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Abstract 
 
Water quality in lowland rivers is sensitive to changes in flow during summer dry periods, when high 
temperatures and low pollutant dilution are problematic and may reduce oxygen concentrations to 
levels of ecological concern. A 10-year period of monitoring data was collated for a typical small 
lowland UK river. Two hourly-resolution applications of a process-based water quality model 
(QUESTOR) were made, with and without local knowledge, to establish whether specific information 
on stream channel hydraulics is an essential precursor to successful simulation. Results showed this 
information to be necessary, with considerably better goodness-of-fit statistics obtained when the 
local knowledge was used. In this regard, mean improvements in Nash-Sutcliffe Efficiency across all 
monitoring sites were from -0.33 to 0.18 and from 0.24 to 0.78 for dissolved oxygen and water 
temperature respectively. Percent bias was within 10% for the local model. The 10-year record also 
allowed a detailed characterisation of how changes in flow, as described by a comprehensive range of 
Indicators of Hydrological Alteration, relate to the water quality determinants. Analysis revealed these 
dynamics were also captured more realistically when the model was driven by local knowledge. The 
research concludes that river dissolved oxygen simulations driven by national-level information are of 
some value as screening tools, but model refinement supported by sufficient provision of local 
information is necessary when detailed simulations are required to support specific decision-making. 
 
Keywords: dissolved oxygen, water temperature, river, hydraulics, water quality model, local 
knowledge 
  
1. Introduction 
 
Although the adverse overall effects of organic pollution and thermal stress on river dissolved oxygen 
(DO) are long known, uncertainties remain in the complex understanding of detailed process response 
to enable future prediction (Utz et al., 2020) which hampers the effectiveness of riverine 
management. Low oxygen conditions may be prevalent even in lowland rivers not experiencing high 
nutrient loads (Carter et al., 2021). In this context accurate modelling of DO dynamics in rivers is 
challenging, in as well as requiring information supporting simulation of nutrient concentrations it also 
requires reliable simulation of metabolism, physical reaeration and stream temperature in stream 
channels (Jankowski et al. 2021).  
 
There is much welcome effort being invested in increasing the spatio-temporal extent of water quality 
model applications, but at the same time there is a danger of losing sight of the need for accurate and 
detailed models incorporating correct sensitivity to driving factors (Hrachowitz et al. 2014; Tang et al. 
2019). When underpinned by a rigorous catchment hydrological model, nutrient dynamics and 
primary productivity can be simulated using information about climate, catchment land use and 
network riparian condition obtainable via GIS-based datasets. Therefore, geographically-extensive 
applications are achievable based upon nationally-available data resources (Abbaspour et al. 2015; 
Bell et al., 2021). In comparison however, the prospects for acceptable DO simulation using national-
level approaches are more doubtful. In their review of commonly-used process-based DO models, 
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Kannel et al. (2011) conclude that a single model cannot readily cover the range of functionalities 
required for different scales of application. More recently, in reflection of this difficulty there has been 
increasing focus on developing statistical DO models, in particular for large rivers, often using artificial 
intelligence (e.g. Csabragi et al., 2017). These can perform well using nationally-extensive low 
frequency water quality and runoff data, but as underlying mechanisms are not represented, correct 
sensitivity in predicting detailed response to change cannot be established. 
 
The variables necessary for directly calculating DO cannot be derived from GIS-based datasets alone. 
Firstly, these variables include components to stream metabolism additional to those controlled by 
primary producers. Being related to organic carbon characteristics and sediment properties, 
estimation of these additional heterotrophic respiration fluxes has, despite recent technical advances, 
largely eluded research effort. Even if now known, this information is limited and spatio-temporally 
sporadic. Secondly, accurate simulation of the variability of reaeration within river networks needs 
detailed characterisation of river hydraulics. Although rough approximations can be made using 
information derived from climate and topography, 1-D models based on such data sources cannot 
capture local hydraulic variation. Drawbacks related to insufficient segmentation of river stretches 
when treated as sequences of well-mixed compartments are recognised (Warren et al., 2005). 
Detailed information about channel heterogeneities and the dimensions and operation of flow control 
structures and site-specific data and analysis represents “local knowledge”. This local contextual 
information is unlikely to be held in national databases and only accessible through local stakeholder 
interaction and site visits. 
 
To put the likely level of need for local knowledge in context, the implications of some key structural 
aspects of water quality models used for large-scale application are highlighted:  

 The method of model spatial discretisation determines how precisely sources of pollutants are 
advected, dispersed and transformed. Models use hydrological sub-catchment response units and 
the location of individual influences related to specific reaches of differing length (e.g. SWAT 
(Abbaspour et al., 2015), INCA (Jackson-Blake et al. 2016), QUAL2K (Pelletier et al. 2006)) or are 
based on regular grids (e.g. LTLS (Bell et al., 2021)).  

 Flow routing is derived ultimately from climate data and Digital Elevation Models. From these data 
sources, 1-D process-based models (e.g. QUESTOR, QUAL2K, INCA and SWAT) typically use 
combinations of the Manning equation and Leopold-Maddox non-linear functions to relate 
discharge to velocity, depth and width assuming either rectangular or trapezoidal channel cross-
sections. In particular, for DO the crucial consequence is whether or how the information is 
modified for model application using local knowledge. This is especially relevant as models applied 
in heavily modified urban channels employ such approaches (e.g. DUFLOW (Moreno-Rodenas et 
al. 2019)).  

 Simulating water temperature is a fundamental precursor to accurate representation of in-river 
processes and is typically estimated empirically from air temperature (e.g. Mohseni and Stefan 
1999; Benyahya et al., 2007). With access to (1) sub-daily solar radiation and (2) high resolution 
remote sensing imagery to capture riparian shade (e.g. Bachiller-Jareno et al. 2019), successful 
water temperature simulations using process-based approaches including those incorporating 
energy balance calculations are achievable (Dugdale et al., 2017) and can greatly benefit water 
quality simulation, in particular for modelling DO at daily or sub-daily timesteps.  

 
To demonstrate the unique challenges of achieving spatially extensive, yet detailed and accurate, 
simulations of water temperature and DO in river networks, we present a case study of the River 
Deben, a small lowland river in East Anglia, UK. The river suffers from periodically chronic DO depletion 
due to oxygen demand in bed sediments related to biotic activity (Parr and Mason, 2003). Our 
objectives are to simulate hourly water quality dynamics over a 10-year period at successive sites 
along a river profile using the pseudo-1-D QUESTOR river eutrophication model (Pathak et al., 2021). 



We hypothesise that DO dynamics can be simulated satisfactorily using data and information stored 
in national-level datasets. To test the hypothesis we run the model twice, with and without local 
knowledge beyond what is readily available online. If supported this would suggest that spatially 
extensive simulation of DO and prediction of its response to future change is achievable. The river 
hydrological regime is a primary control on water quality and is very sensitive to drivers of natural and 
anthropogenic variability and change. By considering relations between simulated water quality and 
indices of hydrological alteration (IHA) (Richter et al., 1996), we then compare with observed water 
quality to explore the extent to which the two models are correctly sensitive to hydrologically-induced 
change over the 10-year period. By comparison with observed data in light of model performance we 
consider wider implications through discussing the extent to which local knowledge is necessary for 
successful model application.   
 
Structurally, first we describe the QUESTOR model and the case study river; and we define QUESTOR 
applications and derivation and use of IHAs (Section 2). Then in Section 3 we present results and 
summarise key findings. Interpretation of the findings follows in Section 4, reflecting on the value of 
local knowledge, discussing the importance of correctly representing water quality in low flow 
conditions, and identifying priority areas for model improvement. 
     
2. Method 
 
2.1. Model description 
 
QUESTOR (Quality Evaluation and Simulation Tool for River Systems) is a 1-D model of the river 
network representing processes controlling eutrophication and the consequences thereof (Hutchins 
et al. 2016). It consists of a set of reaches bounded by influences (weirs, abstractions, effluents, 
tributary rivers). To determine flow routing the reaches are defined of constant-width and variable-
depth. Travel time, water depth and discharge are related using non-linear equations and reach-
specific information on riverbed condition (Manning’s N estimation) and gradient. By linking flow 
routing to biochemical processes (as continuously stirred tank reactors) the reach structure represents 
advection and dispersion. Biologically QUESTOR represents primary producers in terms of 
phytoplankton transported along the system (with the possibility to include plants and benthic algae). 
Diffuse inputs are represented by observations, process-based rainfall-runoff/diffuse pollution models 
or simple statistical models. Solar radiation inputs control water temperature and primary production. 
 
2.2. Site description and model setup 
 
The River Deben in Suffolk (UK) (Figure 1) drains a small lowland catchment of 163 km2 (as defined at 
Naunton Hall gauging station (NRFA ID 35002) National Grid Reference 6322 2534). The catchment is 
predominant arable (79%), of low relief (maximum altitude 66 mOD) and overlays a mixture of 
moderately-permeable clay and permeable chalk bedrock. 
 
The QUESTOR model of the River Deben comprises a 27.7 km slow-flowing stretch of river between 
the A1120 road bridge (a few kilometres downstream of the town of Debenham) and Ufford Bridge 
split into 13 reaches. Along this stretch there are five sites with flow and/or water quality observations. 
Notable amongst these are the flow gauging stations at Naunton Hall and Brandeston (3.3 and 20.8 
km upstream of Ufford Bridge respectively) and the continuous water quality monitoring site at 
Sanctuary Bridge (Letheringham) (16.1 km upstream of Ufford Bridge). 
  
Seven surface water tributaries are represented. Of these, the main influences from tributaries are: 
the main Deben and the Earl Soham tributary (which are both influenced by sewage effluent discharge 
and augmentation to flow from a borehole) in the upper reaches and Potsford Brook and Byng Brook.  



 
Data to support modelling were supplied for 2010-2019 from national Environment Agency (EA) 
monitoring programmes. The monitoring shows the river to be vulnerable to low DO during summer. 
Of 71 observations at Brandeston, 6 fell below 6 mg DO L-1. The earlier part of the period (2010-15) 
had relatively more comprehensive data coverage in tributaries and along the river from grab 
sampling. Solar radiation was obtained from the nearby Wattisham station and moderated by 
estimates of riparian canopy coverage. The estimates of riparian shade have been made using google 
earth imagery as shown to be realistic in other QUESTOR studies (e.g. Bachiller-Jareno et al 2019; 
Waylett et al. 2013). Apart from flow and water temperature which did not require calibration, the 
model was fitted using a process of sequential downstream site-by-site calibration for the 2010-2013 
period and tested for 2014-2019. Model performance was assessed using the Nash-Sutcliffe Efficiency 
criterion (NSE: Nash and Sutcliffe 1970) and the percentage error in mean (PBIAS).  
 
The model was applied at hourly resolution. A description of model determinants, processes and 
equations is provided in Appendix A. A biological component based on assumption of phytoplankton 
biomass being dominated by cool water diatoms (Equation A1) was chosen as it gives good 
performance in relation to hourly data from the lower River Thames (Pathak et al., 2021). 
 
2.3. Model applications 
 
Using the above information (Section 2.2) as a basis on which to form the bounds and data supply for 
the model, two applications were set up. The methods and supporting data sources described below 
are summarised in a table (Appendix A, Table A1). 
 
A first application (“Basic” Model) was made without the benefit of the local knowledge. As the local 
knowledge related primarily to definition of channel morphological characteristics known to have a 
strong bearing on determinants directly related to consequences of eutrophication (DO, BOD, 
chlorophyll-a), only those biogeochemical parameters related to nitrogen and phosphorus species 
underwent site-by-site calibration. Other QUESTOR modelling studies of similar-sized rivers in lowland 
UK (Hutchins et al., 2020; Pathak et al., 2021) were used to help inform river hydraulic parameters and 
to estimate (i) the ratio of rates of water column to benthic respiration (ii) parameters related to 
phytoplankton dynamics. Total heterotrophic respiration was estimated in two alternative ways: 
“Basic (a)” by assuming rates typical of the other similar-sized rivers (0.5 d-1 and 0.2 d-1 for water 
column and benthic respiration respectively); and “Basic (b)” based on fitting in the calibration period 
the PBIAS for data aggregated across all sites. Fractional light penetration (FP) values were based on 
aerial photographic estimates of occupancy by riparian canopies, assumed to block 100% of direct 
sunlight. 
 
A second application (“Local” Model) was set up with the benefit of local knowledge used to provide 
additional information to guide the process. Continuous water quality monitoring by local EA staff at 
Sanctuary Bridge was made available for part of the validation period (2018-2019) and therefore aided 
model testing. Due to the influence of the chalk aquifer on catchment hydrology and water resources, 
groundwater discharge contributions were included in the middle reaches. River hydraulic parameters 
were defined using satellite imagery, DTM, river level data, photographs of control structures and 
qualitative observations of channel condition in late spring. Agricultural abstraction and sewage 
treatment works effluent were included and characterised using local EA records. Canopy fractional 
penetration (FP) estimates were modified upward based on local photographic observations 
suggesting significant light penetration to the water surface.  
 
2.4. Indicators of hydrological alteration 
 



For each of the two flow gauging stations, there are three data sets of water flow. They are observed 
flow and simulated flow from both “Basic” Models and the “Local” Model. For better understanding 
the flow regime and the environmental flow, we applied the Indicators of Hydrological Alteration (IHA) 
to describe the variation of discharge. These biological-related hydrological indicators were proposed 
by Richter et al. (1996) for assessing hydrological alteration in river networks, and accepted world-
wide for making linkages with water quality and ecological influences (Olden & Poff, 2003; Schneider 
et al., 2013; Guo et al. 2020; Valerio et al., 2021). IHA contain five hydrological dimensions of 
parameters, which characterize the flow regime from its magnitude, frequency, rate of change, 
duration and timing. 

 

In this study, we computed two kinds of IHA. Average daily flows were used as a basis for calculating 
the indicators. The first matrix of 67 indicators (annual IHA) was exported from the IHA software 
developed by the Nature Conservancy (2009); covering monthly mean flow, magnitude and duration 
of annual extreme flow, timing of annual extreme events, frequency and duration of high and low 
pulses, and rate and frequency of flow condition changes (Appendix B, Table B1). The second matrix 
of indicators (short-term IHA) was modified from the annual set in order that flow events happening 
in defined periods (i.e., 3, 7, 14, 21 days before each specific water quality sampling date) can be 
emphasized. Together, 17 hydrological parameters (Appendix B, Table B2) cover the three dimensions 
of flow regime (magnitude of flow events, frequency of flow events, and rate of change in flow events).  
 
3. Results 
 
3.1. Model performance 
 
Optimised parameters are listed for the two models (Appendix C, Table C1). When using default values 
for heterotrophic respiration taken from similar-sized lowland rivers, the “Basic (a)” model gave very 
poor performance, greatly overestimating the low DO values (for all sites: 19% < PBIAS < 22%). The 
alternative approach to parameter estimation (b) was therefore adopted for the remaining analysis, 
from now on referred to as the “Basic” model, as PBIAS and NSE were much improved (Figure 2). For 
two months in Spring 2011 the river was incorrectly simulated to dry up, a consequence of not using 
local knowledge to inform setup. Data from this period were omitted from all analysis. 
 
Whilst both models simulated river discharge comparably, local knowledge informing hydraulic 
representation greatly influences river residence time and water level fluctuations. Over a 29 month 
period commencing in August 2017, median and 10th percentile water levels at Letheringham Mill 
(14.5 km upstream of Ufford Bridge) were 0.73 and 0.67 m respectively. This small variation was 
reflected by both the “Local” model (0.45 and 0.40 m respectively for median and 10th percentile) and 
the “Basic” model (0.13 and 0.10 m respectively for median and 10th percentile). It was to be expected 
that water level observations would be higher than simulated estimates due to substantial submerged 
macrophyte presence, which are not accounted for in the model. However, although the “Local” 
model appears to simulate acceptable water levels, the “Basic” model simulations are clearly 
unrealistically low. 
 
The “Local” model also performed considerably better than the “Basic” model for all water quality 
determinants (Appendix C, Table C2) and simulated most water quality determinants with little bias. 
Overall levels of nitrate, ammonium, DO and temperature were modelled acceptably (PBIAS < 20% at 
all sites). In contrast, the “Basic” model had overall tendency for underestimation. The exception is 
SRP which was substantially overestimated at all sites by both models (“Local” model PBIAS: 13-121%). 
The largest mismatches were in the autumn. Reliable chlorophyll-a data were not available and could 
only be inferred indirectly from nutrient, oxygen and BOD dynamics. The “Local” model correctly 
simulated depletion of nutrients in the early summer and simulated BOD at Brandeston over a 6 year 



period (>300 measurements) with minimal bias (PBIAS = 0.5%). In comparison the “Basic” model 
greatly underestimated BOD (PBIAS value of -82% (or -52% under the “Basic (a)” application)) at 
Brandeston and gave much greater overestimation of SRP (PBIAS: 146-330%). In summary, in terms of 
mean levels across all monitoring sites, the percentage improvement in PBIAS gained over the 10 year 
period by invoking the “Local” model was 18%, 55%, 66% and 47% for temperature, nitrate, SRP and 
DO respectively.  
   
In terms of PBIAS and NSE criteria the benefits gained by including local knowledge and how the level 
of improvement varies along the river is shown for water temperature and concentrations of nitrate 
and dissolved oxygen (Figure 2). The “Basic” model does not provide values of NSE above zero for DO, 
suggesting that based on nationally-available data alone the model cannot provide an adequate 
simulation in systems of this type. The inclusion of local knowledge resulted in much better 
representation of time-series response (NSE) for temperature and DO. There was also improvement 
for nitrate, although this was only moderate as the “Basic” model shows good performance in this 
respect. Whilst overestimation of SRP was more acute in upstream reaches, performance of the 
“Local” model generally declined slightly downstream, possibly due to increasing uncertainty in local 
knowledge in particular regarding volumetric contributions to river flow. Differences between the 
performance of the two models and its variation between sites is shown for DO and water 
temperature (Figure 3). For temperature, compared to the “Basic” model, there is less scatter in 
“Local” model performance. At Naunton Hall there is less bias (i.e. less underestimation). The “Basic” 
model failed to represent variation in DO either sufficiently or correctly, a shortcoming less apparent 
for the “Local” model. 
 
3.2. Detailed assessment of response in data and models 
 
The differences in model performance as evaluated by comparison with hourly data at Sanctuary 
Bridge show the “Local” model to perform better than the “Basic” model (Figure 4). The “Local” model 
better captures the extent of diurnal cycling. Both models have a tendency to underestimate late 
summer and autumn water temperatures. 
 
The oxygen holding capacity of water is reduced under increasing water temperature and theoretically 
this will lead to inverse relationships in natural river waters. Whilst this appears the overriding control 
at Brandeston Bridge as represented in the “Basic” model, it does not reflect observations (Figure 5). 
A more complex relationship is revealed by the data, suggesting the influence of other factors on DO 
concentration not related to temperature. This subtlety is only captured in the “Local” model.   
 
At Brandeston Bridge and Naunton Hall, where flow data from gauging stations are available, water 
quality response (Temperature and DO) was assessed in terms of indicators of hydrological alteration 
(IHA). The degree to which the two models capture relationships at an annual level between IHA and 
typical summer water temperatures (90th percentile) is shown (Figure 6). For the “Local” model there 
is better agreement with observations for the majority of indicators, as demonstrated by many points 
plotting much closer to the 1:1 line than for the “Basic” model. There were insufficient DO data. 
 
In addition, short-term response was investigated. A set of Short Term IHAs were each regressed in 
turn against instantaneous water temperatures and DO concentrations and the strength of 
relationships analysed statistically. These relationships were compared between those derived from 
observed data, and from simulations at all corresponding time points using both “Basic” and “Local” 
models. The types of relationship observed between IHA and water temperature are clearly better 
reproduced by the “Local” model (Figure 7) and the correlation coefficients are in closer agreement. 
The process when repeated for DO revealed similar results, although there are fewer observed data. 
At Naunton Hall, the majority of IHA indicators result in disagreement in the direction of relationship 



between observed and “Basic” model simulation (opposite sign of r value). When using the “Local” 
model there is much better agreement.  
 
4. Discussion  
 
4.1. Improvements in model performance achieved through local knowledge 
 
Comparison of results from the “Basic” and “Local” models with observations demonstrates the 
improved performance gained for a range of determinants by including local knowledge in model 
setup, almost exclusively manifested in terms of a more realistic representation of river hydraulics. Of 
the sources of local knowledge previously outlined (Table A1), those that have specifically enabled 
better model performance are as follows: 

 Groundwater modelling (Environment Agency, 2019) and British Geological Survey monitoring 
(Shand et al., 2007) informed estimation of groundwater discharges and water quality signatures 
in middle reaches flowing through areas underlain by chalk.  

 Local information about water use for agriculture and groundwater pumping to augment river 
flow provide more informed estimates of abstractions along the river channel and tributary flow 
estimates respectively.  

 Geo-referenced photographs of weirs and mill gates allowed artificial influences on reaeration to 
be estimated more accurately. Typically “Basic” modelling can only include default values for an 
incomplete subset of all structures that are included on OS digital data sets.  

 Continuous water level data provided by local EA staff, which allowed better specification of river 
hydraulic parameters. 

 Photographs of river condition enabled a better specification on a reach-specific basis of widths, 
roughness and hydraulic parameters, alongside better estimation of light penetration through 
riparian tree canopies. 

 
Applying local knowledge has resulted in better simulation of water temperature, a variable 
fundamental in controlling water quality dynamics. The considerable mismatches in the “Basic” model 
as demonstrated by scatter in Figure 3, is considerably reduced when using the “Local” model. With 
local knowledge good fits are achieved in November to April periods whereas without it there is 
underestimation. Underestimation is still apparent during the summer, for which the reasons are 
unclear but could be attributable to model input uncertainties concerning either shading effects or 
estimated groundwater temperature. By achieving a more realistic representation of the response of 
water level to change in flow inputs and consequent representation of velocity, the “Local” model 
reflects diurnal temperature fluctuations well (Figure 4). The “Basic” model greatly overestimates such 
fluctuations. 
 
There is uncertainty in autotroph response in the Deben system due to lack of representative 
chlorophyll-a data. Observations of BOD at Brandeston Bridge in the first half of the study period when 
coupled with DO give indirect evidence of phytoplankton growth and decay. Consequently, the “Local” 
model application achieved BOD simulations with minimal bias whereas the “Basic” model greatly 
underestimated BOD. Concentration of nitrogen species were largely simulated acceptably by both 
models (Table C2, Figure 2). Overestimation of SRP was apparent throughout the network, especially 
in upper reaches, most acutely in late summer, and by both “Local” and “Basic” models (Table C2). As 
sources are comprehensively accounted for in the “Local” model, the implication is that in-channel 
uptake fluxes not represented in model structure are important. Plausible mechanisms of in-channel 
uptake are abiotic (co-precipitation with calcite or adsorption to sediment) or biotic (macrophyte 
uptake). Significant abiotic SRP uptake has not been consistently identified from a synthesis of river 
modelling studies (Jackson-Blake et al. 2017). Photographic evidence shows macrophytes to be 



plentiful in the upstream Deben, but quantifying their impact on nutrient levels is not straightforward 
due to difficulties in making representative biomass estimation.  
   
Simulation of DO is improved when using local knowledge (Table C2, Figure 2). Notably, the “Basic” 
model fails to represent the apparent complexity of influences on DO beyond the fundamental 
temperature control (Figure 5). In this respect the “Local” model provides clear improvement, yet 
whilst levels are generally simulated acceptably it is clear that the variation in DO (not captured by the 
“Basic” model) is still not represented sufficiently or accurately (Figure 3). At Sanctuary Bridge, DO is 
overestimated (PBIAS = 29%) especially in summer (see Section 4.3).  
 
Although the overestimation of SRP might imply problematic consequences in terms of overall water 
quality simulation, DO is not directly affected by SRP in the Deben. Here, observed SRP are above a 
level where it becomes limiting for phytoplankton growth which would have consequences for DO. 
Other studies of systems transitioning from heterotrophic to autotrophic control have found DO 
response to be insensitive to phosphorus. Using Boosted Regression Tree approaches in the Thames, 
Pathak et al. (2021) found primary productivity and eutrophication impacts to be insensitive to 
nutrients. Likewise Wang et al. (2018) made similar conclusions from process-based model sensitivity 
analysis in situations of excess nutrient supply.  
 
4.2. The importance of understanding flow controls on water quality in dry periods 
  
Water quality in lowland river systems such as the Deben is especially sensitive to changes in flow 
during dry periods (Mosley, 2015). In this context, environmental regulators recognise the fine balance 
needed between river quality considerations, maintaining groundwater resources and supporting 
agricultural activity (Defra, 2019). Consequently much focus is given to the implications of river flow 
augmentation and inter-basin transfers. Therefore relationships between the suite of IHAs and 
measures of water quality response provide important contextual information of the mechanisms 
operating in these systems.  
 
Realistic capture of relationships between determinants represents a fundamental measure of the 
worth of the respective model applications. From the interpretation of correlation coefficients based 
on multi-year datasets (Figures 6 and 7) it is clearly demonstrated that the “Local” model better 
represents strength of correlations between water quality and hydrological indicators than the “Basic” 
model. This finding is consistent and robust across a range of IHAs both for individual (short-term IHA) 
and aggregated (annual IHA) categories. As IHAs were normalised between the categories it is 
noteworthy that IHAs relating to flow magnitude are more strongly correlated with water temperature 
at an aggregated level than at an individual level. Frequency-related IHAs show higher correlations at 
the individual level. Rate of change IHAs rarely show high correlation. The analysis was performed for 
fundamental integrated indicators, namely water temperature and DO, whose inter-relationships are 
clearly also better represented by the “Local” model (Figure 5). However, it is also clear there is still 
considerable mismatch; and possibilities for rectifying these problems are explored below. 
  
4.3. Needs for and prospects for further improving DO simulation 
 
At Sanctuary Bridge very low oxygen levels were observed from a continuous monitoring system (10th 
percentile DO values of 2.83 and 1.12 mg/L in 2018 and 2019 respectively). Various possible reasons 
why both models overestimated these low values, which could potentially be rectified within the 
existing structure, were investigated: (1) much lower levels of DO in groundwater than suggested by 
Shand et al. (2007), (2) accelerated benthic algal and macrophyte growth throughout reaches which 
could reconcile the SRP overestimation and, through undesirable eutrophic consequences, deplete 
the DO, (3) slower-flowing deeper river channel. By making appropriate model adjustments, the first 



two were shown to have no discernible effect whereas the third only reduced mismatch if waters were 
implausibly slow-flowing and deep (> 5m). 
 
Other potentially plausible explanations exist but their exploration extends beyond the specific issues 
at Sanctuary Bridge and also beyond the overall scope of the QUESTOR model. They thereby also cover 
wider considerations beyond the case study and highlight both shortcomings and opportunities for 
further improving water quality models:  

 Sluice-controlled damming of rivers can result in flow stagnation and periods of low DO in specific 
locations. 

 Localised abundant submergent vegetation can contribute to reduction in flow velocity and a 
supply of BOD towards the end of the growing season. Reaches with elevated macrophyte biomass 
may show higher gross primary productivity (GPP) and ecosystem respiration (ER) than elsewhere 
(Alnoee et al. 2021). In the Deben however, although Sanctuary Bridge DO data implies high ER 
there is no evidence of elevated GPP.  

 Assumptions underpinning simple 1-D model structures may lead to difficulty representing the 
hydraulic conditions to which water quality is very sensitive. 

 Allowance should be made that rather than reflecting the main channel, measurements may 
represent dead zones of markedly reduced flow conveyance. Such areas of limited main channel 
mixing are possibly influenced by anoxic bed sediment environments. 

 In addition to supply from upstream sewage effluent solids, very high levels of benthic respiration 
may locally arise from abundant overhanging vegetation supplying organic matter. In the Deben 
application, high levels were nevertheless inferred in the “Local” model, and a further increase 
revealed little additional reduction in simulated DO. Quantifying benthic respiration is highly 
uncertain due to difficulties in measurement (Hutchins et al., 2020). Novel methods incorporating 
aquatic eddy covariance (Berg et al. 2003) can provide a step-change in understanding at a local 
level but are time-consuming and an expensive investment. 

 
With sufficient access to local knowledge many of these challenges can likely be overcome using 2-D 
approaches (e.g. Knightes et al. 2019). Alternatively, aggregated dead zone models employed to 
improve simulation of pollutant dispersion (e.g. Lees et al., 2000) might be adapted to better capture 
local variability in DO. 
   
5. Conclusions 
 
Evidence from a modelling study of the River Deben (UK) suggests that although a process-based 
water quality model (QUESTOR) driven solely by national-level data sources can likely simulate 
nutrient concentrations acceptably in such environments it cannot achieve satisfactory results for DO. 
A clear improvement in performance is obtained when specific local knowledge of hydrology and flow 
routing is included to inform the model application. Improvements were shown to arise from efforts 
to identify (i) dam operations, (ii) dead zones, whose significance can be pinpointed from detailed 
meta-data from the monitoring programme, and (iii) macrophyte prevalence. 
 
The implications of the study are wide-ranging. In shallow slow-flowing rivers in dry lowland areas of 
flat terrain, processes controlling water temperature and DO are very sensitive to changes in flow 
regime during low flow periods in summer. The Deben is typical of such a river found in south-eastern 
UK and, as is often the case, the challenges are exacerbated by macrophyte overgrowth in channels 
and flow regulation. Unsurprisingly, findings from the Deben study reveal patchy model performance 
(Section 4.1), poorer than that achieved by QUESTOR in larger lowland rivers such as the Thames 
(Pathak et al., 2021), and an inability to fully reconcile changes in flow with changes in water quality 
(Section 4.2). The findings demonstrate that insufficient contextual information behind water quality 



observations can still hamper model performance and the observations necessary to support 
improvements can remain elusive. 
 
For investigating DO response, challenges associated with characterising river hydraulics, representing 
benthic environments and quantifying the influence of macrophytes mean that national-scale water 
quality model structures are best used as screening tools. Greater caution is needed for more detailed 
simulation, which would benefit from the considerations and recommendations outlined in Section 
4.3. Overall, detailed local knowledge leads to better water quality simulation and can support model 
improvements and lead to improved process understanding. Whilst this provides greater insights and 
confidence for management decisions, the greater information requirements are challenging for 
conducting national-scale assessments. Frameworks that facilitate screening and increasingly refined 
modelling, proportional to local problems, allow more appropriate management solutions to be 
developed. 
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Figure 1: Location map of River Deben (Suffolk, UK), showing extent of the model system. Locations 
of tributaries mentioned in the text: (1) Deben, (2) Earl Soham tributary, (3) Potsford Brook, (4) Byng 
Brook. 
  



 
Figure 2: Level of improvement gained during the validation period (2014-2019) in terms of NSE (Nash-
Sutcliffe Efficiency) and PBIAS (percent error in mean) when switching between basic model (start of 
arrow) and model incorporating local knowledge (end of arrow) for simulation of three determinants 
(temperature, nitrate and dissolved oxygen). The “X” marks optimal location with zero errors. For DO 
the arrows represent the change from “Basic (a)” to “Local” with the mid-point (break-point) 
representing “Basic (b)”. DO at Sanctuary Bridge not shown as PBIAS >25 (Table C2): see Section 4.3. 
  



Figure 3: Scatterplots relating observed and simulated water quality with best fit regression lines and 
95% confidence intervals. Graphs cover the “Basic” model (a-d) and the “Local” model (e-h): water 
temperature at (a) Brandeston Bridge (b) Naunton Hall, DO at (c) Brandeston Bridge (d) Naunton Hall, 
water temperature at (e) Brandeston Bridge (f) Naunton Hall, DO at (g) Brandeston Bridge (h) Naunton 
Hall. 
  



Figure 4: Time-series plots of observed and simulated hourly water temperature at Sanctuary Bridge 
for (a) 2018 and (b) 2019. 
  



Figure 5: Relationships between water temperature and DO with best fit line and 95% confidence 
interval for (a) paired observations, (b) paired “Basic” model simulations (c) paired “Local” model 
simulations. Points plotted for simulations at all times when paired observations available. 
  



 
Figure 6: Plot of paired correlation coefficients derived by observations and simulations. Correlations 
relate annual IHAs and annual 90th percentile water temperature for each of the 10 years (2010 -2019). 
Points are discriminated by model application (“Basic” or “Local”) and by categorical type of IHA. Data 
are pooled from Brandeston Bridge and Naunton Hall. 
  



 
 
Figure 7: Plot of paired correlation coefficients derived by observations and simulations. Correlations 
relate short term IHAs with instantaneous 2010-2019 water quality representing (a) water 
temperature at Brandeston Bridge (b) water temperature at Naunton Hall, (c) DO at Brandeston Bridge 
(d) DO at Naunton Hall. Points are discriminated by model application (“Basic” or “Local”) and by 
categorical type of IHA. 
 
  



Supplementary Material 
 
Appendix A. Theoretical basis to QUESTOR and information requirements 
 
QUESTOR simulates  Chlorophyll-a (Phytoplankton), Biochemical Oxygen Demand (BOD), Dissolved 
Oxygen (DO), Inorganic (P-in, equating to soluble reactive fraction) and Organic Phosphorus, Nitrate, 
Particulate Organic Nitrogen, Ammonium, pH, Temperature, Flow and  Photosynthetically-Active 
Radiation in the water column. Processes that the QUESTOR model represents are aeration, BOD 
Decay, Deamination, Nitrification, Denitrification, Benthic Oxygen Demand, BOD Sedimentation, P 
Mineralisation, in conjunction with a biological sub-model of Phytoplankton (comprising Growth, 
Respiration and Death), which includes nutrient uptake and release. To simulate the hydrological and 
chemical variables the configuration of QUESTOR as described by Boorman (2003) was used. The full 
sets of equations used are given elsewhere (Boorman, 2003) so only those equations directly 
impinging on phytoplankton and DO concentrations are given here. 
  
With the exception of phytoplankton growth (see Equation A.1) temperature dependencies are based 
on the Arrhenius equation whereby: 
k = kref θ (T-Tref) 
Tref = 20 °C 
θ = Arrhenius factor for temperature dependencies (θ =1.08) 
 
A.1. Phytoplankton model 
 
Biomass is linked to Chl-a using a fixed stoichiometry model with the ratio Chl-a:C:N:P of 1:50:10:1.  
 
Equation A.1: Shows the photosynthetic rate with respect to biomass and temperature. An optimal 
temperature model for cool water diatoms (with “opt” and “range” parameters) is used: 
 

𝑘𝑝ℎ𝑜 = 𝑃ℎ𝑦. 𝑘𝑟𝑒𝑓
𝑝ℎ𝑜

. 𝑒(−(𝑇 − 𝑜𝑝𝑡)2/𝑟𝑎𝑛𝑔𝑒2). 𝑓(𝑁). 𝑓(𝐿) 

 
kpho = Photosynthesitc rate (day-1),  
Phy = Concentration of Chl-a (mg L-1) 
T = Temperature (°C),  
opt = 14 °C 
range = 8 °C  
f (N) and f(L) = limitation factors for nutrients and light, each holding values between 0 and 1 
kpho

ref = Maximum phytoplankton growth rate (day-1) at Tref. 
 
Equation A.2: Calculates the maximum photosynthetic rate and the limitations by nutrients, this has 
been taken from Michaelis Menten kinetics 
 

𝑓(𝑁) = min(
𝑁

𝑁 + 𝑘𝑁
,

𝑃

𝑃 + 𝑘𝑃
) 

 
N = Nitrate-N plus Ammonium-N (mg L-1) 
P = Inorganic-P (equivalent to SRP) plus Organic-P (mg L-1) 
Where kN = 0.1 and kP = 0.01 mg L-1 
 
Equation A.3: Light limitation, attenuation with depth is described by the Beer-Lambert Law 
 

𝛾 = 𝛾𝑏𝑎𝑠𝑒 + 𝐿𝑆𝑆. 𝑆𝑆 + 𝐿𝑃ℎ𝑦. 𝑃ℎ𝑦 



 
γbase = light extinction coefficient in clean water (0.01 m-1) 
SS = concentration of suspended sediment (mg L-1) 
Lss = Light attenuation with depth due to suspended sediment (m-1 mg-1 L) 
Lphy = Light attenuation with depth due to phytoplankton (m-1 mg-1 L) 
 
Equation A.4: Photolimitation with respect to phytoplankton-specific optimum intensities (Steele, 
1962) 
 

𝑓(𝐿) =
2.718

𝛾𝑑
. [𝑒

−
𝑅𝑠𝐿1𝐿2
𝐿𝑜𝑝𝑡

𝑒−𝛾𝑑

− 𝑒
−
𝑅𝑠𝐿1𝐿2
𝐿𝑜𝑝𝑡 ] 

 
γd = Water column depth (m),  
Rs = Radiation at the surface not reflected (W m-2) (i.e. input solar radiation x 0.6) 
L1 = Fraction of incoming radiation that is visible light (0.5)  
L2 = Fraction of visible light used for phytoplankton (0.5) 
Lopt = Optimum light intensity for phytoplankton (60 W m-2) 
 
Equation A.5: Respiration 
 

𝑘𝑟𝑒𝑠 = 𝑃ℎ𝑦. 𝑘𝑟𝑒𝑓
𝑟𝑒𝑠 . 𝑘𝑟𝑒𝑓

𝑝ℎ𝑜
. 𝜃(𝑇−𝑇𝑟𝑒𝑓) 

 
kres

ref = reference respiration rate for phytoplankton (day-1) 
 
Equation A.6: Death 
 

𝑘𝑑𝑒𝑎𝑡ℎ = 𝑃ℎ𝑦. 𝑘𝑟𝑒𝑓
𝑑𝑒𝑎𝑡ℎ. 𝑘𝑟𝑒𝑓

𝑝ℎ𝑜
. [1 − (𝑓(𝑁). 𝑓(𝐿))]. 𝜃(𝑇−𝑇𝑟𝑒𝑓) 

 
kdeath

ref = reference death rate for phytoplankton (day-1) 
 
Death is a combination of grazing and non-predatory mortality. 
 
A.2. Dissolved Oxygen model 
 
Equation A.7: Change in Dissolved Oxygen. 
 
𝑑𝐷𝑂

𝑑𝑡
=

1

Ƭ
(𝐷𝑂𝑖 − 𝐷𝑂 +𝑊) + (𝑃 − 𝑅) − (𝑘𝑏𝑒𝑛𝐷𝑂/𝑑𝑒𝑝) + 𝑘𝑟𝑒𝑎(𝑂𝐶𝑆 − 𝐷𝑂) − 4.57𝑘𝑛𝑖𝑡𝑁𝐻4 −

𝑘𝑏𝑜𝑑𝐵𝑂𝐷  
 
Where: 
Ƭ = a time constant representing the average retention time in the reach. This is defined by L/(bQc) in 
which L is length of reach (m), Q is flow out of reach (m3s-1) and b and c are reach specific constants. 
DO = DO concentration leaving the reach (mgL-1) 
DOi = input DO concentration (mgL-1) 
W = aerating effect of a weir as calculated from an empirical relationship based on weir type and 
height 
P = kpho(133.3Phy) = DO increase due to photosynthesis  
R = kres(133.3Phy) = DO decrease due to respiration  
kben = benthic respiration rate (day-1) 
dep = mean water depth of reach (m) 



kbod= rate of loss of DO as BOD decays (day-1) 
knit = rate coefficient for complete nitrification (day-1) 
NH4 = concentration of ammonium in water column (mg L-1) 
krea = aeration coefficient at the water surface (day-1) (dependent on velocity (v), depth (d) and 
temperature (T): krea = 5.32 v0.67 1.024T-20d-1.85) 
OCS = DO concentration at saturation (mg L-1) 
 
The amount of oxygen produced in photosynthesis (P) or consumed in respiration (R) per unit mass of 
algae.  For each 1 mg of chlorophyll-a 133.3 mg of oxygen are produced. This same ratio applies for 
oxygen consumption in respiration, and in additions to BOD on phytoplankton death. 
 
A.3. Biochemical oxygen demand model  
Equation A.8: Change in biochemical oxygen demand: 

 
)3.133()(

1
Phyk

dep

BODv
BODkBODBOD

dt

dBOD deathsed
bodi 


 

Where: 
BOD = BOD concentration leaving the reach (mgL-1) 
BODi = input DO concentration (mgL-1) (mean from all sources) 
vsed = settling velocity of BOD. A value of 0.25 ms-1 was used. 
 
A.4. River water temperature model 
Equation A.9: Change in water temperature is defined as follows: 
 

 
dep

RRH
TT

dt

dT os
i

)(
)(

1 



 

 
Where: 
Ti = mean temperature (°C) from all sources 
T = temperature in water leaving the reach (°C) 
Ro = outgoing long-wave radiation (Wm-2) 
H = heat flux coefficient (0.005 m-1) 
The largest component for the outgoing radiation is the long wave back radiation which is given by 
Ro=0.97 σ T4 (in which 0.97 is the emissivity constant of a water surface and σ is the Stefan-Boltzman 
constant (5.67051 10-8 Wm-2 k-4) and T is the temperature in oK)  
 
Reference 
Boorman DB, 2003. LOIS in-stream water quality modelling. Part 1. Catchments and methods. Science 
of the Total Environment 314: 379-395. 

  



Information “Basic” model “Local” model 

Water quality data 1Periodic national-level monitoring 

only 

Periodic monitoring; and local 
4continuous sensor-based monitoring at 

Sanctuary Bridge 

River flow data 2Daily gauging station data from 

national level monitoring 

Daily gauging station data from national 

level monitoring 

Solar radiation data 3Hourly measurements from nearby 

Wattisham weather station from 

national network 

Hourly measurements from nearby 

Wattisham weather station from 

national network 

Groundwater 

discharge influences 

No Yes. In middle reaches. Estimated from 

local groundwater modelling (flow) and 

monitoring (quality). 

Abstraction and 

effluent influences 

No Yes. Two agricultural abstractions 

(Wickham Market, Kettleburgh) and one 

sewage treatment works (Wickham 

Market). 

Calibration of 

nutrient-related 

parameters 

Yes Yes 

Calibration of 

ecosystem-

metabolism related 

parameters 

No. Estimated from other QUESTOR 

modelling in similar lowland UK river 

systems (a), or based on fitting 

average DO PBIAS across all Deben 

sites (b) 

Yes 

Information used to 

define hydraulic 

parameters 

Stream width and gradient, 

estimated from catchment area and 

other QUESTOR applications. 

Stream width from satellite 

imagery/aerial photography. Channel 

gradient from DTM. River level data 

from two locations (middle reaches). 

Roughness and macrophyte abundance 

estimated from qualitative stream bed 

observations (multi-site). 

Channel control 

structures 

Weirs identified from Ordnance 

Survey topographic maps. Default 

values used for characterisation. 

Additional information provided from 

local photographic sources (EA staff).  

Fractional light 

penetration 

Percent riparian tree occupancy from 

aerial photography. 0% penetration 

through canopy assumed 

Aerial photography, supported by local 

photographic qualitative observations. 

Table A1: Information used to support Deben model applications. National-level data sets available to 
support the “Basic” model: (1) Environment Agency Water Quality Archive data accessible from a 
portal: http://environment.data.gov.uk/water-quality/view/landing. (2) Daily river flow data accessed 
via UKCEH National River Flow Archive: http://nrfa.ceh.ac.uk/data/search. (3) Solar radiation 
observations accessed at the British Atmospheric Data Centre (http://archive.ceda.ac.uk/). “Local” 
model supported by (4) YSI multi-parameter 6600 sonde including temperature and dissolved oxygen 
sensors. Sanctuary Bridge is an additional site not covered by national monitoring1. 
  

http://environment.data.gov.uk/water-quality/view/landing
http://nrfa.ceh.ac.uk/data/search
http://archive.ceda.ac.uk/


Appendix B: Indicators of hydrological alteration 
 

Annual 

IHA code 
Parameter Dimension 

Annual 

IHA code 
Parameter Dimension 

IHA_01 Mean value for January Magnitude IHA_34 January Low Flow Magnitude 

IHA_02 Mean value for February Magnitude IHA_35 February Low Flow Magnitude 

IHA_03 Mean value for March Magnitude IHA_36 March Low Flow Magnitude 

IHA_04 Mean value for April Magnitude IHA_37 April Low Flow Magnitude 

IHA_05 Mean value for May Magnitude IHA_38 May Low Flow Magnitude 

IHA_06 Mean value for June Magnitude IHA_39 June Low Flow Magnitude 

IHA_07 Mean value for July Magnitude IHA_40 July Low Flow Magnitude 

IHA_08 Mean value for August Magnitude IHA_41 August Low Flow Magnitude 

IHA_09 Mean value for 

September 

Magnitude IHA_42 September Low Flow Magnitude 

IHA_10 Mean value for October Magnitude IHA_43 October Low Flow Magnitude 

IHA_11 Mean value for 

November 

Magnitude IHA_44 November Low Flow Magnitude 

IHA_12 Mean value for December Magnitude IHA_45 December Low Flow Magnitude 

IHA_13 1-day minimum Magnitude IHA_46 Extreme low peak Magnitude 

IHA_14 3-day minimum Magnitude IHA_47 Extreme low duration Duration 

IHA_15 7-day minimum Magnitude IHA_48 Extreme low timing Timing 

IHA_16 30-day minimum Magnitude IHA_49 Extreme low freq. Frequency 

IHA_17 90-day minimum Magnitude IHA_50 High flow peak Magnitude 

IHA_18 1-day maximum Magnitude IHA_51 High flow duration Duration 

IHA_19 3-day maximum Magnitude IHA_52 High flow timing Timing 

IHA_20 7-day maximum Magnitude IHA_53 High flow frequency Frequency 

IHA_21 30-day maximum Magnitude IHA_54 High flow rise rate Rate 

IHA_22 90-day maximum Magnitude IHA_55 High flow fall rate Rate 

IHA_23 Number of zero days Magnitude IHA_56 Small Flood peak Magnitude 

IHA_24 Base flow index Magnitude IHA_57 Small Flood duration Duration 

IHA_25 Date of minimum Timing IHA_58 Small Flood timing Timing 

IHA_26 Date of maximum Timing IHA_59 Small Flood frequency Frequency 

IHA_27 Low pulse count Frequency IHA_60 Small Flood rise rate Rate 

IHA_28 Low pulse duration Frequency IHA_61 Small Flood fall rate Rate 

IHA_29 High pulse count Frequency IHA_62 Large flood peak Magnitude 

IHA_30 High pulse duration Frequency IHA_63 Large flood duration Duration 

IHA_31 Rise rate Rate IHA_64 Large flood timing Timing 

IHA_32 Fall rate Rate IHA_65 Large flood frequency Frequency 

IHA_33 Number of reversals Rate IHA_66 Large flood rise rate Rate    
IHA_67 Large flood fall rate Rate 

Table B1. List of annual indicators of hydrological alteration. 
  



Code Meaning (N=3, 7,14, 21) Dimension 

MA1 Mean of flow in N days  Magnitude 

MA2 Median of flow in N days Magnitude 

MA3 Coefficient of variation in N days Magnitude 

MA4 Skewness of N days flows Magnitude 

ML1 Low flood pulse count N days Frequency 

ML2 The percentage of low flood pulse count in N days Frequency 

MH1 Number of occurrences during N days Frequency 

MH2 The percentage of low flood pulse count in N days Frequency 

EL1 Extreme low flow count N days Frequency 

EL2 The percentage of extreme low flood pulse count in N days Frequency 

EH1 Extreme high flow count N days Frequency 

EH2 The percentage of extreme high flood pulse count in N days Frequency 

RC Mean rate of change in N days Rate  

RH1 Numbers of day change rises in N days Rate  

RH2 Percentage of day change rises Rate  

RL1 Numbers of day change decline in N days Rate  

RL2 Percentage of day change decline Rate  

Table B2. List of short-term indicators of hydrological alteration and their meaning. 
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Appendix C: Model parameter values and goodness-of-fit statistics 

   “Basic” 
Model 

         “Local” 
Model 

         

Reach Monitoring 
Site 

Distance (km) 
upstream of 
Ufford Br 

Width 
(m) 

P R D 5k 4k 10k 6k 8k 9k Width 
(m) 

P R D 5k 4k 10k 6k 8k 9k 

1 Cretingham Br 24.0 4.0 d d d 12.0 4.8 0 2.4 0.12 0 2.6 3.84 0.15 0.42 1.2 1.2 0 2.4 0.12 0 
2 Brandeston Br 20.8 4.0 d d d 12.0 4.8 0 0.48 0.072 0 3.4 3.84 0.15 0.42 1.2 1.2 0 0.48 0.072 0 
4 Sanctuary Br 16.1 4.0 d d d 12.0 4.8 0 1.44 0.144 0 3.6-3.8 3.84 0.15 0.42 1.8 1.8 0 1.44 0.144 0 
11 Naunton Hall 3.3 6.0-8.0 d d d 12.0 4.8 0 0.48 0 0 3.5-5.0 3.84 0.15 0.42 1.8 1.8 0 0.48 0 0 
13 Ufford Br 0.0 8.0 d d d 12.0 4.8 0 2.4 0 0 4.7 3.84 0.15 0.42 1.8 1.8 0 2.4 0 0 

Table C1: Optimised parameter values (day-1) (note values are converted to hour-1 for model application) where: 
Daily phytoplankton parameters: P = kpho

ref, R = kres
ref, D = kdeath

ref 
Default values used = d 
FP values: basic model = 0.64, local model = 0.77 
BOD decay = 5k 
Benthic OD = 4k 
Deamination = 10k 
Nitrification = 6k 
Denitrification = 8k 
P mineralisation = 9k 
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 SRP PP NH4 NO3 SS Temp DO BOD Flow 

N          
Cretingham 76  41 76  77 76   
Brandeston 323 309 352 360 340 354 71 56 hourly 
Sanctuary 41  41 41 21 *14670 *14670   
Naunton 607 603 607 607 603 318 16   
Ufford 29  29 28  37 28 9 hourly 
“LOCAL” 
MODEL 

         

Cretingham -2.1/98   0.74/-23 0.69/-5.8  0.92/-3.1 0.25/-7.1   
Brandeston -8.6/121 0.13/-5.0 0.05/-20 0.77/1.8 0.52/-40 0.86/-8.8 -0.1/-7.4 -2.2/0.5 0.99/-2.5 
Sanctuary -8.1/84  -5.7/9.7 0.75/0.9 0.35/-37 *0.72/-13.3 *0.03/29   
Naunton -1.1/33 -0.11/-44 -0.08/-6.5 0.52/-0.7  -0.06/-59 0.71/-13.3 0.35/-2.8  0.58/-23 
Ufford -0.57/13  -24/150 0.43/-17  0.68/-13.6 0.20/-0.7   
“BASIC” 
MODEL 

         

Cretingham -8.5/200  0.78/-4.2 0.63/13  0.03/-0.4 -0.1/-7.6   
Brandeston -36/267 0.10/-39 0.04/-3.9 0.73/-8.6 0.52/-44 0.55/-7.9 -0.24/-12.6 -3.2/-81.9 0.99/-8.8 
Sanctuary -64/330  -7.3/19.5 0.67/-16.9 0.18/-43 *0.41/-17.0 *-0.33/32   
Naunton -19/146 -0.22/-57 -0.48/48 0.44/-2.4 -0.07/-63 -0.03/-16.9 -0.76/-7.6  0.58/-31.5 
Ufford -11/181  -131/319 0.38/-17.4 0.18/-52 0.25/-21.0 -0.23/-4.2   

Table C2: Number of observations (N) and paired NSE/PBIAS values for local and basic model (2010-2019). Goodness of fit values shown for validation test 
period 2014-2019. *2018-19 continuous monitoring data, in a heterogeneous river reach environment (DO omitted from Figure 2, discussed in Section 4.3) 
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