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A B S T R A C T   

Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as 
environmental change monitoring, precision agriculture, environmental protection, and economic assessment. 
Following rapid developments in sensor technologies, vast numbers of fine-resolution satellite and airborne 
remote sensing images are now available, for which semantic segmentation is potentially a valuable method. 
However, because of the rich complexity and heterogeneity of information provided with an ever-increasing 
spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network structures for 
segmentation, which often result in significant computational demand. Particularly, the frequently-used fully 
convolutional network (FCN) relies heavily on fine-grained spatial detail (fine spatial resolution) and contextual 
information (large receptive fields), both imposing high computational costs. This impedes the practical utility of 
FCN for real-world applications, especially those requiring real-time data processing. In this paper, we propose a 
novel Attentive Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with 
a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation study, 
demonstrate that ABCNet has strong discrimination capability with competitive accuracy compared with state- 
of-the-art benchmark methods while achieving significantly increased computational efficiency. Specifically, the 
proposed ABCNet achieves a 91.3% overall accuracy (OA) on the Potsdam test dataset and outperforms all 
lightweight benchmark methods significantly. The code is freely available at https://github. 
com/lironui/ABCNet.   

1. Introduction 

Driven by the rapid development of Earth observation technology, 
massive numbers of remotely sensed images at fine spatial resolution are 
commercially available for a variety of applications, such as image 
classification (Lyons et al., 2018; Maggiori et al., 2016), object detection 
(Li et al., 2017; Xia et al., 2018) and semantic segmentation (Kemker 
et al., 2018; Zhang et al., 2019a). The re-visit capabilities of orbital 
sensors facilitate continuous monitoring of the land surface, ocean, and 
atmosphere (Duan and Li, 2020). Fine-resolution remotely sensed im-
ages are rich in information and contain substantial spatial detail for 
land cover and land use classification and segmentation. Different 

automatic and semi-automatic methods have been developed to identify 
land cover and land use categories by exploiting spectral and spectral- 
spatial features within remote sensing images (Gong et al., 1992; Ma 
et al., 2017; Tucker, 1979; Zhong et al., 2014; Zhu et al., 2017). How-
ever, these traditional approaches rely on handcrafting features and 
information transformation, which commonly fail to adequately capture 
the contextual information contained abundantly within images, and are 
often limited in their flexibility and general adaptability (Li et al., 2020; 
Tong et al., 2020). This is especially true given the detailed structural 
and contextual information provided at a very fine spatial resolution. 
Meanwhile, recent developments in deep learning, and deep convolu-
tional neural network (CNN), in particular, have replaced feature 
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engineering with high-level non-linear feature representations created 
end-to-end, hierarchically, and in an automatic fashion. This has had a 
transformative impact on information understanding and semantic 
characterization from fine-resolution remotely sensed imagery (Li et al., 
2021b; Zheng et al., 2020). 

Semantic segmentation, which assigns each pixel in an image to a 
particular category, has become one of the most important approaches 
for ground feature interpretation, playing a pivotal role in different 
application scenarios (Wang et al., 2021), such as precision agriculture 
(Griffiths et al., 2019; Picoli et al., 2018), environmental protection 
(Samie et al., 2020; Yin et al., 2018) and economic assessment (Zhang 
et al., 2020; Zhang et al., 2019a). The fully convolutional network (FCN) 
was demonstrated to be the first effective end-to-end CNN structure for 
semantic segmentation (Long et al., 2015). Restricted by the over-
simplified design of the decoder, the results of FCN, although encour-
aging in principle, are presented at a coarse resolution. Subsequently, 
more elaborate encoder-decoder structures, such as U-Net, have been 
proposed, with two symmetric paths: a contracting path for extracting 
features and an expanding path for achieving accurate results through 
precise positioning (Badrinarayanan et al., 2017; Li et al., 2021a; Ron-
neberger et al., 2015). The per-pixel classification is often ambiguous in 
the presence of only local information for semantic segmentation, while 
the task becomes much simpler if global contextual information, from 
the whole image, is available (as shown in Fig. 1). Therefore, to guar-
antee the accuracy of segmentation, global contextual information and 
multiscale semantic features were utilized comprehensively to differ-
entiate semantic categories at different spatial scales. Through the 
spatial pyramid pooling module, the pyramid scene parsing network 
(PSPNet) aggregated contextual information across different regions 
(Zhao et al., 2017). The dual attention network (DANet) applied the dot- 
product attention mechanism to extract abundant contextual relation-
ships (Fu et al., 2019). Subject to an enormous memory and computa-
tional demand, DANet simply attached the dot-product attention 
mechanism at the lowest layer without capturing the long-range de-
pendencies from the larger feature maps in the higher layers. DeeplabV3 
adopted atrous convolution to mine the multiscale features (Chen et al., 
2017a) and a simple, yet useful, decoder module was added in Deep-
LabV3 + to further refine the segmentation results (Chen et al., 2018a). 

The extraction of global contextual information and the exploitation 
of large-scale feature maps are computationally expensive (Chen et al., 
2017b; Diakogiannis et al., 2020b; Li et al., 2021b). Therefore, a series of 

lightweight networks have been developed to accelerate the computa-
tion while maintaining the trade-off between accuracy and efficiency 
(Hu et al., 2020; Oršić and Šegvić, 2021; Romera et al., 2017; Yu et al., 
2018; Zhuang et al., 2019). For example, the asymmetric convolution 
used in ERFNet factorized the standard 3 × 3 convolutions into a 1 × 3 
convolution and a 3 × 1 convolution, saving approximately 33% of the 
computational cost (Romera et al., 2017). By exploiting spatial corre-
lations and cross-channel correlations, respectively, BiseNet achieved 
depth-wise separable convolution (Yu et al., 2018), which further 
reduced the consumption of standard convolution (Chollet, 2017). 
Multi-scale encoder-decoder branch pairs with skip connections were 
studied in ShelfNet (Zhuang et al., 2019), where a shared-weight strat-
egy was harnessed in the residual block to reduce the number of pa-
rameters without sacrificing accuracy. For non-local context 
aggregation, FANet employed the fast attention module in efficient se-
mantic segmentation (Hu et al., 2020). SwiftNet explored the effec-
tiveness of pyramidal fusion in compact architectures (Oršić and ̌Segvić, 
2021). However, the CNN is designed to extract local patterns and lacks 
the ability to model global context in its nature. More severely, as 
lightweight networks normally adopted relatively shallow backbones, 
the capacity of those networks to extract global contextual information 
is further limited. 

Due to the limited capacity of lightweight networks to extract global 
contextual information, there is a huge gap in accuracy between light-
weight networks and state-of-the-art deep models, which limits their 
applicability to fine-resolution remotely sensed images. The dot-product 
attention mechanism, as a powerful approach that can capture long- 
range dependencies, is potentially an ideal solution to address this 
issue (Vaswani et al., 2017). However, the memory and computational 
costs of the dot-product attention mechanism increase quadratically 
with an increase in the spatio-temporal size of the input, which runs 
counter to the aim of lightweight networks. Encouragingly, previous 
researches on linear attention (Katharopoulos et al., 2020; Li et al., 
2021b) reduce the complexity of the dot-product attention mechanism 
from O(N2) to O(N), with a significant increase in computational speed, 
while maintaining high accuracy. 

In this paper, we aim to further increase segmentation accuracy 
while ensuring the efficiency of semantic segmentation simultaneously. 
We address this challenge by modeling the global contextual informa-
tion using the linear attention mechanism. Specifically, we propose an 
Attentive Bilateral Contextual Network (ABCNet) to realize efficient 

Fig. 1. Illustration of global and local contextual information.  
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semantic segmentation of fine-resolution remote sensing images. 
Following the design philosophy of BiSeNet (Yu et al., 2018), we design 
the ABCNet based on a bilateral architecture: a spatial path to retain the 
abundant spatial detail and a contextual path to capture the global 
contextual information. As the features generated by the two paths are 
quite disparate semantically, we further design a feature aggregation 
module (FAM) to fuse those features. The comparison between the 
conventional encoder-decoder structure and the bilateral architecture 
used in the proposed ABCNet can be seen in Fig. 2. The main contri-
butions are two-fold. On the one hand, we propose a novel approach for 
efficient semantic segmentation of fine-resolution remotely sensed im-
agery, i.e., ABCNet with spatial and contextual paths. On the other hand, 
we design two specific modules: an attention enhancement module 
(AEM) for exploring long-range contextual information, and a feature 
aggregation module (FAM) for fusing the features obtained by the two 
paths. A thorough benchmark comparison was undertaken against the 
state-of-the-art to demonstrate the effectiveness of the proposed 
ABCNet. 

2. Related work 

2.1. Context information extraction 

Context is critically important for semantic segmentation and, thus, 
tremendous effort has been made to extract such information in an 
intelligent manner. The dilated or atrous convolution (Chen et al., 2014; 
Yu and Koltun, 2015) has been demonstrated to be an effective approach 
for enlarging receptive fields without shrinking spatial resolution. Be-
sides, the encoder-decoder architecture (Ronneberger et al., 2015), 
which merges high-level and low-level features via skip connections, is 
an alternative for extracting spatial context. Based on the encoder- 
decoder framework or dilation backbone, some research has focused 
on exploring the use of spatial pyramid pooling (SPP) (He et al., 2015). 
For example, the pyramid pooling module (PPM) in PSPNet is composed 
of convolutions with kernels of four different sizes (Zhao et al., 2017), 
while DeepLab v2 (Chen et al., 2018a), equipped with the atrous spatial 
pyramid pooling (ASPP) module, groups parallel atrous convolution 
layers with varying dilation rates. However, certain limitations persist in 
SPP. Particularly, the SPP with the standard convolution faces a 
dilemma when expanding the receptive field with a large kernel size. 

Fig. 2. Illustration of (a) the encoder-decoder structure and (b) the bilateral architecture.  

Fig. 3. Illustration of the calculation of dot-product attention mechanism.  
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The above operations are normally accompanied by a very large number 
of parameters. The SPP with small kernels (e.g. ASPP), on the other 
hand, lacks sufficient connection between adjacent features, and the 
gridding problem (Wang et al., 2018a) occurs when the field is enlarged 
by a dilated convolutional layer. In contrast, the dot-product attention 
mechanism has the powerful ability to model long-range dependencies, 
which enables contextual information extraction at a global scale. 

2.2. Dot-Product attention mechanism 

Let H, W, and C denote the height, weight, and channels of the input, 
respectively. The input feature is defined as X = [x1, ⋯, xN] ∈ RN×C, 
where N = H× W. Initially, the dot-product attention mechanism uti-
lizes three projected matrices Wq ∈ RDx×Dk , Wk ∈ RDx×Dk , and Wv ∈

RDx×Dv to generate the corresponding query matrix Q, the key matrix K, 
and the value matrix V: 
⎧
⎨

⎩

Q = XWq ∈ RN×Dk ;

K = XWk ∈ RN×Dk ;

V = XWv ∈ RN×Dv .

(1)  

The graphical representation of the dot-product attention mechanism 
can be seen in Fig. 3. The dimensions of Q and K are identical, and all 
vectors in this section are column vectors by default. Accordingly, a 
normalization function ρ is employed to measure the similarity between 
the i-th query feature qT

i ∈ RDk and the j-th key feature kj ∈ RDk as 
ρ(qT

i ∙kj) ∈ R1. As the query feature and key feature are generated via 
different layers, the similarities between ρ(qT

i ∙kj) and ρ(qT
j ∙ki) are not 

identical. Therefore, the N × N QKT matrix model the long-range de-
pendency between each pixel pair in the input feature maps, where the 
pixel at j-th row and i-th column measures the i-th position’s impact on j- 
th position. In other words, the long-range global contextual information 
between every pixel of the input can be fully modeled by the N × N 
matrix QKT. By calculating similarities between all pairs of pixels in the 
input feature maps and taking the similarities as weights, the dot- 
product attention mechanism generates the value at position i by 
aggregating the value features from all positions using weighted 
summation: 

D(Q,K,V) = ρ
(
QKT)V. (2) 

Softmax is frequently used as the normalization function: 

ρ
(
QKT) = softmaxrow

(
QKT), (3) 

where softmaxrow indicates that the softmax along each row of the 
matrix QKT. 

By modeling the similarities between each pair of positions of the 
input, the global dependencies in the features can be extracted thor-
oughly by ρ

(
QKT). The dot-product attention mechanism was initially 

designed for machine translation (Vaswani et al., 2017), while the non- 
local module (Wang et al., 2018b) was introduced and modified for 

computer vision (Fig. 4). Based on the dot-product attention mechanism, 
as well as its variants, different attention-based networks have been 
proposed to address the semantic segmentation task. Inspired by the 
non-local module (Wang et al., 2018b), the double attention networks 
(A2-Net) (Chen et al., 2018b), dual attention network (DANet) (Fu et al., 
2019), and object context network (OCNet) (Yuan and Wang, 2018) 
were proposed successively for scene segmentation by exploring the 
long-range dependencies. Furthermore, Bello et al. (2019) augmented 
convolutional operators with attention mechanisms, while Zhang et al. 
(2019c) incorporated the attention mechanism into the generative 
adversarial network. Lu et al. (2019) extended the attention mechanism 
to CO-attention Siamese Network (COSNet) for unsupervised video ob-
ject segmentation. Recently, Diakogiannis et al. (2020a) improved the 
attention mechanism and proposed the fractal Tanimoto attention layer 
for semantic change detection. 

Although the introduction of attention boosts segmentation accuracy 
significantly, the huge resource-demand of the dot-product hinders its 
application to large inputs. Specifically, for Q ∈ RN×Dk and KT ∈ RDk×N, 
the product between Q and KT belongs to RN×N, leading to O(N2)

memory and computational complexity. Consequently, it is necessary to 
reduce the demand for computational resources of the dot-product 
attention mechanism. Substantial endeavors have been poured in aim-
ing to alleviate the bottleneck to efficiency and push the boundaries of 
attention, including accelerating the generation process of the attention 
matrix (Huang et al., 2019a; Huang et al., 2019b; Yuan et al., 2019; 
Zhang et al., 2019b), pruning the structure of the attention block (Cao 
et al., 2019), and optimizing attention based on low-rank reconstruction 
(Li et al., 2019c). 

2.3. Generalization and simplification of the dot-product attention 
mechanism 

If the normalization function is set as softmax, the i-th row of the 
result matrix generated by the dot-product attention mechanism can be 
written as: 

D(Q,K,V)i =

∑N
j=1eqi

T ∙kjvj
∑N

j=1eqi
T ∙kj

, (4) 

where vj is j-th value feature. 
Eq. (4) can be rewritten and generalized to any normalization 

function as: 

D(Q,K,V)i =

∑N

j=1
sim
(
qi, kj

)
vj

∑N

j=1
sim
(
qi, kj

) ,

sim
(
qi, kj

)
≥ 0.

(5) 

sim
(
qi, kj

)
can be expanded as ϕ(qi)

Tφ(kj) which measures the simi-
larity between qi and kj, and Eq. (4) can be rewritten as Eq. (6) and 
simplified as Eq. (7): 

Fig. 4. Illustration of the dot-product attention mechanism utilized in computer vision.  
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D(Q,K,V)i =

∑N
j=1ϕ(qi)

T φ
(
kj
)
vj

∑N
j=1ϕ(qi)

T φ
(
kj
) , (6)  

D(Q,K,V)i =
ϕ(qi)

T∑N
j=1φ

(
kj
)
vj

T

ϕ(qi)
T∑N

j=1φ
(
kj
) . (7) 

Ifsim
(
qi, kj

)
= eqi

T∙kj, Eq. (5) is equivalent to Eq. (4). The vectorized 
form of Eq. (7) is: 

D(Q,K,V) =
ϕ(Q)φ(K)

T V
ϕ(Q)

∑
jφ(K)

T
i,j

(8) 

As the softmax function is substituted for sim
(
qi, kj

)
= ϕ(qi)

Tφ(kj), 
the order of the commutative operation can be altered, thereby avoiding 
multiplication between the reshaped key matrix K and query matrix Q. In 
concrete terms, we can first compute the multiplication between φ(K)

T 

and V, and then multiply the result with Q, leading to only O(dN) time 
complexity and O(dN) space complexity. The suitable ϕ(∙) and φ(∙)
enable the above scheme to achieve competitive performance with finite 
computational complexity (Katharopoulos et al., 2020; Li et al., 2021c). 

2.4. Linear attention mechanism 

In our previous research (Li et al., 2021b), we proposed a linear 
attention mechanism to replace the softmax function with the first-order 
approximation of the Taylor expansion, as in Eq. (9): 

Fig. 5. An overview of the Attentive Bilateral Contextual Network. (a) network architecture. (b) the Feature Aggregation Module (FAM). (c) the Attention 
Enhancement Module (AEM). (d) the Linear Attention Mechanism. Note that CBR means Convolution + BatchNorm + ReLU, LAM denotes Linear Attention 
Mechanism, Conv signifies Convolution layer, Concat represents Concatenate operation, BN illustrates BatchNorm layer, and Mul is Multiplication operation. 

Table 1 
Ablation study of each component in the proposed ABCNet.  

Dataset Method Mean F1 OA (%) mIoU (%) 

Vaihingen Cp  83.9  88.1  73.9 
Cp + AEM  85.8  88.8  75.6 
Cp + Sp + AEM(Sum)  86.6  89.8  77.4 
Cp + Sp + AEM(Cat)  87.1  89.7  77.8 
Cp + Sp + AEM + FAM  89.5  90.7  81.3 

Potsdam Cp  89.7  87.9  81.6 
Cp + AEM  90.6  89.3  83.0 
Cp + Sp + AEM(Sum)  91.0  89.4  83.4 
Cp + Sp + AEM(Cat)  91.2  89.8  84.1 
Cp + Sp + AEM + FAM  92.7  91.3  86.5  

Fig. 6. Comparison between the (a) computational and (b) memory requirements of the linear attention mechanism and dot-product attention mechanism under 
different input sizes. The calculation assumes C = Dv = 2Dk = 64. MM denotes 1 Mega multiply-accumulation (MACC), where 1 MACC means 1 multiplication and 1 
addition operation. GM means 1 Giga MACC, while TM signifies 1 Tera MACC. Similarly, MB, GB, and TB represent 1 MegaByte, 1 GigaByte, and 1 TeraByte, 
respectively. Note the figure is shown on the log scale. 
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Table 2 
The complexity and speed of the proposed ABCNet and lightweight methods. ’G’ indicates Gillion (i.e., units for the number of floating point operations) and ’M’ 
signifies Million (i.e., units for the number of parameters). For an extensive comparison, we chose 256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048, and 4096 × 4096 
pixels as the sizes of the input image and report the inference speed measured in frames per second (FPS) on a midrange notebook graphics card 1660Ti. mIoU is 
measured using patches of 512 × 512 pixels, where the first number is the mIoU on the Vaihingen dataset and the second one is on the Potsdam dataset.  

Method Backbone Complexity 
(G) 

Parameters 
(M) 

256 × 256 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096 mIoU 

DABNet (Li et al., 2019a) –  5.22  0.75  90.67  87.74  27.41  7.44 * 70.2/ 
79.6 

ERFNet (Romera et al., 2017) –  14.75  2.06  90.51  59.04  17.59  4.87 1.25 69.1/ 
76.2 

BiSeNetV1 (Yu et al., 2018) ResNet18  15.25  13.61  143.50  87.63  25.89  7.23 1.84 75.8/ 
81.7 

PSPNet (Zhao et al., 2017) ResNet18  12.55  24.03  151.12  105.03  34.83  10.16 2.66 68.6/ 
75.9 

BiSeNetV2 (Yu et al., 2020) –  13.91  12.30  124.49  82.84  25.64  7.07 * 75.5/ 
82.3 

DANet (Fu et al., 2019) ResNet18  9.90  12.68  181.66  124.18  40.80  11.42 * 69.4/ 
80.3 

FANet (Hu et al., 2020) ResNet18  21.66  13.81  112.59  67.97  20.41  5.57 * 75.6/ 
84.2 

ShelfNet (Zhuang et al., 2019) ResNet18  12.36  14.58  123.59  90.41  30.93  9.06 2.40 78.7/ 
84.4 

SwiftNet (Oršić and Šegvić, 2021) ResNet18  13.08  11.80  157.63  97.62  30.79  8.65 * 78.3/ 
83.8 

MAResU-Net (Li et al., 2021b) ResNet18  25.43  16.17  70.12  37.55  13.35  3.51 * 78.6/ 
83.9 

EaNet (Zheng et al., 2020) ResNet18  18.75  34.23  73.98  55.95  17.94  5.53 1.54 79.6/ 
83.4 

ABCNet ResNet18  18.72  14.06  113.09  72.13  22.73  6.23 1.60 81.3/ 
86.5 

* means the network runs out of memory. 

Table 3 
Quantitative comparison results on the Vaihingen test set with the lightweight networks.  

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 

DABNet (Li et al., 2019a) –  87.8  88.8  74.3  84.9  60.2  79.2  84.3  70.2 
ERFNet (Romera et al., 2017) –  88.5  90.2  76.4  85.8  53.6  78.9  85.8  69.1 
BiSeNetV1 (Yu et al., 2018) ResNet18  89.1  91.3  80.9  86.9  73.1  84.3  87.1  75.8 
PSPNet (Zhao et al., 2017) ResNet18  89.0  93.2  81.5  87.7  43.9  79.0  87.7  68.6 
BiSeNetV2 (Yu et al., 2020) –  89.9  91.9  82.0  88.3  71.4  84.7  88.0  75.5 
DANet (Fu et al., 2019) ResNet18  90.0  93.9  82.2  87.3  44.5  79.6  88.2  69.4 
FANet (Hu et al., 2020) ResNet18  90.7  93.8  82.6  88.6  71.6  85.4  88.9  75.6 
EaNet (Zheng et al., 2020) ResNet18  91.7  94.5  83.1  89.2  80.0  87.7  89.7  78.7 
ShelfNet (Zhuang et al., 2019) ResNet18  91.8  94.6  83.8  89.3  77.9  87.5  89.8  78.3 
MAResU-Net (Li et al., 2021b) ResNet18  92.0  95.0  83.7  89.3  78.3  87.7  90.1  78.6 
SwiftNet (Oršić and Šegvić, 2021) ResNet18  92.2  94.8  84.1  89.3  81.2  88.3  90.2  79.6 
ABCNet ResNet18  92.7  95.2  84.5  89.7  85.3  89.5  90.7  81.3  

Table 4 
Quantitative comparison results on the Vaihingen test set with the state-of-the-art networks.  

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) Speed 

DeepLabV3+ (Chen et al., 2018a) ResNet101  92.4  95.2  84.3  89.5  86.5  89.6  90.6  81.5  13.27 
PSPNet (Zhao et al., 2017) ResNet101  92.8  95.5  84.5  89.9  88.6  90.3  90.9  82.6  22.03 
DANet (Fu et al., 2019) ResNet101  91.6  95.0  83.3  88.9  87.2  89.2  90.4  81.3  21.97 
EaNet (Zheng et al., 2020) ResNet101  93.4  96.2  85.6  90.5  88.3  90.8  91.2  –  9.97 
DDCM-Net (Liu et al., 2020) ResNet50  92.7  95.3  83.3  89.4  88.3  89.8  90.4  –  37.28 
HUSTW5 (Sun et al., 2019) ResegNets  93.3  96.1  86.4  90.8  74.6  88.2  91.6  –  – 
CASIA2 (Liu et al., 2018) ResNet101  93.2  96.0  84.7  89.9  86.7  90.1  91.1  –  – 
V-FuseNet# (Audebert et al., 2018) FuseNet  91.0  94.4  84.5  89.9  86.3  89.2  90.0  –  – 
DLR_9# (Marmanis et al., 2018) –  92.4  95.2  83.9  89.9  81.2  88.5  90.3  –  – 
ABCNet ResNet18  92.7  95.2  84.5  89.7  85.3  89.5  90.7  81.3  72.13 

- means the results are not reported in the original paper. 
# means the DSM or NDSM are used in the network. 
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eqi
T ∙kj ≈ 1+ qi

T∙kj (9) 

To guarantee the above approximation to be nonnegative, qi and kj 

are normalized by the l2 norm, thereby ensuring qi
T∙kj ≥ − 1: 

sim
(
qi, kj

)
= 1+

(
qi

‖qi‖2

)T( kj

‖kj‖2

)

(10) 

Thus, Eq. (5) can be rewritten as Eq. (11) and simplified as Eq. (12): 

D(Q,K,V)i =

∑N
j=1

(

1 +

(
qi

‖qi‖2

)T(
kj

‖kj‖2

))

vj

∑N
j=1

(

1 +

(
qi

‖qi‖2

)T(
kj

‖kj‖2

)) , (11)  

D(Q,K,V)i =

∑N
j=1vj +

(
qi

‖qi‖2

)T∑N
j=1

(
kj

‖kj‖2

)

vT
j

N +

(
qi

‖qi‖2

)T∑N
j=1

(
kj

‖kj‖2

) . (12) 

Eq. (12) can be turned into a vectorized form: 

D(Q,K,V) =

∑
jVi,j +

(
Q

‖Q‖2

)((
K

‖K‖2

)T

V

)

N +

(
Q

‖Q‖2

)
∑

j

(
K

‖K‖2

)T

i,j

(13) 

Since 
∑N

j=1

(
kj

‖kj‖2

)

vT
j and 

∑N
j=1

(
kj

‖kj‖2

)

can be calculated and reused for 

each query, the time and memory complexity of the attention based on 
Eq. (13) is O(dN). For more detailed information on the proposed 
attention mechanism, as well as its validity and efficiency, the reader is 

Fig. 7. Mapping results for test images of Vaihingen tile-27.  
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referred to (Li et al., 2021b). 

2.5. Scaling attention mechanism 

Besides dot-product attention, there exists another genre of tech-
niques referred to as attention mechanisms in the literature. To distin-
guish it from the dot-product attention mechanism, we call them scaling 
attention. Unlike dot-product attention which models global de-
pendencies from feature maps, scaling attention reinforces informative 
features and whittles information-lacking features. For example, Wang 
et al. (2017) proposed a residual attention network (RAN) which in-
troduces the scaling attention mechanism inserted into deep residual 
networks. As a high-capacity structure, the residual attention is mainly 
built on max-pooling layers, convolutional layers, and residual units. In 
contrast, Hu et al. (2018) presented the squeeze-and-excitation (SE) 
module, a lightweight gating mechanism constructed on the global 
average pooling layer and linear layers, to calculate a scaling factor for 
each channel, thereby weighting the channels accordingly. The con-
volutional block attention module (CBAM) (Woo et al., 2018), selective 
kernel unit (SK unit) (Li et al., 2019b) and efficient channel attention 
module (ECA) (Wang et al., 2020) further boost the SE block’s perfor-
mance. Despite both names containing attention, the principles and 
purposes of dot-product attention and scaling attention are entirely 
divergent. 

2.6. Efficient semantic segmentation 

For many practical applications, efficiency is critical, and this is 
especially pertinent for real-time (≥30FPS) scenarios such as autono-
mous driving. Therefore, huge efforts have been made to accelerate 
models for efficient semantic segmentation, by employing lightweight 

operations or down-sampling the input size. The utilization of light-
weight convolutions (e.g., asymmetric convolution and depth-wise 
separable convolution) is a common strategy for designing lightweight 
networks (Romera et al., 2017; Yu et al., 2018). The down-sampling of 
the input size is a trivial solution to speed up semantic segmentation by 
reducing the resolution of the input images, which inevitably results in 
the loss of information. To extract spatial details at the original resolu-
tion, some of the latest methods include a further shallow branch, 
forming a two-path architecture (Yu et al., 2020; Yu et al., 2018). 

3. Attentive bilateral contextual network 

The proposed Attentive Bilateral Contextual Network (ABCNet), as 
well as the components, are demonstrated in Fig. 5. 

3.1. Spatial path 

It is very challenging to reconcile the requirement for spatial detail 
with a large receptive field simultaneously. However, both of them are 
crucial to achieving high segmentation accuracy. Especially, for efficient 
semantic segmentation, mainstream solutions focus on down-sampling 
of the input image or speeding up the network by channel pruning. 
The former loses the majority of the spatial detail, whereas the latter can 
change its character deleteriously. By contrast, in the proposed ABCNet, 
we adopt a bilateral architecture (Yu et al., 2018), which is equipped 
with a spatial path to capture spatial details and generate low-level 
feature maps. Therefore, a rich channel capacity is essential for this 
path to encode sufficient spatial detailed information. Meanwhile, since 
the spatial path focuses merely on low-level details, a shallow structure 
with a small stride is sufficient for this branch. Specifically, the spatial 
path is comprised of three layers as shown in Fig. 5(a). The kernel size, 

Fig. 8. Mapping results for the test images of Potsdam tile-3_13.  
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channel number, stride and padding for each layer is [7, 64, 2, 3], [3, 64, 
2, 1], and [3, 64, 2, 1], respectively. Each layer is followed by batch 
normalization (Ioffe and Szegedy, 2015) and ReLU (Glorot et al., 2011). 
Therefore, the output feature maps of this path are 1/8 of the original 
image, which encodes abundant spatial details resulting from the large 
spatial size. 

3.2. Contextual path 

In parallel to the spatial path, the contextual path is designed to 
provide a sufficient receptive field, thereby extracting global high-level 
contextual information. For segmentation, as the receptive field de-
termines the richness of context, several recent approaches attempt to 
address the issue by taking advantage of the spatial pyramid pooling. 
However, huge computational demand and memory consumption will 

Fig. 9. Enlarged visualization of results on (top) the Vaihingen and (bottom) Potsdam datasets.  
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be brought when expanding the receptive field by a large kernel size. 
Instead, we develop the contextual path with the linear attention 
mechanism (Li et al., 2021b), which considers the long-range contextual 
information and efficient computation simultaneously. 

In the contextual path as shown in Fig. 5(a), we harness the light-
weight backbone (i.e., ResNet-18) (He et al., 2016) to down-sample the 
feature map and encode the high-level semantic information. We deploy 
two attention enhancement modules (AEM) on the last two layers of the 
backbone to fully extract the global contextual information. Besides, a 
global average pooling operation is attached to the tail of the contextual 
path to extract the contextual information, while the obtained features 
are added with the enhanced features generated by AEM2. Thereafter, 
the acquired features are upsampled by scale = 2 to restore the shape. 
Finally, the features obtained by the AEM1 and AEM2 are added and 
then fed into the feature aggregation module (FAM). 

3.3. Feature aggregation module 

The feature representations of the spatial path and the contextual 
path are complementary, but provided in different domains (i.e., the 
spatial path generates the low-level and detailed features, while the 
contextual path provides the high-level and semantic features). Specif-
ically, the output feature captured by the spatial path encodes mainly 
rich detail information, while the information generated by the 
contextual path mostly encodes contextual information. Thus, even 
though summation and concatenation can merge those features (Poudel 
et al., 2019), these simple fusion schemes are less effective to fuse in-
formation in diverse domains (Yang et al., 2021). Here, we design a 
feature aggregation module (FAM) to merge both types of feature rep-
resentation in consideration of the need for high accuracy and 
efficiency. 

As shown in Fig. 5(b), with two domains of features, we first 
concatenate the output of the spatial and contextual paths. Thereafter, a 
convolutional layer with batch normalization (Ioffe and Szegedy, 2015) 
and ReLU (Glorot et al., 2011) is attached to balance the scales of the 

features. Then, we capture the long-range dependencies of the generated 
features using the linear attention mechanism, thereby weighing the 
features selectively. Finally, the weighted features are multiplied and 
added with the balanced features. As both the scales and contributions of 
features are readjusted adaptively, the outputs of spatial and contextual 
paths can be fused effectively. 

3.4. Loss function 

As shown in Fig. 5(a), besides the principal loss function used to 
supervise the output of the entire network, we utilize two auxiliary loss 
functions along the contextual path to accelerate the convergence ve-
locity. We select the cross-entropy loss as the principal loss: 

LCE = −
1
N
∑N

n=1

∑K

k=1
y(n)k logŷ(n)

k (14) 

where N and K are the number of samples and number of classes, 
respectively. y(n) and ŷ(n) with n ∈ [1,⋯,N] are one-hot vectors of the 
true labels and the corresponding softmax output from the network. 
Essentially, ŷ(n)

k depicts the network’s confidence of sample n being 
classified as k. The auxiliary loss functions are chosen as the focal loss: 

LFocal = −
1
N
∑N

n=1

∑K

k=1

(

1 − ŷ(n)
k

)γ

y(n)k logŷ(n)
k (15) 

where γ is the focusing parameter, which controls the down- 
weighting of the easily classified examples, parameterized as 2 in the 
experiments. Hence, the overall loss of the network is: 

L = LCE +Laux1
Focal +Laux2

Focal (16)  

3.5. Network variants 

There are four main parts in our proposed ABCNet, i.e., the contex-
tual path, the spatial path, the attention enhancement module (AEM), 
and the feature aggregation module (FAM). Hence, there are mainly five 

Table 5 
Quantitative comparison results on the Potsdam test set with the lightweight networks.  

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 

ERFNet (Romera et al., 2017) –  88.7  93.0  81.1  75.8  90.5  85.8  84.5  76.2 
DABNet (Li et al., 2019a) –  89.9  93.2  83.6  82.3  92.6  88.3  86.7  79.6 
PSPNet (Zhao et al., 2017) ResNet18  89.1  94.5  84.0  85.8  76.6  86.0  87.2  75.9 
BiSeNetV1 (Yu et al., 2018) ResNet18  90.2  94.6  85.5  86.2  92.7  89.8  88.2  81.7 
BiSeNetV2 (Yu et al., 2020) –  91.3  94.3  85.0  85.2  94.1  90.0  88.2  82.3 
EaNet (Zheng et al., 2020) ResNet18  92.0  95.7  84.3  85.7  95.1  90.6  88.7  83.4 
MAResU-Net (Li et al., 2021b) ResNet18  91.4  95.6  85.8  86.6  93.3  90.5  89.0  83.9 
DANet (Fu et al., 2019) ResNet18  91.0  95.6  86.1  87.6  84.3  88.9  89.1  80.3 
SwiftNet (Oršić and Šegvić, 2021) ResNet18  91.8  95.9  85.7  86.8  94.5  91.0  89.3  83.8 
FANet (Hu et al., 2020) ResNet18  92.0  96.1  86.0  87.8  94.5  91.3  89.8  84.2 
ShelfNet (Zhuang et al., 2019) ResNet18  92.5  95.8  86.6  87.1  94.6  91.3  89.9  84.4 
ABCNet ResNet18  93.5  96.9  87.9  89.1  95.8  92.7  91.3  86.5  

Table 6 
Quantitative comparison results on the Potsdam test set with state-of-the-art networks.  

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) Speed 

DeepLabV3+ (Chen et al., 2018a) ResNet101  93.0  95.9  87.6  88.2  96.0  92.1  90.9  84.3  13.27 
PSPNet (Zhao et al., 2017) ResNet101  93.4  97.0  87.8  88.5  95.4  92.4  91.1  84.9  22.03 
DDCM-Net (Liu et al., 2020) ResNet50  92.9  96.9  87.7  89.4  94.9  92.3  90.8  –  37.28 
CCNet (Huang et al., 2020) ResNet101  93.6  96.8  86.9  88.6  96.2  92.4  91.5  85.7  5.56 
AMA_1 –  93.4  96.8  87.7  88.8  96.0  92.5  91.2  –  – 
SWJ_2 ResNet101  94.4  97.4  87.8  87.6  94.7  92.4  91.7  –  – 
HUSTW4 (Sun et al., 2019) ResegNets  93.6  97.6  88.5  88.8  94.6  92.6  91.6  –  – 
V-FuseNet# (Audebert et al., 2018) FuseNet  92.7  96.3  87.3  88.5  95.4  92.0  90.6  –  – 
DST_5# (Sherrah, 2016) FCN  92.5  96.4  86.7  88.0  94.7  91.7  90.3  –  – 
ABCNet ResNet18  93.5  96.9  87.9  89.1  95.8  92.7  91.3  86.5  72.13 

- means the results are not reported in the original paper. 
# means the DSM or NDSM are used in the network. 
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variants of our ABCNet. 
Baseline: The baseline (denoted as Cp) can be constructed based on 

the contextual path without AEM and FAM, while the backbone is set as 
ResNet-18. The baseline can be utilized as the benchmark to evaluate the 
effectiveness of components in the network. 

Cp þ AEM: In the contextual path, the attention enhancement 
module is designed to capture global contextual information. Hence, a 
simple variant is a contextual path with attention enhancement mod-
ules. The performance of Cp + AEM compared with the baseline will 
illustrate the effectiveness of the attention enhancement module. 

Cp þ Sp þ AEM (Sum) and Cp þ Sp þ AEM (Cat): As abundant 
spatial information is crucial for semantic segmentation, the spatial path 
is designed to provide a relatively large spatial size and extract spatial 
information. Two simple fusion schemes including summation (Sum) 
and concatenation (Cat) can be utilized to merge features. The effec-
tiveness of the spatial path can be validated by merging the spatial in-
formation into the network. 

Cp þ Sp þ AEM þ FAM: Given that the features obtained by the 
spatial and contextual paths are in different domains, neither summa-
tion nor concatenation provides the optimal fusion scheme. The full 
version of the proposed ABCNet is fusing the contextual information and 
spatial information by the feature aggregation module. By comparing 

the accuracy with Cp + Sp + AEM (Sum) and Cp + Sp + AEM (Cat), the 
superiority of the feature aggregation module will be demonstrated. 

4. Eeperimental results and discussion 

4.1. Experimental settings  

a) Datasets 

The effectiveness of the proposed ABCNet was tested using the ISPRS 
Vaihingen dataset and the ISPRS Potsdam dataset (http://www2.isprs. 
org/commissions/comm3/wg4/semantic-label-ing.html). There are 
two types of ground truth provided in the ISPRS datasets: with and 
without eroded boundaries. We conducted all experiments on the 
ground truth with eroded boundaries. 

Vaihingen: The Vaihingen dataset contains 33 images with an 
average size of 2494 × 2064 pixels and a ground sampling distance 
(GSD) of 9 cm. The near-infrared, red, and green channels together with 
corresponding digital surface models (DSMs) and normalized DSMs 
(NDSMs) are provided in the dataset. We utilized ID: 2, 4, 6, 8, 10, 12, 
14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38 for testing, ID: 30 for validation, 
and the remaining 15 images for training. The DSMs were not used in the 

Fig. 10. Illustration of feature mapsgenerated by Cp and Sp, where the input size of the image in the top part is 512 × 512 and 2048 × 2048 in the bottom.  
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experiments. The reference data are labeled according to six land-cover 
types: impervious surfaces, building, low vegetation, tree, car, and 
clutter/background. 

Potsdam: There exist 38 fine-resolution images of size 6000 × 6000 
pixels with a GSD of 5 cm in the Potsdam dataset. The dataset provides 
the near-infrared, red, green, and blue channels as well as DSMs and 
NDSMs. We utilized ID: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 
5_14, 5_15, 6_13, 6_14, 6_15, 7_13 for testing, ID: 2_10 for validation, and 
the remaining 22 images, except for image named 7_10 with error an-
notations, for training. We employed only the red, green, and blue 
channels in the experiments. The reference data are divided into the 
same six categories as the Vaihingen data set.  

b) Training and testing setting 

All the training processes were implemented with PyTorch on a 
single Tesla V100 with 32 batch size, and the optimizer was set as 
AdamW with a learning rate of 0.0003 and a weight decay value of 
0.0025. For the learning rate scheduler, we adopted available Reduc-
eLROnPlateau in PyTorch with the patience of 5 and the learning rate 
decrease factor as 0.5. If OA on the validation set does not increase for 
more than 10 epochs, the training procedure will be stopped, while the 
maximum iteration period is 1000 epochs. For training, we cropped the 
raw images as well as corresponding labels into 512 × 512 patches and 
augmented them via rotating on a random angle (90◦, 180◦, or 270◦), 
resizing by a random scale (from 0.5 to 2.0), flipping by the horizontal 
axis, flipping by the vertical axis, and adding stochastic Gaussian noise. 
The probabilities to conduct those augmentation strategies for a patch 
were set as 0.15, 0.15, 0.25, 0.25, and 0.1, respectively. The compara-
tive benchmark methods selected included the contextual information 
aggregation methods designed initially for natural images, such as 
pyramid scene parsing network (PSPNet) (Zhao et al., 2017) and dual 
attention network (DANet) (Fu et al., 2019), the multi-scale feature 
aggregation models proposed for remote sensing images, including 
multi-stage attention ResU-Net (MAResU-Net) (Li et al., 2021b) and 
edge-aware neural network (EaNet) (Zheng et al., 2020), as well as 
lightweight networks developed for efficient semantic segmentation, 
including depth-wise asymmetric bottleneck network (DABNet) (Li 
et al., 2019a), efficient residual factorized convNet (ERFNet) (Romera 
et al., 2017), bilateral segmentation network V1 (BiSeNetV1) (Yu et al., 
2018) and V2 (BiSeNetV2) (Yu et al., 2020), fast attention network 
(FANet) (Hu et al., 2020), ShelfNet (Zhuang et al., 2019) and SwiftNet 
(Oršić and ̌Segvić, 2021). In the inference stage, we also utilized the data 
augmentation operation including random rotation and horizontal as 
well as vertical flipping which is also known as test-time augmentation 
(TTA).  

c) Evaluation metrics 

The performance of ABCNet was evaluated using the overall accu-
racy (OA), mean Intersection over Union (mIoU), and F1 score (F1). 
Based on the accumulated confusion matrix, the OA, mIoU, and F1 are 
computed as: 

OA =

∑K
k=1TPk

∑K
k=1TPk + FPk + TNk + FNk

, (17)  

mIoU =
1
K
∑K

k=1

TPk

TPk + FPk + FNk
, (18)  

precisionk =
TPk

TPk + FPk
, (19)  

recallk =
TPk

TPk + FNk
, (20)  

F1k = 2 ×
precisionk × recallk

precisionk + recallk
(21) 

where TPk, FPk, TNk, and FNk represent the true positive, false pos-
itive, true negative, and false negatives, respectively, for a particular 
object indexed as class k. The OA was computed for all categories 
including the background class. 

4.2. Experimental results  

a) Ablation study 

To evaluate the effectiveness of the components in the proposed 
ABCNet, we conducted extensive ablation experiments; the setting de-
tails and quantitative results are listed in Table 1. 

Baseline: The baseline was constructed based on the contextual 
path, while the generated feature maps were up-sampled directly to the 
same shape as the original input image. 

Ablation for attention enhancement module: To capture the 
global contextual information, we designed an attention enhancement 
module (AEM) in the contextual path. As presented in Table 1, for two 
datasets, the utilization of AEM (indicated as Cp + AEM) produced an 
increase of greater than 1.4% in the mIoU. 

Ablation for the spatial path: Table 1 demonstrates that even 
simple fusion schemes for merging spatial information such as summa-
tion (represented as Cp + Sp + AEM(Sum)) and concatenation (repre-
sented as Cp + Sp + AEM(Cat)) boosted the performance of the mIoU by 
about 1.8% on Vaihingen dataset, and 0.4% on Potsdam dataset. 

Ablation for feature aggregation module: As shown in Table 1, the 
significant gap in performance (more than 2.4% in the mIoU) demon-
strates the validity of the feature aggregation module (signified as Cp +
Sp + AEM + FAM).  

b) The complexity and speed of the network 

Complexity and speed are important criteria for measuring the merit 
of an algorithm, and this is especially true for practical applications. We 
first compared the computation and memory requirements between the 
linear attention mechanism and dot-product attention mechanism 
which can be found in Fig. 6. 

For a comprehensive comparison, we further implemented the ex-
periments under different settings. A comparison between the parame-
ters and computational complexity of the different networks is reported 
in Table 2. The proposed ABCNet maintained both high speed and high 
accuracy simultaneously. As listed in the last column of Table 2, the 
mIoU on the Potsdam dataset achieved by the ABCNet is at least 2.0% 
higher than the benchmark methods. Meanwhile, the ABCNet was able 
to achieve a 72.13 FPS speed for a 512 × 512 input. The remarkable 
performance of the speed and occupation of memory not only derives 
from the linear attention mechanism but also results from that we only 
utilized the AEM in deeper layers with small spatial dimensionality. 
Besides, the elaborate design enabled the ABCNet to handle the massive 
input (4096 × 4096), while more than half of the benchmark methods 
ran out of memory for a such large input.  

c) Results on the ISPRS Vaihingen and Potsdam datasets 

The ISPRS Vaihingen is a relatively small dataset. All images repre-
sent the same city, such that the statistical characters of the training and 
test datasets are similar (Ghassemi et al., 2019). Therefore, high accu-
racy can be achieved relatively easily by specifically designed networks, 
especially for those that fuse orthophoto (TOP) images with auxiliary 
DSMs or NDSMs. In this section, we demonstrate that the proposed 
ABCNet model using only TOP images with an efficient architecture can 
not only transcend lightweight networks (Table 3) but also achieve 
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highly competitive accuracy compared to specially designed models 
(Table 4). 

As shown in Table 3, the numeric scores for the ISPRS Vaihingen test 
dataset demonstrated that ABCNet delivers high accuracy, exceeding 
other lightweight networks in the mean F1, OA, and mIoU by a signif-
icant margin. Particularly, the ‘‘car’’ class in the Vaihingen dataset is 
difficult to handle as it is a relatively small object. Nonetheless, ABCNet 
produced an 85.3% F1 score for this class, which is at least 4.1% higher 
than for the benchmark methods. In addition, we visualize area 27 in 
Fig. 7 to qualitatively demonstrate the effectiveness of ABCNet, while 
the enlarged results are shown in Fig. 9 (top). 

For a comprehensive evaluation, ABCNet was also compared with 
other state-of-the-art methods. As can be seen in Table 4, as a light-
weight network, the proposed ABCNet achieved a competitive perfor-
mance even compared with those models designed with complex 
structures. It is worth noting that the speed of ABCNet is two-to-seven 
times faster than those methods. 

Furthermore, we undertook experiments on the ISPRS Potsdam 
dataset to further evaluate the performance of ABCNet. Compared with 
the encoder-decoder structure, the bilateral architecture can retain more 
spatial information without reducing the speed of the model (Yu et al., 
2018). The spatial path stacks only three convolution layers to generate 
1/8 feature maps, while the contextual path includes two attention 
enhancement modules (AEM) to refine the features and capture 
contextual information. Numerical comparisons with other lightweight 
methods are shown in Table 5. Remarkably, ABCNet achieved 91.3% 
overall accuracy and 86.5% in mIoU. Visualization of area 3_13 is dis-
played in Fig. 8, and the enlarged results are exhibited in Fig. 9 (bottom). 
As there are sufficient images in the Potsdam dataset to train the 
network, the performance of ABCNet can be equivalent to the state-of- 
the-art methods with a much faster speed. The comparison results are 
listed in Table 6. 

5. Discussion 

The comprehensive experiments undertaken demonstrate the supe-
riority of ABCNet, not only for segmentation accuracy but also effi-
ciency. There are three important factors that guarantee accuracy 
without drastically increasing computational consumption. First, the 
bilateral architecture resolves the contradiction between sufficient 
contextual information and fine-grained spatial detail. The channel 
pruning or input cropping operations are commonly used in the encoder- 
decoder structure to boost inference speed, leading to the loss of low- 
level and spatial details which cannot be recovered easily. In contrast, 
the proposed ABCNet adopts a bilateral architecture, where a spatial 
path extracts low-level features and a contextual path exploits high-level 
features. To demonstrate the difference between the contextual path 
(Cp) and spatial path (Sp) visually, we visualize the feature maps 
generated by the Cp and Sp in Fig. 10. Please note that the features maps 
of are upsampled to restore the shape. As can be seen in the figure, the 
information provided by the contextual path and spatial has indeed 
differences. Specifically, in feature maps of the contextual path, objects 
have a more consistent character with those pixels in the same class. By 
contrast, more detailed information is preserved in the spatial path. 
Meanwhile, the relatively efficient design of the spatial path (three 
stacked identical layers) and contextual path (the ResNet-18 backbone) 
avoids large computational requirements. Second, the attention 
enhancement module balances the trade-off between global contextual 
information and huge calculation complexity. Conventionally, the dot- 
product attention mechanism employed to capture long-range de-
pendencies is accompanied by quadratic increases in time and memory 
consumption with input size. Instead, we harness the linear attention 
mechanism, developed in our previous research, to provide a 
calculation-friendly scheme for global contextual information extrac-
tion. Third, the feature aggregation module merges the spatial features 
and contextual features in an appropriate fashion. The spatial features 

generated by the spatial path are low-level and detailed, while the 
contextual features generated by the contextual path are high-level and 
semantically rich. In other words, the features have entirely different 
semantic meanings. Hence, although a degree of improvement in ac-
curacy can be brought, the simple summation or concatenation opera-
tions are not the optimal feature fusion scheme. The elaborate feature 
aggregation module developed here ensures reasonable fusion and full 
utilization of both sets of features. 

6. Conclusion 

In this paper, we propose a novel lightweight framework for efficient 
semantic segmentation in the field of remote sensing, namely the 
Attentive Bilateral Contextual Network (ABCNet). As both sufficient 
contextual information and fine-grained spatial detail are crucial for the 
accuracy of segmentation, we design the ABCNet based on the bilateral 
architecture which captures simultaneously and adaptively the abun-
dant spatial details in fine-resolution remotely sensed imagery via a 
spatial path and the global contextual information via a contextual path. 
Extensive experiments on the ISPRS Vaihingen and Potsdam datasets 
demonstrate the effectiveness and efficiency of the proposed ABCNet, 
with huge potential for practical real-time applications. Although 
achieving a relatively fine balance between effectiveness and efficiency, 
the speed of the proposed ABCNet has a certain room for improvement, 
especially when compared with those single-branch lightweight net-
works. As the contextual path occupies the majority of parameters and 
complexities, our future work will focus on further optimizing the 
contextual path of the ABCNet, especially to design an efficient Trans-
former backbone using our linear attention mechanism, thereby 
replacing the original ResNet backbone with this novel structure. 
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