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Abstract
Modern agricultural practices can cause significant stress on soil, which ultimately

has degrading effects, such as compaction. There is an urgent need for fast, nonin-

vasive methods to characterize and monitor compaction and its impact on hydraulic

processes. Electrical resistivity tomography (ERT) is a well-established method used

for the assessment of soil hydraulic properties due to its high temporal resolution

and sensitivity to changes in moisture content and salinity, whereas X-ray computed

tomography (CT) can be used for high-spatial-resolution imaging of soil structure.

We used the combined strengths of both methods to study soil under three different

levels of compaction. The soils were X-ray scanned and electrically monitored after

the application of a saline solution to the soil surface. The scans revealed the pore net-

work architecture and allowed us to compute its size and connectivity. The ERT mod-

els revealed inhibited percolation rates for soils with a lower bulk density, but also

how resistivity changes are spatiotemporally distributed within the soil columns. Fur-

thermore, we obtained a quantitative link between the two methods, by which voxels

more densely populated with pores were associated with higher temporal variations

in electrical resistivity. Building on this, we established a spatial collocation between

pore structure and distribution of solution during percolation. This demonstrates the

potential of the combined strengths of the two tomographic methods to obtain an

enhanced characterization of soil hydrodynamic properties.

1 INTRODUCTION

With an increasing agricultural demand worldwide and pres-

sure from population increase and a changing climate, there

is an urgent need for fast, robust, and noninvasive methods of

soil assessment. Due to the intensive use of heavy machin-

Abbreviations: CT, computed tomography; ERT, electrical resistivity

tomography; 3D, three-dimensional; TS, time step; WS, Waxman–Smits.
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ery, soil structure degradation in the form of compaction has

become a serious problem (Hamza & Anderson, 2005). Clas-

sical invasive soil sampling methods often require signifi-

cant manual labor and alteration of soil’s natural properties

(e.g., structure) and have difficulties in measurement repeata-

bility (Furman, Arnon-Zur, & Assouline, 2013). Other prac-

tices that make use of minimally invasive sensors, such as

time domain reflectometry (TDR), have a good temporal res-

olution, but lack site spatial coverage (Furman et al., 2013).
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Electrical resistivity tomography (ERT) is a noninvasive,

quick, and relatively easy-to-use method of monitoring

changes in soil bulk electrical resistivity, a proxy for changes

in soil properties such as pore fluid content, soil texture,

pore structure, saturation, pore fluid salinity, and so on

(Samouëlian, Cousin, Tabbagh, Bruand, & Richard, 2005).

The coverage it provides allows it to be applied to large-scale

field studies (Michot, Dorigny, & Benderitter, 2001) and on

smaller scale laboratory investigations of root zone properties

(Garré, Javaux, Vanderborght, Pagès, & Vereecken, 2011).

Electrical resistivity tomography produces tomograms of the

subsurface by fitting a predicted model of the subsurface resis-

tivity distribution to measured electrical resistance (a math-

ematical technique called inverse modeling). Romero-Ruiz,

Linde, Keller, and Or (2018) identifies electrical resistivity

methods as valuable for the study of soil compaction due to the

amount of information regarding soil properties it can reveal.

However, finding the best fit resistivity model is challenging

as the ERT inverse problem is nonunique and ill conditioned.

Therefore, the information it provides needs careful treatment

and interpretation. A priori information about the medium

surveyed with ERT can be used to constrain the inversion in

order to produce stable unique solutions (Loke, Chambers,

Rucker, Kuras, & Wilkinson, 2013). In this context, ERT was

previously used to study soil properties in conjunction with

other soil assessment methods. Michot et al. (2001), at field

scale, used minimally invasive TDR sensors, which provide

point measurements of water content to ground truth obser-

vations made on ERT tomograms. Also, in a laboratory study

on soil columns, Garré et al. (2011) used TDR sensors in

order to validate water mass balance calculated by ERT and

minirhizotrons to obtain images of root development. How-

ever, such point sensors lack spatial resolution and do not

have the three-dimensional (3D) capability of ERT; therefore,

a complete conjunctive assessment of the entire soil volume

is not obtained. Another complementary method is ground-

penetrating radar (GPR), used for its ability to delineate soil

stratigraphic boundaries, which can in turn be used to con-

strain and explain the electrical resistivity profile (Musgrave

& Binley, 2011). Electromagnetic induction method (EMI)

was used for its capability of mapping soil electrical conduc-

tivity at the field scale (1–10 ha) and beyond (Cockx, Van

Meirvenne, & De Vos, 2007), but does not have a good ver-

tical penetration, hence was combined with ERT for a joint

characterization of aquifers (Linde, Binley, Tryggvason, Ped-

ersen, & Revil, 2006) or soil hydraulic conductivity (Farza-

mian, Monteiro, & Khalil, 2015). However, differences in

dimensionality, between ERT and aforementioned methods,

and inherent limitations do not allow the collocation between

soil parameters measured.

X-ray computed tomography (CT) is a well-established

noninvasive method that has been used in the soil sciences

for assessing soil structure in 3D at very high resolutions

Core Ideas
∙ ERT monitors near real-time solution percolation

in soils with different bulk densities.

∙ X-ray CT images pore network changes in connec-

tivity with increasing bulk density.

∙ Density of the pore network is spatially collocated

with bulk electrical resistivity.

∙ Time-lapse solution percolation through soils is

explained in the context of localized porosity.

(10 μm) (Tracy et al., 2015). A further benefit of X-ray CT

is that it allows the visualization and a quantitative assess-

ment of pore architecture, which in turn can be used to esti-

mate soil hydraulic properties (Anderson, Wang, Peyton, &

Gantzer, 2003; Grayling et al., 2018). On this basis, Cim-

poiaşu, Kuras, Pridmore, and Mooney (2020) identified the

complementary potential of X-ray CT-derived information

to enhance the understanding of geoelectrical studies of root

zone processes. There are few studies to date using ERT and

X-ray CT in conjunction for the study of soil processes. Olsen,

Binley, and Tych (1999) used the two methods to character-

ize solute transport in soils, but the linkage between the two

methods was purely qualitative. Cassiani, Kemna, Villa, and

Zimmermann (2009), in a study on soil columns, used X-ray

CT scanning to reveal that a non-aqueous-phase liquid dis-

tribution after injection in soil was the source of DC signal

variability and not the chemical interactions. Both X-ray CT

and ERT have the capability to operate in 3D, which allows us

to collocate the soil properties assessed over the appraised soil

volume. However, X-ray CT lacks high temporal resolution,

as the acquisition of a complete 3D scan sequence depending

of the level of detail required can take several hours. However,

most modern systems are able to scan more quickly (e.g., in

minutes rather than hours).

According to Wildenschild and Sheppard (2013), 3D imag-

ing of macropore architecture in combination with real-time

measurements of solute transport has the potential to advance

knowledge of solute flow. In this study, we aimed to for-

mulate an improved characterization of the effect soil com-

paction has on hydrodynamic behavior using a combined

imaging approach utilizing the specific strengths of the two

tomographic methods mentioned above. Firstly, X-ray CT

scanning was performed on soils to resolve the parametric dif-

ferences in pore structure associated with differences in bulk

density. Secondly, ERT was used to monitor the infiltration

of a saline solution through the same soil columns. By this

approach, we aimed to associate the soil solution percolation

rates with soil structural parameters affected by the soil bulk

density. Furthermore, we demonstrate that datasets from the

two tomographic methods can be quantitatively collocated in
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T A B L E 1 Values of structural parameters corresponding to

specific soil columns measured in the laboratory (bulk density [BD])

and estimated from X-ray images (porosity [ϕ], pore size [PS], and

connectivity density [ConD])

Sample group Sample no. BD ϕ PS ConD
Mg m−3 % mm2 mm−3

G1 1 1.39 13.66 0.31 34,027

2 1.39 12.25 0.58 31,331

3 1.36 10.69 0.69 25,282

G2 1 1.44 8.19 1.63 14,757

2 1.49 7.05 0.15 12,520

3 1.44 8.21 0.71 15,086

G3 1 1.54 4.37 0.31 11,534

2 1.54 5.55 0.69 11,659

3 1.64 1.97 0.11 9,662

order to expose the 3D spatial distribution link between levels

of porosity (from CT) and changes in electrical resistivity.

2 MATERIALS AND METHODS

2.1 Soil sampling

We collected 18 undisturbed soil columns from random loca-

tions in an experimental field of the same soil type at the Uni-

versity of Nottingham experimental farm at Bunny, Notting-

hamshire, UK (52˚51′21″ N, 1˚07′31″W). The soil was a clay

textured (40% clay, 25% silt, and 35% sand) Orthic Luvisol

from the Worcester series (coarse-loamy, mixed, superactive,

frigid Argic Endoaquods). Before sampling, the top few cen-

timeters of soil were removed in order to insure a good contact

between the cylinder and the soil’s surface. Plastic cylinders

(6.8-cm diam., 14-cm height) were gently inserted into the

topsoil to 20-cm depth and were extracted by careful removal

of the surrounding material. This depth was chosen because

its proximity to the surface makes it more prone to be affected

by compaction. Inside the cylinder, the height of the soil

column was 12.5 cm. On return to the laboratory, the samples

were assessed on their bulk density, and nine columns were

attributed to three equal sized groups (G) that corresponded

to the following intervals: 1.3–1.4 Mg m−3 (G1); 1.4–1.5 Mg

m−3 (G2), and 1.5–1.65 Mg m−3 (G3) (Table 1), prior to

storage at 4 ˚C before experimentation. As the aim was to

obtain three groups of samples with distinctive bulk densities,

the remaining nine columns were not considered for further

analysis.

2.2 Saline solution infiltration

For the solute infiltration experiment, we chose one column

from each group (G1–G3) with a bulk density closest to the

group’s average (1.38, 1.43, and 1.57 Mg m−3 for G1, G2,

and G3, respectively). The underlying assumption was that

samples with a similar bulk density and X-ray-derived poros-

ity show similar hydraulic conductivity estimates to Ander-

son et al. (2003); thus, only one column from each group was

used for subsequent ERT monitoring. Prior to the start of infil-

tration, each soil column was modified in order to accom-

modate electrical measurements. Twenty-four stainless steel

electrodes were fitted around the circumference of the plas-

tic sleeve in three equally spaced rows of eight (Figure 1).

Custom-made caps were designed for the cylinders in order to

accommodate the input and output of the saline solution. The

top cap extended inside the cylinder to occupy the remain-

ing 1.5 cm left between the soil and the cylinder’s edge.

Firstly, using a peristaltic pump, the samples were slowly sat-

urated (5 × 10−9 m3 s−1) with deionized (DI) water from the

bottom up in order to remove the air from the sample. The

infiltration speed was maintained throughout the whole exper-

iment. Secondly, a 0.01 M KCl (0.13 S m−1) solution was

infiltrated until a steady state was reached (decided upon the

evolution of effluent’s conductivity). These first two phases

lasted 24 h each. Finally, a much more conductive 0.05 M

KCl (0.53 S m−1) solution was infiltrated, which acted as a

tracer. As the pore solution reached the top of the sample, the

effluent was collected and its electrical conductivity recorded

with an EM50 data logger.

2.3 ERT monitoring and inversion

Electrical resistivity tomography is a near-surface geophys-

ical method that uses electrical resistance measurements in

order to reconstruct an image of the bulk electrical resis-

tivity of the subsurface. Electrical currents are injected into

the ground and the resulting electrical potential difference is

recorded. Resistivity (Ω m, or its inverse, conductivity [σ]) is

obtained using Ohm’s law:

ρ = 𝐾𝑅 = 𝐾
δ𝑉
𝐼

(1)

where R (Ω) is the electrical resistance, I (A) is the injected

current, δV (V) is the electrical potential difference, and K is

the geometric factor, which depends on the geometric arrange-

ment of electrodes.

During the final stage of the infiltration, transfer resis-

tance measurements were continuously collected, in dipole–

dipole configurations, using a GEOLOG2000 GeoTom MK-

RES/IP/SP. Air temperature was maintained constant at 21 ˚C

throughout the experiment. One complete pair of measure-

ment sequences, comprising normal (Rn) and reciprocal (Rr)

configurations (where current and potential electrodes are

switched (LaBrecque, Miletto, Daily, Ramirez, & Owen,

1996), contained 772 measurements and took approximately
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F I G U R E 1 Schematic of the laboratory soil column experiment. Lateral view: KCl solution infiltration setting. Top view: electrode

arrangement for electrical resistivity tomography (ERT) monitoring

15 min. A measurement sequence used all possible combi-

nations of dipoles on individual rows (288) and cross-row

equatorial dipoles (484). A complete measurement sequence

is available upon request. The transfer resistance value subse-

quently used was the pair’s mean Rm and its associated stan-

dard error, referred to as the reciprocal error Er, was defined

as:

|𝐸r| = 100
(|𝑅r −𝑅n|

𝑅r −𝑅m

)
(2)

Firstly, measurements with a reciprocal error >5% were

discarded. Secondly, in an attempt to obtain more robust

error estimates, and following the approach described in

Mwakanyamale, Slater, Binley, and Ntarlagiannis (2012),

data with similar transfer resistances was binned and subse-

quently an error model was fitted to the reciprocal error aver-

age corresponding to each bin. This model was used to esti-

mate the final error associated with each measurement.

After data acquisition, for every column, we obtained 32

distinct datasets of apparent resistivity corresponding to 32
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different time steps (TSs). In order to obtain a model of elec-

trical resistivity, an inversion algorithm was used, in which

a starting resistivity model is iteratively adjusted in order to

achieve the best fit with the measured apparent resistivity

values. For inversion and design of the 3D structural mesh

model, E4D inversion software (Johnson, Versteeg, Ward,

Day-Lewis, & Revil, 2010) was used, which uses an Occam-

type inversion. It produces an image of M voxels of electrical

resistivities (ρi with i = 1,2, . . . , M) given a set of N four elec-

trode resistances (Rj [Ω] with j = 1,2, . . . , N) by minimizing

the objective function Ψ:

Ψ = ||𝑊ε[𝐝 − 𝑓 (𝐦)]||22 + λ||𝐖s[𝐦 −𝐦0]||22 (3)

where d is the data vector, m is the model given by the param-

eters of the inversion mj = log(ρj) (Ω m), f(m), is the forward

model for parameters m, m0 is a homogeneous starting model

vector, Wε is a smoothing operator, λ is the regularization

parameter that determines the amount of smoothing imposed

on m, and Ws is an error weighting matrix. We acknowledge

the importance of choosing appropriate regularization param-

eters for accurate inversion results (Rao, Lesparre, Orozco,

Wagner, & Javaux, 2020). After a series of synthetic model

simulations, we concluded that 100 is an appropriate value for

λ. To provide a mesh, we used Tetgen (Hang, 2015), a mesh

generator incorporated in E4D. We designed a cylindrical vol-

ume made up of 5,492 unstructured tetrahedra refined around

the position of the electrodes. We considered electrodes as

points in our mesh model, which we acknowledge can cause

issues in small-scale resistivity imaging. However, when elec-

trodes protruded the sample, they did so for no more than

0.5 cm, which is below 20% of electrode separation, an accept-

able threshold for point electrodes to be considered according

to Rücker and Günther (2011).

By comparing the resistivity distribution between different

TSs, we can estimate the resistivity change over time across

the soil volume. Resistivity inversion is an ill-posed problem

(Hansen, 1992), and the resulting models carry inherent limi-

tations such as solution nonuniqueness. This implies that mul-

tiple models fit the data to the same degree of accuracy, hence

choosing the “correct” model is a challenge both conceptually

and practically. Therefore, for our soil samples, the inversion

model results are only an indication of the resistivity variation

over time. Furthermore, since electrical resistivity is influ-

enced by many factors depending on both soil properties (e.g.,

porosity, clay content, water content) and experimental setup

(e.g., contact impedance, electrode layout), there is no cer-

tainty that the source of such variation is indeed the change in

pore solution salinity determined by the infiltration of a more

conductive solution.

2.4 X-ray computed tomography and image
processing

X-ray CT allows visualization of the interior structure of a tar-

get object due to the attenuation properties of electromagnetic

waves. X-rays are produced in a tube containing an anode and

a cathode when a voltage is applied across the electrodes. The

Beer–Lambert equation describes the X-ray beam attenuation

as it passes through a target medium (Wildenschild, Hopmans,

Vaz, Rivers, & Rikard, 2002):

IN = IN0 exp(−μ𝐷) (4)

where D (m) is the thickness, μ (m−1) is the attenuation coeffi-

cient, and IN0 and IN are the intensities before and after pass-

ing through the sample.

In our experimental setting, the sample rotates and the

source–detector pair is fixed to allow projections from dif-

ferent angles. The angle increment of the projector is given

by the number of image radiograms obtained per sample—in

our case, 2,400. All columns were scanned with a V|Tome|x M

X-ray scanner (scan settings: 140 kV, 160 μA, 2,400 images,

skip [number of images ignored as the sample moves to a new

location in order to improve stabilization; du Plessis, Broeck-

hoven, Guelpa, & le Roux, 2017]/average [number of images

taken at each location to produce an averaged final image]

1/0, 8-min scan time, and 40-μm resolution] at the Hounsfield

Facility, University of Nottingham, Sutton Bonington, UK.

X-ray CT is widely regarded as a noninvasive method of

soil assessment (Duliu, 1999). This is because the sample’s

integrity is not altered during image data acquisition. On the

other hand, during sampling, the soil is removed from its

natural environment, hence discontinuing matter and energy

exchanges. However, in our study, we are applying X-ray CT

to look at the physical structure of the pore network, which we

consider partly because we took necessary precautions (e.g.,

meticulous sampling, refrigeration) not to have been altered

during sampling or by other biogeochemical processes that

followed in the short time up to the scanning day.

The radiograms obtained were digitally reconstructed using

datos|x and processed using the Volume Graphics 2.2 soft-

ware, over an 8-bit value range. For the 3D representation of

a soil column volume, stacks of cross-sectional images were

imported. Further image processing was performed using the

open source program ImageJ (Schindelin et al., 2012). A

representative subvolume of 3.8 × 3.8 × 6 cm3 (Figure 2)

was selected in order to exclude areas adjacent to the sam-

ple edges, which might have been subjected to physical dis-

turbance during extraction. One pass of two process filters

(sharpen and median) was applied to this subvolume in order
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F I G U R E 2 Images of the soil volume reconstructed post scanning. (a) Top view cross-section and the representative area selected for further

image processing. (b) Selected area after being cropped from the cross-sectional image. (c) Selected area after sharpen and median filters were

applied. (d) Selected area after the Otsu threshold was applied in order to segment the pore space

to improve image quality before segmentation, which was

assessed by inspection of the grayscale histogram. After-

wards, an Otsu threshold (Otsu, 1979) was applied in order

to binarize the images and segment the air-filled pore space

represented by low grayscale values indicative of low absorp-

tion (Figure 2d). This sequence of image processing steps

was establish empirically in order to obtain an accurate sep-

aration between air-filled pore space and the rest of the soil

volume. The segmented images were finally collated into a

binarized 3D soil volume. By further calculating the propor-

tion of white pixels from the whole volume, an estimate for

total air-filled porosity (hereby referred to as porosity) was

obtained. By computing the volume of the individual white

voxels (Figure 2d), an estimate of the individual pore size

was obtained. We acknowledge that at the current operating

resolution (i.e., 40 μm), we can only observe macropores.

Furthermore, in the attempt of computing the pore size dis-

tribution, we considered the cumulative volume comprised

by pores of eight size classes (40–250, 250–500, 500–750,

750–1,000, 1,000–1,250, 1,250–1,500, 1,500–1,750, 1,750–

2,000 μm). We define the cumulative volume as the total vol-

ume occupied by summing pore volumes of a specific size.

Also, by using BoneJ (Doube, Kłosowski, Arganda-carreras,

& Fabrice, 2010), a plugin for ImageJ, we obtained an esti-

mate for the pore connectivity density (ConD) as follows:

ConD = 1 − Δ𝑋
𝐴ℎ

(5)

where ΔX is the sample’s contribution to the Euler character-

istic (a number that describes a topological space’s shape or

structure (Odgaard & Gundersen, 1993), A (m2) is the area of

the image, and h (m) is the height of the image stack.

Finally, in order to establish if there was a statistically sig-

nificant difference between groups (G), we used a one-way

ANOVA test within Python 3.6 package ‘scipy-stats.’

2.5 Pedophysical model

Soil bulk electrical resistivity is a complex parameter that

depends on many physicochemical properties. Archie (1942)

was one of the first pedophysical relations formulated to

describe electrical resistivity as a function of rock’s poros-

ity and fluid content [f(ϕ, θ)]. Building on Archie’s relation,

the Waxman–Smits (WS) model includes surface conductiv-

ity effects, which become important when an increased con-

tent of clay particles is present (Waxman & Smits, 1968):

ρ−1 = 𝑓 (ϕ, θ, σf ) = ϕ𝑚

(
θ
ϕ

)𝑛 [
σf + 𝐵𝑄v

ϕ
θ

]
(6)

where ϕ is porosity, θ is pore fluid content, σf is pore fluid

conductivity (S m−1), B (m2 s−1 V−1) is an empirical equiv-

alent counterion mobility factor at 25 ˚C, Qv (cmol kg−1) is

the excess of surface charge of the solid phase per unit of pore

volume, and m and n are dimensionless empirical parameters.
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F I G U R E 3 Left: Cross-sectional vertical clip of the X-ray computed tomography (CT) three-dimensional (3D) model of binarized soil. The

white structure represents the air-filled pore space on which the surrounding soil in light gray was superimposed. Right: Mesh model used for

resistivity inversion. The red cubes represent the voxel selection used to draw a quantitative relationship between the two datasets. White numerals 4,

4, and 8 indicate the number of red cubes used on respective axes. The opaque gray box encloses the sample subvolume subjected to quantitative

analysis

Assuming the samples are fully saturated and using a X-ray

CT-derived value of porosity, this relationship was used to

translate between porosity and corresponding electrical resis-

tivity. Ultimately, in order to express resistivity change, the

fractional change between two resistivity values (ρi and ρj)

corresponding to i the initial TSs of the infiltration and j a

subsequent TS was computed:

ρ𝑗 − ρ𝑖
ρ𝑖

=
𝑓 (σf𝑗 ) − 𝑓 (σf𝑖)

𝑓 (σf𝑖)
(7)

With no other external factors acting on the samples, the

underlying assumption was that the change in pore solution

salinity will be the main contributor to the change in bulk soil

electrical resistivity. Nonetheless, in an attempt to enhance the

interpretation of the resistivity change exposed as a result of

inversion, we used the X-ray CT pore structural parameters

as a source of a priori information, such as porosity, pore size

distribution, and pore connectivity density.

2.6 Quantitatively link ERT and X-ray
models

The ERT and X-ray model results essentially represent the

distribution of electrical resistivity and X-ray absorption,

respectively, for the same cylindrical volume. It is impor-

tant to note that there is a considerable difference in spa-

tial resolution between the two tomographic methods (mm to

40 μm). The selected subvolume was therefore divided into

128 equally sized voxels (4 × 4 × 8), and for every voxel

(Figure 3), the average model cell change in electrical resis-

tivity was estimated. Concurrently, the average porosity was

computed for the corresponding voxel with the same position

and dimension in the X-ray 3D pixel model. Finally, the voxel

resistivity changes were binned into 5% intervals (starting at

10–15%), and the average resistivity change in each bin was

calculated.

3 RESULTS AND DISCUSSION

3.1 ERT monitoring

We derived several models of bulk soil electrical resistiv-

ity corresponding to the different stages of infiltration (each

sample at every TS had a corresponding model with the

exception of the last two TSs of G1 due to a systematic

error). Upon initial data filtering, not every TS retained the

same number of quadrupoles. However, the retained mea-

surement proportion was very high (an average of >92%)

for every TS. Muller et al. (2010), demonstrated in a tracer
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F I G U R E 4 Clip of the G1 column resistivity model in four stages of the high-molarity solution infiltration. White arrow indicates flow

direction (upward). Time steps (TSs) correspond to 15, 150, 240, and 450 min from the start of the high molarity (0.05 M) infiltration. The positions

of the middle row electrodes (6 cm) visible from this view angle are marked by dark triangles in the top left image corresponding to TS 1

experiment that different ERT sensitivities lead to differ-

ent ERT observed breakthroughs. However, every TS in our

experiment employed the same measurement sequence and

obtained very similar datasets; therefore, we do not consider

sensitivity an impairing factor in our study. Also, Miller,

Routh, Brosten, and McNamare (2008) showed that indepen-

dent inversions could work well if noise levels were low. We

achieved a good model convergence with RMSEs in the inter-

val 2.4–5.2%. As the saline solution infiltrates the column, in

Figure 4, representative TSs illustrate the temporal changes in

electrical resistivity. In order to visually emphasize the differ-

ences in electrical resistivity, we chose to show here TSs fur-

ther apart in time; as the solution of increasing molarity was

pumped into the soil, the resistivity model became more dis-

tinctive. Electrodes were only placed at 3-, 6-, and 9-cm height

on the sample’s exterior; hence, just the subvolume enclosed

between them is shown. As time progresses, an increasing

number of model cells display lower resistivities (indicated

by blue rather than red colors). As the 5 M KCl saline solu-

tion reaches these regions of the soil volume, the pore solution

will become more conductive, thus decreasing the bulk elec-

trical resistance of the volume cell. Although this result is to

be expected given the experimental settings, we aimed to esti-

mate the change in electrical resistivity distribution across the

whole volume more accurately. Therefore, the way pore struc-

ture and pore size distribution affected the changes observed

was investigated further.

First, the samples’ bulk changes in resistivity were quan-

tified, and for every TS, the percentage of model cells that

changed their corresponding resistivity over time by >10%

of the initial value was calculated (Figure 5a). With time,

more cell values are expected to change, hence the percent-

age will increase. Here, it is noticeable that the rate of such

increase is different between the three groups (0.42, 0.34, and

0.17% min−1 for G1, G2, and G3, respectively). This could

be explained by pore networks with different sizes and con-

nectivities (Olsen et al., 1999). Also, the percentage of modi-

fied cell values reaches a stable state given enough time after

the start of infiltration. This implies that saturation with the

new saline solution is reached. Therefore, the different stable

maximum percentage values (82, 44, and 24% for G1, G2, and

G3, respectively) suggest samples with different porosities, as
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F I G U R E 5 (a) Percentage of model cells which changed their resistivity by at least 10% with respect to time step (TS) 1. Red vertical line

denotes TS 20. Blue vertical lines denote TSs corresponding to electrical resistivity tomography (ERT) models shown in Figure 4. (b) Effluent

breakthrough of solute recorded presented as reduced concentrations. R is measured resistivity, Ri is initial conductivity, and Rm is the 5 M KCl

tracer conductivity

a larger pore volume would allow the percolating saline solu-

tion to reach more cells. Analyzing the effluent’s conductiv-

ity progression with time (Figure 5b), we observed that the

higher the soil bulk density, the faster the effluent approaches

the tracer’s conductivity. A higher bulk density could imply

that a less developed porosity leads to a smaller available pore

fluid volume. Therefore, under the same constant rate of tracer

injection, the concentration and thus the resistivity of the pore

fluid changed in a shorter time and at a higher rate (G1 reached

0.9 in 340 min, G2 reached 0.78 in 380 min, and G1 reached

0.65 in 540 min).

3.2 X-ray CT resolved parameters

Laboratory measurements and image analysis allowed us to

estimate parameters that reflect the soil’s internal structure

(Figure 6). We compared such estimates between groups (G)

in the attempt to observe the effect of compaction manifested

through different levels of bulk density. Soils with higher bulk

densities had a significantly (p < .05) lower porosity and

pore connectivity density (Table 1 and Figure 6, a, d). Pey-

ton, Haeffner, Anderson, and Gantzer (1992) also observed a

proportionality between CT-derived macroporosity and soil

bulk density. In terms of average pore size, there was not

a significant difference (p > .05) between the three groups

(Figure 6b). However, pore size distribution (Figure 6e) was

different between the groups: G1 had the highest contribu-

tion to the overall pore volume coming from large pores

(>1,000 μm), G2 had the highest contribution in the medium

classes of pores (500–1,000 μm), and G3 had an overall

reduced pore volume in all classes.

3.2.1 Impact of soil structure on solution
percolation

By modeling the pore network and its impact on solute trans-

port, Vogel and Roth (2001) indicated that solute flow near
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F I G U R E 6 (a–d) Average values of pore structural parameters and their corresponding error bars as estimated from laboratory measurements

(bulk density [BD]) and X-ray image processing (porosity [ϕ], pore size [PS], and connectivity density [ConD]). Orange lines indicate the median

and green triangles the mean values. (e) Cumulative volume distribution across eight pore size classes corresponding to each bulk density group. Star

symbols indicate statistically significant differences (p < .05) between the measurements
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saturation was not affected by changes in pore radii, hence

the main contributor to flow was the size of the pore net-

work. With reference to the ERT results, soils with a higher

porosity also had a higher percentage of resistivity model

cells changed over time by the percolating solution (Figure 5).

Garré et al. (2011) effectively used ERT to monitor soil mois-

ture variability in soil columns. At the same scale, our result

underlines ERT was also effective in delineating different soil

solution percolation rates reflecting different soil bulk densi-

ties. Perret, Prasher, Kantzas, and Langford (2000) showed

the complexity of pore structure in flow dynamics, reveal-

ing that dead-end branches or cavities as part of pore network

determined low velocity through soil. Similarly here, the dif-

ference in resistivity rate of change between columns, given

by the progressive proportion of resistive ERT model cells

(Figure 5), can be viewed from the perspective of pore net-

works with different structures, as columns with higher rates

of change also showed higher values of pore connectivities.

Larger pore networks typically display higher connectivities

(as it appeared in our case), but the shape of this relation-

ship is not a linear and depends on soil type and manage-

ment (Jarvis, Larsbo, and Koestel (2017). A well-connected

network enables the infiltrating fluid to reach more regions of

the soil volume, essentially allowing it to saturate more uni-

formly. Luo, Lin, and Schmidt (2010) established that X-ray

CT-derived pore connectivity and macroporosity of a soil col-

umn drive its saturated hydraulic conductivity. In our study,

compaction reduced the overall porosity and connectivity by

effectively blocking pore channels that facilitate the connec-

tion between volumes of the pore network, thus also inhibiting

the hydraulic conductivity. According to Rabot, Wiesmeier,

Schlüter, and Vogel (2018), such inferences about connectiv-

ity of the pore network can in turn be used for the assessment

of soil biota, as well as for water and gas transport.

3.3 Relationship between porosity and
change in electrical resistivity

3.3.1 Qualitative assessment

In the previous subsection, we discussed the link between the

pore structural parameters (Figure 6) and bulk electrical resis-

tivity change (Figure 5) during the infiltration. We sought to

explore the distribution of such changes across the 3D soil vol-

ume in greater detail. As data showed in Figure 5, by TS 20,

the gradient of soil resistivity change has flattened. Therefore,

by comparing the soil resistivity between TS 1 and TS 20, we

effectively compare soil resistivity in the final stage with the

soil resistivity in the incipient stage of the infiltration. As a

consequence, the change in resistivity between TS 1 and 20

was calculated using Equation 7. In Figure 7, we compare the

F I G U R E 7 Left: Three-dimensional (3D) digital reconstruction

of the pore volume as obtained following X-ray computed tomography

(CT) image processing. Pore volumes correspond to one sample per

bulk density group (shown in light gray). Red outlines indicate areas of

underdeveloped porosity. Right: Electrical resistivity tomography

(ERT) model cells (of the same samples shown on the left) that

exhibited a change in resistivity >10% over the (top) whole column and

(bottom) same region used for X-ray image processing
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F I G U R E 8 Relationship between the change in resistivity (computed between time step [TS] 1 and TS 20) and soil porosity for G1. The red

dots represent the average measurements corresponding to the 128 voxels used to divide the soil volume. Blue error bars represent the standard error

of the mean. The green line corresponds to the Waxman–Smits estimations obtained using Equations 6 and 7

distribution of pore space with the distribution of electrical

model cells that had a change in resistivity >10% between TS

1 and 20. The values of resistivity change do not have the same

upper boundary, as we wanted to show that the magnitude of

change is indeed different between samples. On the 3D recon-

structions of the pore space, we marked regions where pores

were scarce, not present, or not resolvable (red outlines in

Figure 7), and hence solution cannot percolate. Concurrently,

in the same regions within the ERT models of resistivity

change, a considerable (>10%) change in resistivity was not

detected. A similar qualitative relationship between tomog-

raphy outputs was observed by Olsen et al. (1999), where

very resistive areas of ERT models were related by a denser

material (e.g., stone) as revealed by X-ray CT images. Also,

the available pore space across the sample decreases with

increasing bulk density (a potential effect of compaction). A

qualitative relationship between the two outputs is observable

(Figure 7), even for the columns with the highest bulk density,

which implies that providing pore connectivity, the contribu-

tion of pore solution salinity is considerable to the overall bulk

electrical resistivity even when the pore space is reduced (G3

has porosity values of approximately a third of G1, Figure 6a).

3.3.2 Quantitative assessment

A quantitative relationship between the two output models

(resistivity change and pore spatial distribution) is required

in order to be able to assess the impact that pore network

structure has on the hydrodynamic behavior of soil. Estimated

average resistivity changes for every subvolume voxel are

verified against the existing pedophysical theory (Figure 8).

The expected (model) resistivity change values were obtained

using Equation 6 and X-ray CT estimated porosity. These are

shown against the average pore space for the same voxels

(Figure 8) in order to underline spatial correlation. The WS-

estimated values correlated very well with the voxel average

measurements, with a very high Pearson correlation coeffi-

cient (.94) between the two datasets. The standard error for

the porosity error was larger for greater values of resistiv-

ity change. This is a spatially localized effect, but it reverts

to the observations made earlier on the bulk resistivity evo-

lution over time (Figure 5). Due to a larger available pore

space, and hence more available pore solution, the homog-

enization process between the resident and the infiltrating

solution takes longer. Also, macropore channels of similar

volumes do not necessarily share the same pore connectiv-

ity, which imposes different susceptibilities to preferential

flow (Jarvis et al., 2017). This, in turn, determines different

homogenization rates and consequently different pore solu-

tion conductivities. Therefore, we postulate that for this soil

type with its intrinsic physical properties, volumes of poros-

ity larger than 10% are indistinguishable using time-lapse

ERT. This implies that the overall structure of the soil directly

influences the capability of our tomographic method (ERT)

to distinguish between subvolumes of different porosities.

For small changes in resistivity (<20%), we observed a dis-

agreement between measurements and the WS curve. The



CIMPOIAŞU ET AL. 13 of 15Vadose Zone Journal

theoretical model predicts that lower porosities than the ones

measured should account for the changes in electrical resis-

tivity observed. However, in reality, pores are not perfectly

interconnected; thus, a certain proportion of the pore space

does not participate to the solution percolation in soils (Koes-

tel et al., 2018; Perret et al., 2000). Therefore, a pore discon-

nected from the main flow path will contribute to an increase

in total porosity but will fail to contribute to changes in electri-

cal resistivity. On the other hand, the disagreement can be per-

ceived as an overestimation of electrical parameters. The ERT

monitors solute flow in near-real time, so during a TS acqui-

sition, solute continued to move inside the column, which

determined temporal smearing of electrical resistivity values

(Slater et al., 2002).

Despite the assumption that changes in pore solution salin-

ity would drive the resistivity changes, there was more cer-

tainty in our electrical model results when enhanced by com-

plementary datasets (Everett, 2013), such as the soil columns’

corresponding pore network. The X-ray scans show the spa-

tial distribution of porosity across an individual soil sample

in detail. The variability in electrical resistivity can now be

explained based on the porosity variability across the sample.

Furthermore, assuming that the porosity does not explain the

resistivity variability, there must be other pedophysical fac-

tors responsible (e.g. organic material, increased salinity, and

clay aggregates; Samouëlian et al., 2005), hence establishing

a way to quantify their effect. It is however worth mention-

ing that this pedophysical model is only valid for bare soil.

Therefore, if future studies consider soil with roots, additional

uncertainty arises and needs to be addressed (Rao et al., 2020;

Werban, Al Hagrey, & Rabbel, 2008). In addition, one must

consider that an ERT model can show misleading variabil-

ity due to factors contributing to its uncertainty, such as reg-

ularization, error model, and inversion related artifacts (dif-

ferent electrode contact impedance, finite electrode size). As

the resolution used in this study only allows the quantifica-

tion of macropores, the good fit between estimates and mea-

surements suggests that macroporosity alone accounts for the

detectable changes in electrical resistivity, hence the changes

in pore solution concentration. Also, from the visualization of

the pore network, even though it gives an appreciation of the

soil hydraulic capability (e.g., water holding capacity, infil-

tration speed; Anderson et al., 2003; Tracy et al., 2015), we

cannot infer details about the 3D pore solution percolation in

near real time. Therefore, information from the two methods

is complementary and enables a more comprehensive under-

standing of the soil hydrodynamic behavior.

4 CONCLUSIONS

We have presented a methodology, which combines the

strengths of two noninvasive tomographic methods, X-ray

CT and ERT, in order to expose the hydraulic characteris-

tics of a soil at different bulk densities. The former facilitated

visualization and quantification of the soil pore architecture

(distinguishing its size and shape), and the latter gave four-

dimensional models representative of a tracer saline solution

infiltration through the soil matrix.

We considered the effect that soil structure (from X-ray CT)

had on solution percolation distribution over time (from ERT).

Even though the soil columns had the same soil texture and

the tracer had the same entry infiltration rate, the lower density

soils revealed different percolation rates through faster spatial

changes in electrical resistivity. Taken separately, X-ray CT

could not describe or monitor the infiltration, and the resistiv-

ity ERT alone could not depict the fluid pathways due to its

inversion model limitation. On the other hand, together, the

X-ray pore structural parameters exposed a decreasing pore

connectivity with increased bulk density, which explained

the inhibited infiltration rates resolved through ERT bulk

resistivity estimates. Furthermore, the spatial distribution of

electrical resistivity change was collocated with areas densely

populated by pores, indicating the accurate position of perco-

lation channels. However, areas of porosity larger than 10%

were indistinguishable using time-lapse ERT for our experi-

mental setting, an effect of the overall structure of the pore net-

work. Also, we obtained a good correlation (.94) between our

data and estimates from a WS pedophysical model of electri-

cal resistivity. A disagreement was observed for small changes

in resistivity (<20%) attributed to temporal smearing. These

results demonstrate the benefits of a conjunct application of

ERT and X-ray CT to study soil hydrodynamics and underline

the potential this methodology has to monitor and character-

ize hydrodynamic processes in the vadose zone.
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