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Abstract: Multi-temporal Interferometric Synthetic Aperture Radar (MTInSAR) is a solid and reliable
technique used to measure ground motion in many different environments. Today, the scientific
community and a wide variety of users and stakeholders consider MTInSAR a precise tool for ground
motion-related applications. The standard product of a MTInSAR analysis is a deformation map
containing a high number of point-like measurement points (MP) which carry information on ground
motion. The density of MPs is uneven, and they cannot be extracted continuously at large scale due
to geometrical distortions and unfavourable landcover. It is a good practice to assess the feasibility of
the interferometric analysis ahead of data processing. This technical note proposes a ready-to-use
set of tools aimed at updating existing methods for modelling the effects of local topography and
land cover on MTInSAR approaches. The goal of the tools is to provide InSAR experts and non-
experts with a fast and automatic way to derive visibility maps, useful for pre-processing screening
of a target area, and to forecast the expected density of MP over a specified area. Moreover, the
visibility maps are a valid support for users to better understand the available standard and advanced
interferometric results. Two workflows are proposed: the first generates the so-called Rindex map
(Ri_m) to estimate the influence of topography on MP detection, the second is used to derive a land
cover-calibrated Ri_m seen as a probabilistic model for MP detection (MPD_m). The proposed set of
tools was applied in the context of the Alpine arc, whose climatic, morphological, and land cover
characteristics represent a challenging environment for any interferometric approach.

Keywords: multi temporal interferometry; InSAR; visibility maps; measurement points density;
Alpine arc; radar remote sensing

1. Introduction

Over the last two decades Multi-temporal Interferometric Synthetic Aperture Radar
(MTInSAR) has been successfully applied in many environments and for different ap-
plications, ranging from the mapping of geohazards over wide areas to monitor single
infrastructures [1–4]. MTInSAR is recognized by the scientific community, users, and stake-
holders as a reliable and precise ground motion measurement tool which is complementary
to conventional mapping and monitoring methods, e.g., [5–7].

Today, the rapid diffusion of MTInSAR has been fostered by the launch of the Sentinel-
1 constellation, operated by the European Space Agency in the framework of the Copernicus
Programme [8]. The regular six day acquisition plan combined with the free and open data
policy makes the radar images acquired by this sensor the best solution for significantly
widening the range of MTInSAR applications [9–11]. The data volume offered by Sentinel-1,
together with the consolidation of processing algorithms and the increasing computational
capacity of processing units paved the way for the design and set up of nationwide Ground
Motion Services (GMS) [12–18] and satellite-based operational monitoring services [19–22].
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These technical advancements and processing experiences led to the definition and current
implementation of a breakthrough in the MTInSAR sector: the European Ground Motion
Service (EGMS, [23]). The EGMS, funded by the European Commission under the responsi-
bility of the European Environment Agency (EEA) will provide standardized, harmonized,
free, and open MTInSAR products covering the Copernicus Participating States [24].

This service represents an unprecedented opportunity to further increase the use of
MTInSAR products for monitoring and mapping different kinds of geohazards and ground
motion in general. The involvement of users is certainly a key factor for guaranteeing an
effective user uptake. One major challenge is posed by the nature of MTInSAR data which
are considered to be “raw” products whose interpretation can sometimes be misleading
if the intrinsic limitations of the technique are not known or not well understood by the
final users. Coherence loss due to fast motion, surface changes (e.g., open pit mining),
presence of unfavorable surfaces (e.g., forests), and the role of topography are the most
important constraints hampering the effectiveness of MTInSAR for the detection of ground
movements.

In this regard, the evaluation of the effects of these constraints supports users in the
assessment of the likelihood of identifying measurement points (MP) over specific locations
and, more in general, provides an estimation of the feasibility of the interferometric analysis
in one area before the radar data are processed [25]. MP is a broad term that can indicate
persistent scatterers, distributed scatterers, or both; in general, MP refers to all the points,
characterized by a value of velocity and a time series, which form a deformation map, the
basic product of an MTInSAR processing. Plank et al. [26] and Notti et al. [27] developed
two of the most used models whose goal is the generation of the so-called “visibility maps”.
These models take into account the spatial distortions in radar images due to the sensor
acquisition geometry with respect to the local topography and the land cover characteristics
in relationship to the wavelength used by the sensor. Both approaches are intended to
be replicable in a standard Geographic Information System (GIS). An important part of
such methodologies is the generation of shadow/layover (Sh/Lh) masks able to simulate
the negative effect of topography on MP detection. In Plank et al. [26] the Sh/Lh masks
were derived using Python and Visual Basic scripts to simulate separate observer points
for each pixel of a Digital Elevation Model (DEM) used as a reference. Notti et al. [27]
obtained these masks by calculating a hillshade surface where the sun position represents
the position of the satellite in terms of line of sight (LOS), azimuth, and incidence angles.

This technical note proposes a set of ready-to-use tools aimed at updating the above-
mentioned approaches. The goal of the tools is to provide to MTInSAR experts and non-
experts a quick and automatic way to derive visibility maps which are useful to determine
where measurement points will be obtained (pre-processing screening) and to understand
better available interferometric products, answering one of the most common questions
asked by users: why does my area of interest have a low density of measurement points?
Moreover, the maps can be useful to critically analyze advanced interferometric products
such as the time series which can show seasonal changes related to land cover changes
generating short-term coherence variations, or the vertical and East–West reprojected
interferometric products which relies on data availability in both orbits within a pre-
defined resampling cell. These maps are a valuable support for MTInSAR analyses in
mountain areas with a special focus on landslide studies that usually suffer from the
presence of geometrical and land cover effects.

Two workflows are proposed: the first generates the so-called RIndex map (Ri_m),
i.e., the layer used to estimate the influence of topography on MP detection, the second
provides as output a land cover-calibrated Ri_m layer that takes into account the effect of
the different land covers and does represent the final product of the proposed methodology.
This product is seen as a probabilistic model for MP detection, hereafter referred to as
“Measurement Points detection map” (MPD_m). The maps are generated by using open
resources platforms as the Sentinel Application Platform (SNAP, [28]) and GIS software.
The whole procedure is automatized with limited user interaction on the input data. The
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tools are intended for various scale applications with as reference area the entire Sentinel-1
frame (~250 by 180 km); they can also work also on smaller subsets or merged frames. The
Alpine arc was chosen as a test area for the methodology.

2. Input Data and Test Area

In this work, synthetic aperture radar (SAR) images acquired by Sentinel-1A, one of
the twin satellites of the Sentinel-1 constellation [8], were used.

The images were downloaded from the Copernicus Open Access Hub [29] in the
ground range detected (GRD) format. Level-1 GRD images are multi-looked and projected
to ground range using an Earth ellipsoid model. As a result, the images have approxi-
mately square spatial resolution pixels (~10 by 10 m) and a reduced speckle. The Level-1
products include amplitude (virtual band) and intensity information for both VH and VV
polarization with each image size being in the order of 800 Mb–1Gb. The methodology
exploited six different frames in ascending and five in descending orbit (red and blue box
in Figure 1, respectively). A total of 11 images is sufficient to cover the entire Alpine arc in
both orbits.

Figure 1. Footprint of the ascending (in red) and descending (in blue) SAR images over the Alpine arc. The 30m Copernicus
DEM is used as the background image.

The Copernicus 30 m DEM [30] was used to orthorectify the SAR images and derive
intermediate outputs required by the methodology. The Copernicus DEM is made available
by the European Space Agency at no cost, and it is integrated in SNAP software. The 30 m
Copernicus Dem has a global coverage thanks to the combination of WorldDEM, product
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based on the radar satellite data acquired during the TanDEM-X Mission, infilled on a local
basis with the following DEMs: ASTER, SRTM90, SRTM30, SRTM30plus, GMTED2010,
TerraSAR-X Radargrammetric DEM, and ALOS World 3D-30 [30].

In addition to the SAR images and the DEM, the methodology also requires informa-
tion on the land cover that is extracted from the Corine Land Cover (CLC) map distributed
by the European Environment Agency as part of the Copernicus Land Monitoring Service
and referred to year 2018 [31]. The third level of the CLC classification was used as a
reference in this work, for a total of 44 land cover classes. The minimum mapping unit is
25 ha and the minimum width of linear elements is 100 m.

The tools implemented to model topographic visibility and land cover suitability
of MTInSAR approach were tested, refined, and tuned over the Alpine arc. The Alpine
arc has an extension of approximately 300,000 km2 and stretches across five countries:
Italy in the Southern portion and, from West to East, France, Switzerland, Austria and
Slovenia in the North (Figure 1). The Alpine arc was chosen as an excellent laboratory
to test the performances of the tools considering the high relief energy, the presence of
narrow valleys which are prone to various geometric distortions and the occurrence of land
cover classes (e.g., forest, glaciers, perennial snow, water bodies) which typically cause
temporal decorrelation and prevent the identification of permanent scatterers. In fact, it
is possible to have within the same SAR image flat areas, e.g., the Po plain or the Venice
lagoon, where the landcover dictates the detection of MP and areas with high relief energy
where the geometric distortion plays a fundamental role. Moreover, the Alpine arc is a
common target for MTInSAR-based landslide studies considering the amount of slope
phenomena and their impact in this area every year. More than 150,000 landslides are
mapped along the Italian sector of the Arc alone (with reference to the Italian landslide
inventory, IFFI [32,33]).

3. Methodology

The methodology encompasses the generation of two maps for both ascending and
descending geometries: the R-index map (Ri_m) and the land-cover tuned Ri_m, i.e., the
measurement points detection map (MPD_m). The workflow of the entire methodology is
shown below (Figure 2).

3.1. Rindex Map (Ri_m)

The Rindex map (Ri_m) is a pixel by pixel representation of the relationship between
the geometry of acquisition of the satellite (slant range) and the topography (slope angle
and slope aspect). All the terrain effects which may prevent or allow the detection of MP
are related to this geometrical dependency.

Both SNAP and a GIS software were exploited for producing the Rindex map. SNAP
was used to analyze the SAR images and the GIS to merge SAR- and DEM-derived layers
into the Ri_m. Since the same steps have to be run individually for each of the eleven
Sentinel-1 images, a graph builder was set up to automatize the process in SNAP (Figure 3—
Supplementary File S1). The graph consists of two steps, and it allows extracting all the
input data needed for the Ri_m generation:

• SAR Simulation—the module generated a simulated SAR image using the Copernicus
30m DEM and the orbit state vectors (both downloaded by the tool automatically).
The module allows the generation of the Shadow/Layover (Sh/Lh) mask which is
generated by means of a 2-pass algorithm [34] and which was added to the metadata
of the original SAR image as a new band;

• Range Doppler Terrain-Correction—this module translated the SAR coordinates into
a geographic coordinate system compensating for geometrical distortions and derives
a geometrical representation of the image as close as possible to the reality. The
module was implemented through the Range Doppler orthorectification method [35]
for geocoding radar images from single 2D raster radar geometry. The DEM and
the local incidence angle map were created as new bands in the final product. The
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coordinate system was set to WGS 84 GCS (Geographical Coordinate System) and the
pixel spacing was 8.98 × 10–5◦ (corresponding to ~10 m).

Figure 2. Workflow of the developed semi-automatic methodology. Ri_05minus contains Rindex
values lower than 0.5, i.e., those pixels where the influence of topography is the highest. CLC_05plus
contains Rindex values higher than 0.5, i.e., those pixels where the influence of land cover is higher
than the topography. CLC_Slomask contains pixel in flat areas where the MP detection is influenced
only by the land cover. These intermediate products are explained more in detail in Section 3.2.

Figure 3. Graph builder made in SNAP for processing each SAR image.

SNAP allows the use of batch processing so that multiple images can be processed
in parallel. The final product is a single image with 3 bands: (i) the shadow and layover
mask; (ii) the elevation map; and (iii) the local incidence angle. All the images keep the
pixel spacing of the input GRD SAR images.

The Sh/Lh mask considers two geometrical effects. The shadow effect occurs when
the beam cannot illuminate a parcel of terrain because of a physical barrier. Likewise, the
layover effect indicates the pixels affected by distortions occurring when the front of the
radar beam reaches the top of a slope before it reaches its base [36]. The resulting map
produced by SNAP is featured by pixels with 0 value for areas not affected by geometric
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distortions, 1 for pixels in layover, 2 for pixels in shadow, and 3 for pixels in both layover
and shadow. The latter effect is more likely to occur in far range and on slopes facing
the same direction of the beam or in near range for small incidence angles. The local
incidence angle map contains the pixel by pixel value of the incidence angle, namely the
angle between the incident radar beam and a line that is normal to that surface.

The single bands for each image were exported as GeoTIFF images to be successively
imported into a GIS environment. The entire procedure for computing the Rindex was
automatized by a model builder in GIS; in this case the ArcGIS software, produced by
ESRI was used (Figure 4). The model for automatically generating the Ri_m for an area
of interest is attached as Supplementary Materials (Rindex tool in Supplementary File S2).
The description of the main model’s block is reported below.

Figure 4. Block chain of the Rindex map model builder developed in ArcGIS. The input data are in dark blue, processes
in orange, optional processes in yellow, optional inputs in purple, results of the intermediate process in green, additional
parameter in light blue and final output in red. The “P” indicates a required input parameter. Inputs: DEM, digital elevation
model; SAR-derived Layover & Shadow mask, mask with pixel values indicating the presence of geometrical effects as
output of the graph builder of Figure 3; SAR-derived Local Incidence Angle, per pixel estimation of the local incidence
angle; AoI, area of interest. Intermediate outputs: Slope_map, raster file with slope angle per pixel; Aspect_map, raster
file with the direction of slope per pixel; Sh/Lh mask, binary raster (1 = no geometric effects, 0 = shadow/layover areas);
Flat_area, mask with pixels with null or very low slope values. Final output: Ri_m, Rindex map for the whole image;
Ri_m_AoI, Rindex for the area of interest.

The input DEM was used for the creation of derived products, i.e., slope (the rate
of variation in elevation between closest cells) and aspect maps (the facing direction of
the slope with respect to the North). The resulting slope map had to be reclassified for
extracting the Flat_area layer. Flat areas were excluded from the calculation of the Ri_m
since they are not affected by any geometrical distortion due to the LOS of the sensor. In
the tool window, the operator has the possibility to change the threshold for identifying
the flat areas, according to the area of interest, and the characteristics of the input DEM.

The SAR-derived Sh/Lh mask needed a reclassification from the original one produced
by SNAP; a binary file was created by assigning a value equal to 0 for the pixels affected by
layover and/or shadow and 1 for the others. The SAR-derived local incidence angle was
directly included in the Rindex calculation without manipulation. All of the input data
must have the same coordinate system.

Equation (1), modified from Notti et al. [27] was used to calculate Ri_m, masking
out flat areas and zones affected by geometrical distortion. The difference between the
ascending and the descending orbits for the Rindex calculation is the LOS azimuth angle.
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For this reason, the value of this angle was separately required as input in the automatic
procedure. All the layers and angles required in Equation (1) must be in radians.

Ri_m = − sin((Slope_map[rad]× sin(Aspect_map [rad] + LOS Azimuth angle[rad])− SARderived Local incidenceangle [rad]))
×Lay_Shad_mask × Flat_area

(1)

At the end of the Rindex calculation, the tool allows extracting also the results for a specific
area of interest (AoI). For this reason, an AoI is required in the window tool as input data.
The Rindex map is classified in 4 classes of visibility (Table 1).

Table 1. Rindex map (Ri_m) classification.

Ri ≤ 0 Shadow/Layover/Flat Area
0 < Ri < 0.25 High impact of terrain geometry

0.25 < Ri < 0.5 Medium impact of terrain geometry
0.5 < Ri < 1 Low impact of terrain geometry

3.2. Probability of MP Detection Map (MPD_m)

The second step made in the GIS environment relies on the combination of the Ri_m
with the CLC. As for the Ri_m calculation, a model builder was realized to automate this
process as much as possible (Figure 5). The goal of the procedure was to build a map where
both topographic and landcover effects are considered.

Table 2. Conversion of the CLC classes in values for its classification and use in the probability MP detection tool. Values
are referred to a MTInSAR processing identifying both persistent and distributed scatterers.

CLC Code CLC Class Description Value CLC Code CLC Class Description Value

0mask 05mask

131 Mineral extraction sites 0 111 Continuous urban fabric 1
133 Construction sites 0 112 Discontinuous urban fabric 1
213 Rice fields 0 121 Industrial or commercial units 1
222 Fruit trees and berry plantations 0 122 Road and rail networks and associated land 0.75
223 Olive groves 0 123 Port areas 1
311 Broad-leaved forest 0 124 Airports 1
312 Coniferous forest 0 132 Dump sites 0.5
313 Mixed forest 0 141 Green urban areas 0.5
335 Glaciers and perpetual snow 0 142 Sport and leisure facilities 0.75
411 Inland marshes 0 211 Non-irrigated arable land 0.5
412 Peat bogs 0 212 Permanently irrigated land 0.5
421 Salt marshes 0 221 Vineyards 0.5

422 Salines 0 241 Annual crops associated with permanent
crops 0.5

423 Intertidal flats 0 242 Complex cultivation patterns 0.5

511 Water courses 0 243 Land principally occupied by agriculture,
with areas of natural vegetation 0.5

512 Water bodies 0 244 Agro-forestry areas 0.5
521 Coastal lagoons 0 321 Natural grasslands 0.5
522 Estuaries 0 322 Moors and heathland 0.5
523 Sea and ocean 0 323 Sclerophyllous vegetation 0.5

324 Transitional woodland-shrub 0.5
331 Beaches, dunes, sands 0.75
332 Bare rocks 1
333 Sparsely vegetated areas 0.75
334 Burnt areas 0.75
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Figure 5. Block chain of the probability of MPD_m developed in ArcGIS and derived by the combination of the Ri_m and the CLC. Input data and output location are in dark blue,
processes in orange, optional processes yellow, optional inputs in purple, results of the intermediate process in green, fields of the feature to rasterize in light blue and final output in red.
“P” indicates a required input parameter. Inputs: CLC_0m_r, CLC 0 mask (raster) according to Table 2; CLC_05m_r, CLC 05 mask (raster) according to Table 2; workplace, save and storage
directory. Intermediate outputs: CLC_0m_AoI and CLC_05m_AoI, CLC masks derived according to Table 2 for the area of interest; DEM_AoI, digital elevation model for the area of
interest; Ri_0m, Ri_m which contains the class of CLC unfavorable for the MP detection (CLC_0m); CLC_05minus, CLC_05plus & CLC_Slomask, see the caption of Figure 2. Final output:
MPD_m, measurement points detection map.
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The MPD_m tool (Probability_MP tool in Supplementary File S2) requires as input
data the DEM, the AoI, the Corine Land Cover, and the Ri_m. The CLC has to be classified
with value 0 for the classes where is very unlikely to detect MP and values equal to 0.5,
0.75 or 1 for the classes where different likelihood degrees to have MP can be assessed in
advance (Table 2).

The following classification has to be added in the CLC attribute table as two new
fields: one assigning 0 value to the classes where the likelihood to detect MP is null and
1 for the other classes and a second field with the respective values (0.5–0.75–1) for those
classes equal to 1 in the previous step, leaving 0 or null for the others.

The inputs for the model builder are:

• DEM—it is possible to use a DEM covering the AoI or bigger;
• The area of interest in shapefile format (optional);
• The raster of the classified CLC according to the 0mask (CLC_0m_r) and the 05mask

(CLC_05m_r), Table 2;
• The the Ri_m derived as product of Equation (1).

The procedure to generate the probability of MP detection map encompasses the
creation of three intermediate maps to be mosaicked in order to have a single final product
(Figure 5):

1. A mask for pixels with Ri_m values lower than 0.5 (Ri_05minus), where the topogra-
phy has an impact greater than landcover and hampers the retrieval of MP;

2. A mask for pixels with Ri_m values higher than 0.5, where the land cover has an
impact higher than the topography (CLC_05plus). This mask is combined with the
reclassified CLC map containing not null values (Table 2, 05 mask column);

3. A mask for the flat areas removed from the Ri_m, added back to the system to consider
the effect of land cover (CLC_Slomask). The mask is combined with the reclassified
CLC map containing not null values (Table 2, 05 mask column). In this case the
landcover is the only contributing factor.

The value 0.5 was chosen on the basis of simulations carried out on available MTInSAR
analysis in some parts of the Alpine arc. Real data show that after the value 0.5, the density
of MP does not vary with a further increase of the value of Ri_m. This evidence has also
been reported by Notti et al. [27]. It is worth highlighting that the Ri_m considered here
contains also all the pixels where the CLC is equal to zero according to Table 2 (0 mask
column). The split between the two components of the Ri_m was carried out through a
“set-null” Python script implemented in the raster calculator module.

Ri_05minus, CLC_05plus, and CLC_Slomask were mosaicked to obtain the final map
(MPD_m). The MPD_m ranges from values of −1 to 1 and is reclassified in five classes
(Table 3) for facilitating the visualization and interpretation.

Table 3. Probability of MP detection map (MPD_m) classification.

MPD ≤ 0 Very Low Probability of MP Detection
0 < MPD < 0.25 Low probability of MP detection

0.25 < MPD < 0.5 Medium probability of MP detection
0.5 < MPD < 0.75 High probability of MP detection
0.75 < MPD < 1 Very high probability of MP detection

4. Results

The ascending (Figure 6a) and descending (Figure 6c) maps show the Ri_m for the
whole Alpine arc, frame by frame. In the Ri_m, flat areas were masked out since they
can be reasonably assumed unaffected by geometric distortions related to the radar side-
looking viewing geometry and local topography. The close-ups for ascending (Figure 6b)
and descending (Figure 6d) geometries highlight the symmetricity of the Ri_m maps,
so confirming the reliability of the two results. These maps visualize the effect of slope
gradient and direction on the visibility of the SAR system. Slopes exposed to South or
North are substantially not visible in both orbits, due to the near-polar orbit of all SAR
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constellations available nowadays; in these areas the Ri_m show very low values (close
to 0).

Figure 6. Rindex map of the entire test area in ascending (a) and descending (c) orbits and close-ups for ascending (b) and
descending (d) tracks.

The Ri_m reflects the visibility of the radar satellite for the slope areas, but it does
not account for the landcover information. When the Ri_m is combined with the CLC
map, the areas with different probability of measurement point detection (MPD_m) can be
highlighted and categorized. For the Alpine arc test area, the MPD_m was assessed in both
ascending (Figure 7a) and descending (Figure 7c) orbit, frame by frame.

Flat areas in yellow, indicating a medium probability of MP detection, correspond
to agricultural surfaces, while the green portions, showing high or very high probability
of MP detection, correspond to urban and peri-urban areas or the road/infrastructure
network. The northern sector, corresponding to the mountainous areas of the Alpine arc,
shows less homogeneous maps, whose spatial variability has to be analyzed at a more
detailed scale.

In the zoomed-in area of the North-East of Valle d’Aosta Region, it is possible to
recognize a symmetry also in the MPD_m between the ascending (Figure 7b) and descend-
ing (Figure 7d) maps. This effect is due to the strong dependency of the MPD_m to the
Ri_m in mountainous territories, where the topography dictates the MP detection. These
areas suffer from geometrical distortions even if the land cover could be suitable for MP
detection. For the Valle d’Aosta Region, for instance, extensive presence of forest, shrub,
and snow cover decreases the probability of having MP (Figure 7b,d).
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Figure 7. Probability of MP detection map of the entire test area in ascending (a) and descending (c) orbits and close ups for
ascending (b) and descending (d) tracks.

These considerations regarding Ri_m and the MPD_m stands for both ascending
(Figure 6b, Ri_m and Figure 7b, MPD_m) and descending (Figure 6d, Ri_m and Figure 7d,
MPD_m) geometries.

The MPD_m was analyzed, in both ascending and descending geometries, to quantify
the contribution of the topography and the landcover effect over the Alpine arc. Frame by
frame, the analysis has included the number of pixels: (i) covered by the classes of CLC
that most likely prevent the MP detection; (ii) affected by the Shadow/Layover effects; (iii)
showing high values of MPD_m due to favorable land cover or flank orientation/slope; and
(iv) exhibiting low to medium values due to a combination of land cover and unfavorable
line of sight (in orange) (Figure 8). The results depend on the geographical coverage of the
Sentinel-1 frame and on the geometry of acquisition. In general, land cover seems to have a
bigger role in the detection of MP whereas geometrical effects are more localized and differ
at flank scale.

The higher percentage of pixels of MPD_m in high or very high classes can be rec-
ognized in the descending track, probably due to the favorable combination of the right
side-looking geometry with the local morphology of Alpine valleys. These two parameters
influencing the visibility are considered in the local incidence angle and the LOS azimuth
angle in the Ri_m calculation.
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Figure 8. Analysis of the percentage of pixels affected by topography and landcover effect of each frame, in both ascending
and descending track.

Hereafter there follows a brief estimation of the capacity and time requirements
needed to run the tools. The SNAP processing steps require ~12 minutes with a laptop
(Intel Core i5 CPU 1.6 Ghz 16Gb RAM 64bit) and ~10 minutes with a workstation (Intel
Core i7 6700 CPU 3.40 Ghz 32GB RAM 64bit). The procedure to derive Ri_m was tested
both on the laptop and on the workstation with the following results: ~15 minutes for the
laptop and ~11 minutes for the workstation, respectively. The MPD_m procedure required
more processing time due to the higher number of modules. In this case, the computing
time was ~44 minutes for the laptop and ~22 minutes for the workstation.

The two ArcGIS tools could be also implemented and merged into a single tool, since
the Ri_m map is an input file of the probability MP detection map. In this work, it was
preferred to maintain the separation of the two products for two main reasons:

• The operator could be interested only on the Ri_m map and, not necessary, to the
probability of MP detection map. For example, for investigators carrying out classical
differential interferometric analysis;

• The required processor characteristics can be significantly larger so drastically in-
creasing the processing time and the possibility that the process can crush or get
stuck.

Comparison with Existing Interferometric Dataset

This section provides a comparison between the probabilistic evaluation offered by the
MPD_m and available interferometric data covering a portion of the western Alpine arc. In
particular, MTInSAR products were obtained from the Sentinel-1-based monitoring service
of the Valle d’Aosta Region (northwest Italy). Radar images were processed by means of
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a parallelized SqueeSAR approach; thus, both persistent and distributed scatterers were
available, maximizing the point density. More information on this service is available in
Raspini et al. [19] and Solari et al. [28].

The deformation maps are composed of ~370,000 MP for each orbit and cover a
territory of 3261 km2. The average point density is ~115 MP/km2. This region is challenging
for the MTInSAR analysis because of the geometry of the valleys and the land cover. A
value of MPD_m, i.e., of “radar visibility”, was extracted for each point of both ascending
and descending dataset. The values of MPD_m were classified according to Table 3. For
each class the relative density was calculated, i.e., the ratio between the number of MP and
the area covered by all the pixels for each class, and then the density ratio between the
MP density for class and the average MP density for the dataset was derived. The results
are presented in Figure 9. As expected, the density ratio increased with the increase of the
MPD value, reaching a maximum of five times the average density of MP for the highest
visibility class.

Figure 9. Density ratio calculated for the derived MPD_m over Valle d’Aosta Region.

5. Discussion

The set of tools presented in this technical note improve and automatize pre-existing
methodologies for the generation of the so-called interferometric visibility maps. The
proposed approach has some advantages:

• The straightforward reproducibility and tuning of the tools. The methodology is
based on three main workflows whose components are implemented with opensource
datasets and an open-source software (SNAP), in the case of Shadow/Layover and
local incidence maps, or a standard GIS software. This allows a wide variety of
potential users to reproduce elsewhere the approach proposed and even change or
tune the processors. There is no limitation regarding the type of input SAR images;
although SNAP was developed for the Sentinel constellations, it is able to read and
analyze the most common SAR image formats coming from different SAR sensors
(e.g., Cosmo-SkyMed and TerraSAR-X);

• The Shadow/Layover maps used to mask the areas where strong geometrical effects
prevent the MP detection are directly generated in SNAP without the need for specific
scripts or simulations. This saves time and computing resources;

• The automatization of the different processes allows for a reduction of the computing
time; as shown in the Section 4, the entire workflow can be run by using a laptop with
medium-high performances. In terms of disk space, every processed frame occupies
~10 Gb including inputs (Sh/Lh and local incidence maps, DEM, CLC), intermediate
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products (the Ri_m) and final outputs (MPD_m). These characteristics make the set of
tools well suited for wide area processing with multiple frames;

• The calculation of the topographic influence on MP detection does not take into
account a single value for the incidence angle as proposed in previous works [26,27]
which assumed the incidence angle at the center of the SAR scene as representative
of the entire frame. This work instead considers the different incidence angle values
for each pixel. This increases the quality of the results, especially when compared
over the entire image frame where the use of a single (averaged) value would lead to
potential over- or underestimation of the real topographic effect in far and near range.
It is worth mentioning that results obtained in neighboring tracks may vary because
of the different viewing geometry in overlapping areas. In this work, the adjacent
frames were processed separately, and a mosaicking operation was not performed to
retain the original value for the pixels in overlap areas. Resampling methods could be
considered by the users.

The methodology does not consider the presence of fast-moving areas (i.e., with
motion higher than ~2 mm/day for 6-days Sentinel-1) or areas with frequent surface
changes (e.g., construction sites). These areas usually fail to provide reliable MP targets,
although a non-linear phase unwrapping method may be used to increase the number of
MP in fast moving areas [37]. To partly address such limitations, the methodology includes
class no. 131 of the CLC nomenclature (“mineral extraction sites”) as one of the landcover
classes where the probability of MP detection tends to zero.

Only the perpetual snow and ice covers are considered in the methodology, as part
of CLC class no. 335. The presence of seasonal snow during the winter season may be an
additional factor preventing MP detection, especially in mountain ranges. This variable
is difficult to estimate a-priori without the use of multi-annual snow models. It is worth
mentioning that the interferometric processing chains usually foreseen internal quality
control procedures for the exclusion of snow-covered images.

The minimum mapping unit used to derive the final visibility map is not based on
the SAR image but on the coarser CLC layer, which can lead to underestimation of the
reachable density of MP. In fact, single objects such as bridges, small roads, or single
buildings are not mapped in the CLC but could be optimal targets for the interferometric
technique. The classification of the CLC (Table 2) is based on the knowledge of the authors
and on previous interferometric results [38]; so, the single value is subjective and can be
tuned by the user depending on the type of data processing and on the wavelength of the
satellite selected. For instance, urban fabric Open Street Map or cadastral map can be used
to refine CLC, or maybe the user can classify optical images to derive a land cover finer
than CLC. If a pure persistent scatterer approach is used or is going to be used to process
the data, the number of CLC classes with null or 0.5 values may need to be increased. On
the contrary, when long wavelength radar images are analyzed (L-band) the vegetated
surfaces provide better backscattering response and a less strict CLC classification may be
used.

6. Conclusions

This paper presents and provides a new set of tools aimed at the generation of in-
terferometric visibility maps over wide areas. The tools leverage and expand the con-
cept of previous approaches. Three workflows are proposed to solve the calculation of
shadow/layover maps and of the influence of topography and land cover on MP detection.
The workflows were implemented in the ESA’s software SNAP and in a standard GIS
environment. The final product of the methodology is a raster map where the pixel value
quantifies the probability of MP detection depending on: (i) the local topography and the
geometry of acquisition of the satellite; (ii) the bandwidth of the sensor; and (iii) the land
cover. The methodology was tested and discussed in the Alpine arc, a challenging scenario
for the energy of the relief and the land cover.
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Although some limitations exist (e.g., CLC minimum mapping unit, fast motions,
seasonal snow cover) the set of tools can provide a qualitative estimation of the radar
visibility of an entire frame in a short time and in an automatized way. Such a product
is useful for a pre-processing screening of an area of interest (i.e., to assess the feasibility
of a wide area processing) and can also be a support to help users interpret standard or
advanced interferometric results and understand, for example, why the MP density is low
or null in a specific location.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/geosciences11060229/s1. The tools developed in SNAP and ArcGIS environmental are
attached as Supplementary Materials along with a instruction.txt file: S1. SAR_TC.gpx for SNAP; S2.
InSAR_Visibility including Rindex and Probability_MP tools (ArcGIS tool format).
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