cluster (Plotkin et al., 2002). According to percolation threshold theory, we can 

quantify differences in clustering strength using the rationale that sparse, or weak, clusters must have 

a larger dc than dense clusters. By comparing the dc of remaining points after the removal of points 

from either DD or EF thinning processes to the dc of removed points (e.g., comparing dc of living 

versus dead trees), we can link clustering strength to the predicted effects of thinning by DD and EF A
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processes on tree SPPs. Thus, percolation threshold analysis provides a powerful tool to quantify and 

test the predictions of DD and EF thinning on SPPs. 

The expected importance of DD and EF on observed SPPs differs among species according to 

life history theory (Grime, 1979; Lohbeck et al., 2013). For example, early successional species 

adapted to high light environments and showing rapid growth—a growth habit often linked to low 

wood density, low leaf mass per area (LMA), and shade intolerance—are more susceptible to thinning 

from DD compared to shade tolerant species (Coley, 1980; Comita et al., 2009; Comita & Hubbell, 

2009; Lohbeck et al., 2013; Poorter et al., 2009). Additionally, these species often increase in 

abundance in tree fall gaps or after large-scale disturbance events (e.g., hurricanes: Comita et al., 

2009; Uriarte, Canham, et al., 2004). In contrast, slow growing species—a growth habit linked to high 

wood density, high LMA, and shade tolerance—are often less susceptible to DD and may respond 

more strongly to EF compared to shade intolerant species (Comita et al., 2009; Comita & Hubbell, 

2009; Uriarte, Canham, et al., 2004). These slow-growing species are more likely to exhibit clustering 

of adult trees (Murrell, 2009). Species’ functional traits and shade tolerance offer a framework for 

categorizing species’ SPPs and the expected importance of DD and EF in mediating species 

distributions.

 To test the efficacy of percolation threshold analysis to detect SPP dynamics resulting from 

DD and EF processes, we first applied percolation threshold analysis to randomly generated SPPs that 

were thinned (had points removed) to stimulate stochastic (random), DD, and EF thinning processes. 

We then analyzed these simulated SPPs using Gibbs point process models to evaluate clustering and 

associations with simulated environmental heterogeneity. Finally, we applied percolation threshold 

analyses and Gibbs point process models to observed SPPs for mapped trees (by size and status) in 

the Luquillo Forest Dynamics Plot (LFDP) in Puerto Rico to detect DD and EF processes in a natural 

community, as well as test for environmental associations and clustering within the observed SPPs. 

Specifically, we:

(1) Generated random point patterns representing tree SPPs and thinned each pattern randomly, 

by density, or by a simulated environmental gradient. We then tested if percolation threshold 

analysis could disentangle the effects of thinning from random, DD, and EF processes. We 

predicted that SPPs thinned randomly would show no difference in clustering between A
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remaining and removed points (dc-remaining - dc-removed
 ≈ 0), SPPs thinned by DD would have 

weaker clustering (larger dc) of remaining points than removed points (dc-remaining - dc-removed
 > 

0), and SPPs thinned by EF would have stronger clustering of remaining points than removed 

points (dc-remaining - dc-removed
 < 0) (Fig. 1).

(2) Fitted Gibbs point process models to the simulated SPPs to test for environmental associations 

with the simulated environmental gradient used to thin the SPPs and for interactions (η) 

between points (i.e., clustering or overdispersion). We predicted that SPPs thinned by EF 

would have stronger associations with the simulated environmental gradient compared to SPPs 

thinned randomly or by DD. We also predicted that SPPs thinned by DD would have weaker 

clustering for remaining points than removed ones (ηremaining < ηremoved) compared to patterns 

thinned randomly or by EF.

(3) Applied our findings from the simulated percolation threshold analysis to examine the role of 

DD and EF on the observed spatial distributions of tree species. We compared living versus 

dead (i.e., remaining versus removed) and large versus small individuals of 12 focal tree 

species. Living and large trees represent the individuals remaining after the cumulative 

historical effects of thinning processes, therefore we predicted that DD would weaken 

clustering of living and large trees (remaining) compared to dead and small (removed) (i.e., 

ηremaining < ηremoved).

(4) Fitted Gibbs point process models to the observed SPPs to test for interactions between points 

and for spatial associations with topography, a well-known driver of species’ distributions at 

the LFDP (Johnston, 1992). We predicted that observed SPPs for species affected by EF, as 

derived from percolation threshold analyses, would have stronger associations with 

topography and land use for living and large trees (remaining points) compared to dead and 

small trees (removed points). We also predicted that species thinned by DD would have 

smaller interaction coefficients (η) for living and large trees compared to dead and small trees.

(5) Evaluated whether percolation threshold results are congruent with results obtained using 

Gibbs point process models for both simulated and observed SPPs. 
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Methods

Generation of simulated SPPs

To investigate the effect of percolation threshold analyses on simulated point patterns, we first 

randomly generated four types of SPPs: 1) a homogeneous Poisson process; 2) an inhomogeneous 

Poisson process; 3) a homogeneous Thomas cluster process; and 4) an inhomogeneous Thomas 

cluster process. These four pattern types represent SPPs commonly used to test for spatial clustering 

and environmental associations of observed tree SPPs (Velázquez, Martínez, et al., 2016). Each SPP 

was generated within a 400 m by 400 m window using an average intensity (λ) of 0.00625 points m-2 

(average of 1000 points). Inhomogeneous patterns were created by allowing λ to vary proportionally 

across the window given by λ(x,y)= (x+y)2. Thomas cluster patterns were generated by allowing 

cluster centers to follow either a homogeneous or inhomogeneous Poisson process across space 

(Wiegand & Moloney, 2014). The number of points within Thomas clusters were generated from a 

Poisson distribution with a mean of 10 points and with locations determined from a Gaussian 

distribution with a standard deviation of 8 m (Wiegand & Moloney, 2014). 

Percolation threshold analysis: simulated SPPs

To test whether percolation threshold analysis can capture the thinning effects of random, DD, 

and EF processes, we simulated three scenarios of point removal for each of the four simulated SPP 

types: 1) random thinning; 2) density dependent thinning; and 3) environmental filtering (Supp. 

Methods for R code). To simulate random thinning, we applied a thinning algorithm in which each 

point in the pattern had a constant probability of removal p = 0.5. For density dependent thinning, we 

allowed p to vary as a function of point density such that points with more neighbors had a higher 

probability of removal. Environmental filtering was simulated by allowing p to vary with a simulated 

patchy environmental map; points in “suitable” areas had a lower probability of removal than points 

in “poor” areas.

To estimate the uncertainty around the effects of pattern generation and thinning on 

percolation curves, we randomly generated and thinned 1000 SPPs for each SPP type and thinning 

scenario. For each simulation scenario, percolation curves were calculated according to Plotkin et al. 

(2002) with a periodic edge correction (Wiegand & Moloney, 2004). All statistical analyses were A
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completed using the “spatstat” package in R (Baddeley et al., 2015; R Core Team, 2017). 

For the percolation threshold analyses, we fit piecewise linear regressions (“mcp” in R: 

Lindeløv, 2020) to each percolation curve to identify the percolation threshold distance dc. Briefly, 

these regressions estimated the slope and intercept for a specified number of linear segments (n) with 

segment-breakpoints (n-1) fit to each percolation curve. For this analysis, we limited model segments 

to n=3 and required that segments be continuous (i.e., segmentn+1 starts at the last x and y values of 

segmentn). Practically, this formulation identified breakpoints for significant changes to slope 

between segments. We defined dc as the first segment-breakpoint for each percolation curve; the first 

breakpoint represents the distance at which points begin to amalgamate into a single cluster. Because 

we limited our analysis to a single dc for each percolation curve, this analysis precludes the detection 

of multiscale clustering, an alternative use of percolation analyses (Plotkin et al., 2002). To compare 

dc values between different SPPs, we standardized the dc by the number of points in each pattern 

(Plotkin et al., 2002). The mcp packages uses Bayesian inference to estimate segment-breakpoints; 

breakpoints were estimated using Markov chain Monte Carlo (MCMC) methods with uninformed 

random initial values across three chains. The first 5,000 iterations were discarded, and each chain ran 

for 10,000 iterations.

We then compared the median dc estimates of remaining points and the removed points for 

each simulation (i.e., dc-remaining - dc-removed) to determine the relative effects of random, DD, and EF 

thinning processes for each pattern. Because DD and EF have opposing effects on clustering, we 

expected the percolation threshold for a pattern influenced by both DD and EF to be most similar to 

whichever process is stronger or indistinguishable from zero when the processes are equal in strength.

Gibbs point process model analysis: simulated SPPs

Gibbs point process models are a common tool to analyze SPPs (Baddeley et al., 2015) and allow us 

to test the relationship between the intensity function (u), which represents the expected number of 𝜆

points per unit area at a spatial location (u), and spatial covariates  related to environmental Β(𝑢)

heterogeneity. Gibbs point process models also incorporate interactions between points (i.e., 

clustering or over-dispersion), by modeling the conditional intensity of each point at location 𝜆(𝑢│𝜌) 

u given all points , as a function of  and , such that:𝜌 Β(𝑢) I(𝑢,𝑟,𝜌)A
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[eqn. 1]𝜆(𝑢│𝜌) = 𝑒Β(𝑢) + I(𝑢,𝑟,𝜌)

We used the AreaInter function (Baddeley et al., 2015) for the interpoint interaction  I(𝑢,𝑟,𝜌)

because it allows for both clustering and overdispersion.

                                             𝐼(𝑢,𝑟,𝜌)~𝜂𝛾𝑟(𝑢,𝜌)
[eqn. 2]

In this formulation, the conditional probability γr(u,ρ) at location u given points ρ is 

proportional to the fraction of circle area with radius r centered at u that intersects with nearby points 

ρ. Significant values of η (η ≠ 1) indicate biotic interactions between points ranging from 

overdispersion (η < 1) to clustering (η >1). Overall, DD is expected to weaken clustering of remaining 

points relative to thinned or removed ones (ηremaining < ηremoved).

We fit the Gibbs point process models (Baddeley et al., 2015) to each of the 1000 randomly 

generated SPPs for the four SPP types and three thinning scenarios. For these simulated SPPs,  Β(𝑢)

was the simulated environmental gradient used for thinning. The value of r for eqn. 2 was calculated 

for each point pattern as the value of r between 0.5-15 m that maximized the likelihood of a model 

with only interpoint interactions. We then compared the median η estimates of remaining and 

removed points for each simulation to determine the relative effects of random, DD, and EF thinning 

processes for each simulated pattern. Coefficients for  that do not overlap zero represent Β(𝑢)

significant spatial associations between points and environmental covariates and should match 

percolation threshold results for EF thinning processes.

Observed tree SPPs: Study site and tree data

The LFDP is 16-hectare (320 m x 500 m) permanent, mapped forest plot in northeastern Puerto Rico. 

The forest is classified as a subtropical wet forest in the Holdridge life zone system (Ewel & 

Whitmore, 1973) and is characteristic of other Caribbean forests with community dynamics strongly 

influenced by periodic hurricanes (Boose et al., 2004; Brokaw et al., 2012). Since 1990, all stems in 

the LFDP with a diameter ≥ 1 cm at 1.30 m height above the ground (DBH) have been mapped, 

identified to species, and measured following standard protocols (Thompson et al., 2002). 

Approximately every five years, stems are re-measured and their status as living or dead is assessed. 

New stems are added as they are found at each census. The 12 focal species examined in this study 

represent a range of life history strategies and accounted for > 60% of all trees in the LFDP as of 2016 A
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(Table 1). We used the 2016 census for analyses of living trees and collated all dead trees recorded in 

the 2005, 2011, and 2016 censuses for mortality analyses; including dead trees from these censuses 

ensured sample sizes of dead trees could support robust analyses and allowed us to capture the long-

term effects of filtering on tree mortality. We did not include trees killed directly by hurricanes, as the 

last major hurricane to affect the forest prior to the 2016 census was Hurricane Georges in 1998 

(Canham et al., 2010). For size analyses, we categorized living trees as “large” or “small” based on a 

diameter above or below the species’ median DBH using the 2016 census.

The LFDP covers a range of land-use histories and has highly variable topography (Thompson 

et al., 2002); we used both historical land-use and topography as environmental covariates in the 

Gibbs point process models. We considered areas with less than 80% forest cover in 1936 to be “high 

historical land use” and areas with greater than 80% forest cover to be “low historical land use” 

(Supp. Fig. 1; Thompson et al., 2002). Additionally, to capture small-scale topographic variation in 

the LFDP, a continuous measure of concavity (values < 0 are ridges and > 0 are valleys) was 

calculated from a digital elevation model (DEM) by fitting a six-term polynomial over a moving 

window with a radius of 33 m to the DEM (Hurst et al., 2012; Wolf et al., 2016).

Percolation threshold analysis: observed SPPs

To examine the contribution of DD and EF thinning processes to observed LFDP tree species’ SPPs, 

we first calculated the percolation curves for living, dead, large, and small tree SPPs for each species. 

The percolation threshold dc for each SPP was then estimated as the first breakpoint from a piecewise 

linear regression, as described above. Uncertainties around dc values were calculated as the 95% 

credible intervals around breakpoint estimates. We then compared the dc of SPPs based on living 

versus dead and large versus small for each species. Percolation threshold dc differences (i.e., dc-living - 

dc-dead and dc-large - dc-small) are significant if the 95% credible intervals do not overlap zero. 

To examine how the strength of DD and EF varies by species’ traits, we fit simple linear 

models to trait data and the median dc estimates for each species; each model included only one trait. 

We used trait data on dry seed mass, wood density, and leaf mass per area (LMA) (Swenson & 

Umana, 2015) and species’ shade tolerance derived from sapling mortality from shading (Uriarte, 

Canham, et al., 2004).A
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Gibbs point process model analysis: observed SPPs

We applied the Gibbs point process models to living, dead, large, and small tree SPPs for each 

species. To model the conditional probability, we used two environmental covariates for : Β(𝑥)

historical land-use and concavity (Supp. Fig. 1), which are known to influence the distribution of tree 

species in the LFDP (Thompson et al. 2002). To accommodate for spatial clustering or overdispersion 

that may occur independently of environmental covariates, we also included interpoint interactions. 

Significant differences in interaction coefficients (η) for living vs. dead (ηliving < ηdead) or large vs. 

small (ηlarge < ηsmall) are consistent with density dependent thinning. The optimal interaction r for each 

species was determined as the value of r between 0.5-15 m that maximized the likelihood of a model 

with only interpoint interactions. Coefficients for land-use and concavity that do not overlap zero 

represent significant spatial associations between points and these covariates.

Results

Simulated SPPs

Percolation threshold results

We first tested whether percolation threshold analysis could detect thinning from random, DD, and EF 

processes in simulated SPPs. Using the percolation threshold distance, dc, as a measure of clustering, 

we found that random, DD, and EF thinning processes created different clustering patterns (Fig. 2). 

Random thinning of homogeneous and inhomogeneous Poisson and Thomas cluster SPPs showed no 

clustering differences between the remaining and removed points (dc-remaining - dc-removed
 ≈ 0). In 

contrast, DD thinning produced weaker clustering (larger dc) of remaining compared to removed 

points (dc-remaining - dc-removed > 0) for the inhomogeneous Poisson SPPs and for the homogeneous and 

inhomogeneous Thomas SPPs. However, the trends for the homogeneous Poisson patterns were not 

strong enough to be significant. Patterns thinned using EF showed stronger clustering of remaining 

compared to the removed points (dc-remaining - dc-removed < 0) for all four simulated SPP types. Overall, 

these results indicate that differences in dc may be reliable measures of the thinning effects of DD and 

EF.
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Gibbs point process model results

We modeled SPP intensity using Gibbs point process models to detect the effects of thinning from 

random, DD, and EF processes. We found no significant spatial associations using the simulated 

environmental gradient for points thinned randomly or from DD for any of the four randomly 

generated SPP types (Fig. 3, Supp. Table 1). In contrast, simulated thinning from EF produced 

significant positive associations with the simulated environmental gradient for the remaining points 

and negative associations for the removed points for all four randomly generated SPP types.

Interaction coefficients (η) for the Poisson homogeneous and inhomogeneous SPPs only 

detected significant point interactions for patterns with DD thinning. For these DD thinned patterns, 

we found significant clustering (η > 1) for removed points and overdispersion (η < 1) for the 

remaining points, consistent with the simulated density dependence (Fig. 4, Supp. Table 1). In 

contrast, we found η > 1 (clustering) for all Thomas homogeneous and inhomogeneous SPPs and 

across the three thinning scenarios. In general, patterns thinned by DD had higher ηremaining compared 

to ηremoved; however, the difference in ηremaining and ηremoved was only significant for simulated Poisson 

SPPs. These results indicate that Gibbs point process models can detect clustering, but may not be 

proficient at differentiating between the effects of simulated thinning from EF and DD for clustered 

SPPs.

Observed tree SPPs

Percolation threshold results

Living and dead trees: We predicted that DD would result in stronger clustering of dead trees 

compared to living trees (dc-living - dc-dead > 0) while EF would result in stronger clustering of living 

trees (dc-living - dc-dead < 0). Using percolation threshold analyses, we found that three species had SPPs 

consistent with DD thinning for living versus dead trees. We also identified six species with SPPs 

consistent with EF (Table 1, Fig. 5). Three species showed no clustering differences between living 

and dead tree SPPs.

Large and small trees: We predicted that DD would result in stronger clustering of small trees 

compared to large trees (dc-large - dc-small > 0) and that EF would result in stronger clustering of large A
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trees (dc-large - dc-small < 0). Comparison of dc values for each species based on large versus small tree 

size identified four species with SPPs consistent with DD thinning (i.e., stronger clustering of small 

trees), five species with SPPs consistent with EF, and three species with no difference in clustering 

between large and small trees (Table 1, Fig. 5). The results for living vs dead stems and large vs small 

trees were only consistent for three species.

Gibbs point process model results

When applied to observed tree data, Gibbs point process models revealed significant associations with 

concavity for both living and dead trees for three species, only living trees for four species, and only 

dead trees for two species (Table 1, Fig. 6a). No species had significantly stronger associations for 

living relative to dead trees. We also found associations with concavity for large and small trees for 

four species, only large trees for two species, and only small trees for two species (Table 1, Fig. 6b). 

All associations with concavity indicated that species were more common on ridges. Spatial 

distributions for eight of the 12 species also differed significantly across historical land-use, justifying 

our inclusion of this covariate in the model (Supp. Table 2, Supp. Fig. 2). Five species were more 

abundant on areas of high historical land use and three on low historical land use. Associations with 

land use differed between large and small and between living and dead trees but these differences 

were only significant for two species, P. acuminata and S. berteriana, in a manner consistent with 

stronger environmental filtering for large and living stems (Supp. Table 2).

Clustering independent of concavity and historical land-use was ubiquitous across living, 

dead, large, and small tree SPPs (η >1). Living tree SPPs for 9 of the 12 species showed evidence of 

clustering, one species had evidence of overdispersion (η <1), and two species had no clustering 

(Table 1, Fig. 7a, Supp. Table 3). In contrast, 11 species had significant clustering of dead stems. 

Large tree SPPs for nine species showed clustering, while three species had no significant clustering 

(Fig. 7b). Similarly, 10 species had significant clustering of small tree SPPs. Gibbs process models of 

living versus dead trees estimated interaction coefficients consistent with DD thinning for five species 

(ηliving < ηdead; Table 1, Fig. 7a). Models of large versus small trees also detected DD for five species 

(ηlarge < ηsmall; Fig. 7b); two of these species were the same for both comparisons (Buchenavia 

tetraphylla and Sloanea berteriana).A
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Comparing percolation threshold analysis to Gibbs point process model results

Overall, detection of DD or EF processes according to the percolation threshold analysis were not 

always congruent with results from the Gibbs point process models. Percolation threshold results 

showed that six species had living and dead tree SPPs consistent with EF; in contrast, Gibbs point 

process models determined that nine species had SPPs of living trees with significant environmental 

associations (Table 1). Only four of the species had living SPPs consistent with EF according to both 

percolation threshold analysis and Gibbs process models (Buchenavia tetraphylla, Inga laurina, 

Manilkara bidentata, Prestoea acuminata). Similarly, percolation threshold analysis identified five 

species with large and small tree SPPs consistent with EF compared to the nine species with 

significant environmental associations for large trees as determined by Gibbs point process models. 

Only four species overlapped between percolation threshold analysis and Gibbs point process models 

for the effects of environmental filtering on both large versus small trees (Manilkara bidentata, 

Prestoea acuminata, Schefflera morototoni, and Sloanea berteriana). Although we predicted that the 

species with SPPs consistent with EF according to the percolation threshold analyses would exhibit 

stronger topographic associations in the Gibbs models for living and large trees compared to dead and 

small trees, we actually found that the majority of species had associations with topography or land 

use independent of status or size (Table 1, Supp. Table 3, Fig. 6).

Congruence in detection of DD for percolation threshold analysis and Gibbs process models 

were generally weaker than for EF detection. Only four species were identified as having SPPs 

consistent with DD by both percolation threshold analysis and Gibbs process models (Table 1). For 

living versus dead trees, only one species with SPPs consistent with DD according to the percolation 

threshold analysis also had interaction coefficients from the Gibbs process model consistent with DD 

(Sloanea berteriana). Similarly, only two species had patterns consistent with DD for both the 

percolation threshold analysis and Gibb process models for large versus small trees (Buchenavia 

tetraphylla and Guarea guidonia).

Percolation threshold analyses and species functional traits
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The relationship between species’ traits and the influence of DD versus EF did not fully reflect our 

predictions. We had expected that species with early successional life history characteristics (shade 

intolerant with low LMA and wood density) would show stronger patterns from DD processes. The 

only significant relationship between percolation threshold analysis and species traits was for LMA. 

Specifically, species tended to shift from DD to EF as LMA increased (p = 0.037, R2 = 0.366; Supp. 

Table 4).

Discussion

The spatial distributions of tree species reflect the cumulative result of individual tree recruitment, 

growth, and survival that are in turn determined by initial seed dispersal, environmental conditions, 

and biotic interactions. Environmental and biotic interactions result in thinning processes such as 

negative density dependence (DD: Janzen, 1970; Uriarte, Condit, et al., 2004) and environmental 

filtering (EF: Webb & Peart, 2000; Wiegand et al., 2009). However, it has been difficult to detect and 

quantify the relative importance of these thinning processes on tree SPPs in natural forests.

This study examined the efficacy of percolation threshold analysis (Plotkin et al., 2002) in 

detecting simulated DD and EF thinning processes and then examined forest census data to detect 

evidence of DD and EF thinning in observed SPPs. Results from percolation threshold analysis were 

then compared to Gibbs point process models (Baddeley et al., 2015) to better understand the 

performance and congruence of these two methods. Percolation threshold analysis was able to 

successfully distinguish between DD and EF thinning in simulated tree SPPs and performed better 

than Gibbs point process models in detecting DD processes for clustered patterns (e.g., Thomas 

processes). Nevertheless, both percolation threshold analysis and Gibbs models detected SPPs that are 

consistent with DD thinning processes in a natural forest community. Both methods also captured 

widespread environmental filtering in the natural community. Nevertheless, there was limited overlap 

in results for individual species relative to differences between small/large and living/dead 

individuals.  Taken together, these results suggest that percolation threshold analysis offers a useful 

framework for investigating how community assembly processes shape natural communities, 

particularly when coupled with approaches that can identify associations with known environmental 

covariates (e.g., Gibbs models). A
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By applying random, DD, and EF based thinning to simulated SPPs, we verified that 

percolation threshold analyses could detect the expected results of these processes on the clustering of 

trees. We found that simulated thinning as a function of point density (DD) resulted in weaker 

clustering of remaining points (dc-remaining - dc-removed
 > 0), while thinning along a simulated 

environmental gradient (EF) yielded stronger clustering of remaining points (dc-remaining - dc-removed
 < 0). 

These simulated results are consistent with findings from studies that examined tree clustering 

patterns in natural forest communities, namely, that DD decreased clustering (Bagchi et al., 2011; 

Janzen, 1970; Uriarte, Condit, et al., 2004) and EF increased clustering of living trees (Shen et al., 

2013; Webb & Peart, 2000; Wiegand et al., 2009). Although the Gibbs point process models also 

detected the effects of simulated EF, these models were only able to detect evidence of DD thinning 

in patterns without clustering (i.e., Poisson processes).

After applying percolation threshold analysis to observed tree SPPs, we identified species with 

SPPs consistent with thinning from DD and EF for living versus dead and for large versus small trees. 

Percolation threshold analysis detected seven species consistent with DD, nine species consistent with 

EF, and five species with SPPs consistent with both DD and EF thinning processes when looking 

across both living versus dead and large versus small tree results. Only two species had SPPs 

consistent with EF for both living versus dead and large versus small tree results and two species had 

SPPs consistent with DD and no evidence of EF, although both of these species had a non-significant 

dc comparison for either living versus dead or large versus small tree results. In contrast, the Gibbs 

process models detected environmental associations for nearly all species. The ubiquitous detection of 

SPPs consistent with EF in both the percolation threshold analysis and Gibbs process models suggests 

that environmental variation is an important driver of species distributions at this site.  

Density dependent responses are often strongest for seedlings and saplings (Comita et al., 

2014). Although the tree census data used in this study restricted our analysis to trees with a DBH ≥ 1 

cm, using a comparison of living versus dead and large versus small tree clustering strength allowed 

us to identify several species with SPPs consistent with DD thinning. While DD in our study captures 

mortality from both conspecific competition and herbivory, differences in tree species’ susceptibility 

to herbivory from generalists or specialists may also influence our ability to detect DD thinning. Our 

finding that species with low LMA had stronger evidence of DD compared to species with high LMA A
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supports results from other studies that examined how DD mortality varies among species’ 

successional traits; specifically, tradeoffs between acquisitive and competitive traits (Grime, 1979; 

Lohbeck et al., 2013).

The efficacy of percolation threshold analyses was comparable to Gibbs process models 

applied to observed SPPs. The positive association with ridges (i.e., negative concavity) for most of 

the species tested is consistent with findings for this forest that these tree species grow and survive 

better on ridges. In this site, valleys are often wetter than ridges (Daws et al., 2002; Silver et al., 1999; 

Tromp-van Meerveld & McDonnell, 2006) and trees in valleys have lower growth and survival 

(Uriarte et al., 2018). Nevertheless, the Gibbs point process models failed to detect significant 

topographic associations for four species that percolation threshold analysis identified as SPPs with 

distributions consistent with EF thinning. This difference may be due to environmental covariates not 

captured by topography (e.g., light availability), which are difficult to incorporate in point process 

models. This suggests that Gibbs point process models are useful for identifying environmental filters 

but should be complemented by percolation threshold analysis to capture potential effects of unknown 

environmental covariates.

The interaction coefficients from the Gibbs point process models indicated that eight species 

had significant clustering of both living and dead stems and eight species had significant clustering of 

both large and small stems independent of environmental covariates. However, only fout species had 

evidence that DD was sufficiently strong to remove clustering of living compared to dead trees 

(Alchornea latifolia, Buchenavia tetraphylla, Prestoea acuminata and Sloanea berteriana) and five 

species showed evidence of DD for large relative to small trees. Although our simulations did not 

reveal Gibbs point process patterns to be proficient at detecting DD thinning in clustered patterns, the 

weaker clustering for living and large compared to dead and small trees for several species suggests 

that DD thinning is sufficiently strong in this forest to influence SPPs. However, it is also possible 

that this model detected clustering due to unmeasured environmental variation independent of our 

measure of topography.

Percolation threshold analysis relies on thinning processes that affect the clustering patterns of 

species and several factors may obscure clear differences in thinning from DD or EF processes. 

Although many species experience thinning from both DD and EF processes, this thinning often A
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occurs at different spatial scales (Plotkin et al., 2002; Wiegand et al., 2007) and percolation threshold 

analysis should detect the predominant thinning process. Another issue typically experienced by many 

SPP analyses is accounting for differences in the abundance of species (i.e., the number of points in 

an SPPs; Chacón-Labella et al., 2017; Murrell, 2009; Rajala et al., 2019; Wiegand et al., 2012). One 

advantage of percolation threshold analysis is that the critical distance dc is standardized by the 

number of points before comparison across SPPs. Additionally, this method does not rely on 

assumptions about the probability of point co-occurrence with other point-types or environmental 

features (Chacón-Labella et al., 2017; Rajala et al., 2019; Wiegand et al., 2012). Nonetheless, 

differences in point abundance is a critical issue with any SPP analysis. For percolation threshold 

specifically, theoretical models show that the percolation transition occurs at the same dc for a range 

of abundances, but that the transition becomes more gradual as sample size increases (n = 100 - 

12500: Plotkin et al., 2002). In this analysis a more gradual percolation transition due to small sample 

sizes would be detected as a smaller dc. However, examination of species’ SPPs with large abundance 

differences between living versus dead or large versus small does not reveal any consistent bias. For 

example, nliving >> ndead for both Dacryodes excelsa and Manilkara bidentata, but percolation 

thresholds determined that SPPs for these species were consistent with DD and EF, respectively.  

We propose percolation analysis is a useful tool for understanding the simultaneous effects of 

DD and EF on SPPs with some advantages and disadvantages over traditional spatial analyses (e.g., 

Gibbs point process models and spatial summary statistics). Percolation threshold analysis of 

clustered patterns successfully distinguished thinning of simulated point patterns by random, DD, and 

EF processes. Although Gibbs point process models detected thinning from EF, these models could 

only detect DD effects on Poisson SPPs. Thus, we recommend percolation threshold analysis be 

limited to SPPs with significant clustering as determined from second-order summary statistics 

(Baddeley et al., 2015). One advantage of Gibbs point process models is their ability to associate 

patterns with specific environmental covariates; they also allow separation of EF components into 

measured and unmeasured covariates, since the latter should increase clustering (ŋ). However, when 

accurate maps of covariates are unavailable, percolation threshold analysis offers a useful and 

complementary approach for detecting EF. Regardless of the method chosen to examine spatial 

patterns of tree species, the big technical challenge of teasing apart the importance of DD and EF in A
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natural communities is that both processes occur simultaneously and may be impossible to detect 

without a clear separation of spatial scales, replication, or known environmental covariates.
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Table 1. Median DBH of living individuals for each species calculated from the 2016 census. For 

percolation threshold analysis, a smaller dc for living vs. dead or large vs. small indicates dominance 

of environmental filtering (EF). The opposite scenario, a larger dc for living vs. dead or large vs. 

small, indicates dominance of density dependent processes (DD). Statistically equivalent clustering 

strengths for either comparison indicates equal strengths of EF and DD. For Gibbs models, DD 

denotes significant differences in interaction coefficients consistent with density dependent thinning 

(ηliving < ηdead or ηlarge < ηsmall). EF for Gibbs models denotes significant associations with measured 

covariates (topography or land use) for large/small and living dead trees. n.s. = not significant* 

indicates that coefficients are significantly greater for large and living trees relative to small and dead 

ones.
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Species
Percolation threshold 

comparison of dc

Gibbs process model 

results (η)

(Species code) living/ small/large living/ small/large

 

Median 

DBH

Number of trees in SPPs 

by size and status 

classification
dead

(≤ vs. > 

median DBH)
dead

(≤ vs. > median 

DBH)

Alchornea latifolia nlarge=79; nsmall= 79 equal DD DD  

(ALCLAT)
21.25

nliving= 158; ndead= 546   EF/EF EF/n.s.

Buchenavia tetraphylla nlarge=90; nsmall= 90 EF DD DD DD

(BUCTET)
42.25

nliving= 180; ndead= 133   EF/n.s.* EF/EF

Casearia arborea nlarge=1383; nsmall= 1385 equal equal  DD

(CASARB)
4.09

nliving= 2768; ndead= 2703   EF/EF EF/EF*

Cecropia schreberiana nlarge=395; nsmall= 401 equal EF   

(CECSCH) 
20.9

nliving= 796; ndead= 2284   n.s./EF  

Dacryodes excelsa nlarge=696; nsmall= 703 DD equal  

(DACEXC)
22.9

nliving= 1399; ndead= 148   EF/EF EF/EF

Guarea guidonia nlarge=179; nsmall= 179  EF DD  DD

(GUAGUI)
20.9

nliving= 358; ndead= 338     

Inga laurina 6.9 nlarge=409; nsmall= 415 EF equal  DD
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(INGLAU) nliving= 824; ndead= 628   EF/EF EF/EF

Manilkara bidentata nlarge=846; nsmall= 859 EF EF   

(MANBID) 
7.3

nliving= 1705; ndead= 323   EF/n.s. EF/EF

Prestoea acuminata nlarge=4614; nsmall= 4614 EF EF DD  

(PREMON)
14.05

nliving= 9228; ndead= 1544   EF/n.s.* EF/EF*

Schefflera morototoni nlarge=338; nsmall= 351 DD EF   

(SCHMOR)
12.5

nliving= 689; ndead= 2338   EF/EF EF/EF

Sloanea berteriana nlarge=1298; nsmall= 1304 DD EF DD DD

(SLOBER)
3.44

nliving= 2602; ndead= 1223   EF/EF EF/EF*

Tabebuia heterophylla nlarge=143; nsmall= 143 EF DD   

(TABHET)
9.35

nliving= 286; ndead= 486   n.s./EF  
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Figure legends

Figure 1. Predictions for effects of thinning from stochastic/mixed processes, density dependence, 

and environmental filtering. Expectations for clustering differences following thinning processes for 

“remaining points” (i.e., living or large trees) and “removed points” (i.e., dead or small trees). 

Environmental filtering decreases dc of remaining points (i.e., living or large trees) compared to 

removed points (i.e., dead or small trees). In contrast, density dependent processes increase dc of 

remaining points compared to removed points. 

Figure 2. Percolation threshold (dc) comparison from percolation analysis of simulated point patterns. 

Percolation threshold analysis of simulated data with point removal by random thinning, by density 

dependence (DD), or by environmental filtering (EF). Points right of zero (dashed line) match 

predictions for patterns with thinning influenced by density dependent processes (DD) while points 

left of zero represent patterns with clustering influenced by environmental filtering (EF). Symbols 

show the median estimate and black lines show the 95% confidence intervals. 

Figure 3. Environmental associations of Gibbs process model from simulated point patterns. 

Differences in standardized model coefficients of simulated data with point removal by random 

thinning, by density dependence (DD), or by environmental filtering (EF). Points show differences in 

median parameter values and black lines show 95% confidence intervals. Filled symbols are 

significantly non-zero at p ≤ 0.05. 

Figure 4. Differences in interaction coefficients (η) (i.e, of Gibbs process models for simulated 

remaining and removed point patterns. Points show differences in log(median) parameter values and 

black lines show 95% confidence intervals. Filled symbols are significantly non-zero at p ≤ 0.05. 

Figure 5. Clustering strength (dc) from percolation analysis of observed point patterns.

Positive x coordinates indicate species with clustering of living or large stems influenced by density 

dependent processes (DD) while negative values represent species with clustering influenced by A
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environmental filtering (EF). Circles show the median estimate and dotted-lines show 95% 

confidence intervals. Significant results are filled symbols.

Figure 6. Associations between concavity and SPPs of living vs. dead stems (a) and large vs. small 

stems (b). Values to the left of zero (dashed line) indicate associations with ridges while those to the 

right of zero indicate associations with valleys. Species listed from most to least abundant (top to 

bottom). Filled symbols are significantly non-zero at p ≤ 0.05. Lines show 95% confidence intervals.

Figure 7. Interaction coefficients (η) of Gibbs process models for observed point patterns.

Interaction estimates for SPPs of living vs. dead stems (a) and large vs. small stems (b). Values to the 

left of one (dashed line) indicate overdispersion between points while values to the right of one 

indicate clustering between points. Filled symbols are significantly non-zero at p ≤ 0.05. Lines show 

95% confidence intervals. 
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