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ABSTRACT 6 

Geological materials such as rock fragments, microfossils and mineral grains are 7 

continuously being entrained (i.e. reworked) into soil during natural weathering processes. 8 

Distinctive reworked rock types in soil, and specific components of them such as 9 

palynomorphs (organic microfossils), can prove extremely useful in forensic investigations, 10 

i.e. to connect (match) people to places. If the outcrop area of a unique rock is small and well 11 

mapped, it potentially has substantial evidentiary value in soil forensic studies. Furthermore, 12 

clay minerals, geochemical data and minerals may support the presence of a suspect at a 13 

crime scene. Modern pollen and spores extracted from soil samples in forensic investigations 14 

can be invaluable in linking suspects to crime scenes. This is because the majority of 15 

localities, especially those with natural vegetation, have characteristic (often unique) floral 16 

character. Reworked (i.e. largely pre-Quaternary) palynomorphs and other microscopic 17 

fossils may co-occur with the in situ (indigenous) pollen and spores. If these reworked forms 18 

have relatively short geological ranges, they can indicate the age of the bedrock, thereby 19 

further helping to place a person at a location. However, stratigraphically recycled 20 

palynomorphs in the soil can be somewhat rare and sporadic, and many rock units are entirely 21 

or virtually devoid of palynomorphs. Furthermore, glacial sediments such as till can provide 22 

highly mixed reworked palymomorph associations due to their typically heterogenous nature. 23 

These diverse assemblages are frequently highly distinctive hence can potentially provide 24 

very powerful forensic evidence. The potential of geological materials derived from bedrock 25 

in soil for forensic investigations is absolutely clear. Hence, the use of reworked microfossils, 26 

minerals and rock should be considered in any major crime where the evidence includes soil. 27 
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1. Introduction 34 

The in situ, or indigenous, pollen and spores which have been incorporated into the 35 

pedosphere, and the type and composition of soil, can be successfully used to connect a 36 

person or persons with a specific locality. If soil, or any adherent pollen and spores, can be 37 

expeditiously collected from the belongings (e.g. clothing, footwear, tools, vehicle etc.) of a 38 

suspect, it is possible that analysis of that material can help to indicate that the owner was 39 

present at a crime scene (e.g. Popp, 1939; Horrocks et al., 1998; Mildenhall, 2006; Wiltshire, 40 

2009, 2016; Warny, 2013; Babcock and Warny, 2014; Wiltshire and Hawksworth, 2014; 41 

Wiltshire et al., 2014, 2015; Williams et al., 2017; Laurence and Bryant, 2019; Warny et al., 42 

2020). 43 

In many forensic studies, in situ palynomorphs (e.g. pollen and spores) are analysed in 44 

parallel with the chemical/mineral composition of the soil and any characteristic items of 45 

refractory anthropogenic litter such as brick, glass, metal, paper, plastic, synthetic fibre etc. 46 

(Brown et al., 2002). The contemporary pollen/spore assemblages can characterise a specific 47 

location extremely effectively. There are many more plant pollen grain and spore taxa in 48 

comparison to the 12 or so principal silicate mineral species (Moore et al., 1991; Deer et. al., 49 

2013; Klein and Dutrow, 2007). All plants have unique pollen grains or spores, and every 50 

geographical area (normally intra-biome) is characterised by different plant assemblages. 51 

Hence the huge variation in vegetation types, and taphonomic factors such as insects, water 52 

and wind, that modify terrestrial palynomorph assemblages, ensures that the nature of the 53 

diversity and the species spectra are highly distinctive, if not unique, of the majority of 54 

geographical localities. Most pollen and spores are transported various distances away from 55 

the donor (or source) plants by vectors such as insects and wind, rather than being preserved 56 

directly at or below their point of origin (Wiltshire, 2006). The relevant source areas of pollen 57 

and spores varies according to the specific nature of the landscape and the site (Hellman et 58 

al., 2009). For any site, the pollen and spores include a relatively small far-travelled 59 

component. Despite this, pollen/spore recruitment into soil is generally regarded as being 60 

highly localised, especially where the mode of pollen dispersal is entomophilous (Gavin and 61 

Brubaker, 1999). In summary, this means that the in situ pollen and spore assemblage can 62 

normally fingerprint a specific vicinity (Riding et al., 2007). Fungal spores are also extremely 63 

useful in forensic studies The taphonomy of fungal spores is highly complex. Despite this, 64 

most of these fall close to the parent fungal body and are thus highly characteristic of a small 65 
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area (Wiltshire et al., 2014). Fungal spores have a long fossil record so may also be reworked 66 

into soil (Fig. 1). 67 

Anthropogenic litter, chemical and mineral signatures in soil also vary considerably, and 68 

crime scene-suspect matches based on geochemistry, man-made input and mineralogy can 69 

have considerable value as evidence (e.g. Ruffell and McKinley, 2005; Pye and Croft, 2004; 70 

Pye, 2007; Donnelly et al., 2021). These studies normally corroborate other lines of evidence 71 

such as from DNA and/or pollen and spores. 72 

Most forensic geological investigations are solely concerned with in situ materials. By 73 

contrast, this review, explores the potential of allochthonous microfossils (particularly 74 

palynomorphs), mineral grains and rock fragments reworked from the directly underlying 75 

bedrock into the soil in forensic investigations. 76 

 77 

2. Soil and its geological dimension 78 

Soil is a relatively thin layer of a mixture of gases, liquids, mineral grains, organic matter 79 

(humus) and organisms that partially covers the land surface of the planet (White 2006). It is 80 

termed the pedosphere, supports terrestrial plant growth and is a habitat to a diverse, rich soil 81 

biota. Soil is an integral part of the regolith (the layer of loose material overlying solid 82 

bedrock), and forms slowly from the gradual breakdown of bedrock by biological, chemical 83 

and physical weathering. Most soils exhibit a distinct profile with three main horizons, i.e. 84 

surface (A), subsoil (B) and substratum (C); these are overlain by plant litter and underlain by 85 

bedrock (Fig. 2, Weil and Brady, 2017). 86 

The mineral fraction of soil is therefore largely derived from the directly underlying 87 

bedrock. Clearly, geology primarily influences the mineral content of the soil. However, it 88 

should be remembered that some mineral grains can be blown onto the soil, for example in 89 

dust storms derived from arid/desert regions. Therefore a sandstone will produce a dry, loose, 90 

sandy, well-drained soil, and a clay-rich rock such a mudstone, shale or siltstone will 91 

normally be overlain by a clayey, heavy, poorly-drained, wet soil. Soil minerals are normally 92 

medium and fine grained (i.e. the sand, silt and clay fractions). The weathering process does 93 

not always provide finely disseminated rock-derived material such as individual sand grains. 94 

Small rock fragments (i.e. granules and pebbles) may also be present, largely in the B and C 95 

horizons, especially if the overall soil profile is relatively thin (Fig. 2). If the topography is 96 

relatively steep, soil forms sporadically and the bedrock frequently outcrops directly (Fig. 3). 97 

 98 
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3. The utility of soil minerals and rock fragments in forensic investigations 99 

Clearly the participants in, and victims of, many crimes may interact with soil. This 100 

means that if the footwear etc. of a suspect yields soil that includes distinctive fossils, rock 101 

fragments or mineral grains, this can help to place a person at a specific locality (section 1). 102 

The geology of much of the developed world, especially western Europe, is typically very 103 

well-known through systematic geological mapping by state and regional geological survey 104 

organisations. The concept of geological mapping was founded in the UK by the pioneering 105 

geologist William Smith (1769–1839), who produced the first nationwide geological map in 106 

1815 (Sharpe, 2015). The British Geological Survey (BGS) was founded in 1835 and since 107 

then has produced detailed geological maps of the UK at different scales using analog and 108 

digital methodologies (Fig. 4; Wilson, 1985; Bain, 1986; Allen, 2003; Kessler et al. 2009). 109 

If the outcrop area of a highly distinctive lithology (rock type) is small and well 110 

constrained, that rock type has substantial potential evidentiary value. Many igneous rocks 111 

have highly distinctive mineralogies and textures, and are unique to a specific locality. For 112 

example, the Shap Granite of Cumbria, northwest England is a well-known felsic igneous 113 

rock of Devonian age with characteristic potassium feldspar megacrysts which frequently 114 

exhibit Carlsbad twinning and a bimodal (coarse/fine) grain size (Fig. 5; Grantham, 1928; 115 

Cox et al., 1996). Shap Granite is present in a subcylindrical shaped pluton, and has a 116 

relatively small outcrop area of ~8 km2 (Fig. 6; Stone et al., 2010, fig. 13). A soil sample 117 

from footwear or a vehicle which includes even part of one of these potassium feldspar 118 

megacrysts would be strong evidence of the presence of the wearer in the area ~3 km south of 119 

the village of Shap, near Penrith, Cumbria, northwest England. Another example of this is 120 

rhomb-porphyry, a porphyritic igneous rock with common diamond/lens (i.e. rhomb) shaped 121 

phenocrysts of anorthoclase feldspar in a fine-grained matrix, typically from the southeast of 122 

Oslo in southern Norway (Neumann et al., 1992). One possible constraint of using Shap 123 

Granite or rhomb-porphyry in a forensic case in an urban area is that both these rocks are 124 

extensively used as ornamental stone, hence have been widely transported away from their 125 

source areas. 126 

Many other igneous rocks exhibit distinctive mineralogical and textural characteristics, 127 

and metamorphic and sedimentary rocks may also be highly indicative of a specific 128 

geographical area or rock unit. For example an aeolian (desert) sandstone such as the Dawlish 129 

Sandstone Formation of the New Red Sandstone Supergroup (Permian) will be largely 130 

composed of frosted quartz grains. This distinctive texture is produced by frequent grain 131 
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collisions in windy conditions such as sandstorms, as opposed to quartz grains with a glassy 132 

surface texture in sandstone which accumulated in aqueous settings such as the Millstone Grit 133 

Group of Carboniferous age (Table 1; Tucker, 2001). Similarly, most sandstones include 134 

minor amounts of distinctive heavy (refractory) minerals such as rutile, tourmaline and zircon 135 

(Morton, 1985; Morton and Hallsworth, 1994). These relatively rare mineral species would 136 

potentially be useful in a forensic investigation. A region such as the Northwest Highlands of 137 

Scotland is largely underlain by metamorphic rocks, principally the schists of the Dalradian 138 

Supergroup of mid Neoproterozoic to Early Palaeozoic age (Stephenson et al., 2013). 139 

Porphyroblastic minerals such as garnet are resistant to weathering and are readily 140 

incorporated into the soil. 141 

Many rock units such as the Carboniferous Limestone Supergroup (Tournasian–Visean), 142 

the Millstone Grit Group (Serpukhovian–Bashkirian), the New Red Sandstone Supergroup 143 

(Permian–Triassic) and the Chalk Group (Upper Cretaceous) have large outcrop areas in the 144 

UK (Fig. 4). Hence, soil rock fragment analysis on a crime scene based on these units would 145 

be considerably less geographically conclusive than a highly restricted lithotype such as Shap 146 

Granite. Nonetheless, a consistency of rock fragments on footwear etc., and the bedrock 147 

outcropping at a crime scene would nonetheless represent important supplementary evidence. 148 

A listing of the reworking potential of rocks by geological age in the UK, and hence their 149 

potential utility in forensic science is given in Table 1. 150 

Hard, splintery rock types such as granite or limestone are optimal for forensic 151 

investigations because they generally weather relatively slowly. By contrast, clay-rich 152 

siliciclastic sedimentary rocks, such as mudstone, shale and siltstone, tend to weather to soft 153 

clay and silt rapidly and thus their residence time in a coherent state in the soil is relatively 154 

short (but well within the timescale of a forensic case). However, if a mudstone has a highly 155 

distinctive clay mineral signature, the soil overlying outcrops of this rock will reflect the 156 

characteristic clay mineral assemblage (Brindley, 1952; Moore and Reynolds, 1997; Munier 157 

et al., 2021). 158 

This discussion has thus far focussed on physical macroscopic and microscopic rock 159 

fragments and mineral grains. By contrast, geological specimens can be subjected to 160 

geochemical analysis in automated high-resolution core scanners (Croudace et al., 2006). 161 

This can give highly accurate elemental abundance data using X-ray fluorescence (e.g. Ruhl 162 

et al., 2016). It is eminently possible that the elemental chemistry of the soil overlying a 163 

specific bedrock will be similar to the equivalent data from the specific stratum itself. 164 
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Therefore, X-ray fluorescence information based on comparative soil samples is potentially 165 

very useful in forensic studies. 166 

 167 

4. Reworked fossils, with emphasis on palynomorphs, in forensic studies 168 

4.1. Introduction 169 

As with lithic (rock) fragments and mineral grains, fossils from sedimentary rocks can 170 

be reworked into soil profiles and these can be used in forensic studies. Macrofossils such as 171 

ammonites, bivalves, corals, echinoids and trilobites are highly unlikely to be used in this 172 

context because they are normally too large to, for example, become embedded in the treads 173 

of footwear or vehicle tyres. In stark contrast, the small size of microfossils, and their 174 

abundance and ubiquity in most sedimentary rocks, makes them ideal for forensic 175 

investigations (Brown, 2017). 176 

Microfossils are animal or plant remains that have to be studied using a microscope 177 

(Armstrong and Brasier, 2005). They are biologically diverse and are made of calcite (e.g. 178 

calcareous nannofossils, foraminiferal shells and ostracods) complex organic biomolecules 179 

(palynomorphs), phosphate (conodonts) or silica (diatoms and radiolaria). Microfossils are 180 

normally highly abundant in the majority of sedimentary rocks, especially fine-grained 181 

siliciclastic lithotypes, and may occur in rock-forming proportions. An example of the latter 182 

is the Chalk Group (Upper Cretaceous) (Fig. 4, Table 1). This unit is a pure limestone which 183 

is virtually entirely formed of calcareous nannofossils, the remains of unicellular calcifying 184 

phytoplankton (Burnett, 1998; Mortimore et al., 2001; Hopson, 2005). Many microfossil 185 

species have restricted temporal ranges and because of this, together with their robust nature 186 

and ubiquity, are used in the oil and gas industry to constrain the biostratigraphical age of 187 

sedimentary successions penetrated by exploration and production wells (e.g. Stover et al., 188 

1996; Wynn Jones, 2006). 189 

Due to the stratigraphical restriction of many species, microfossils which are 190 

reworked into the soil profile can reliably indicate the age of the parent bedrock. Clearly this 191 

has major implications for forensic geoscience. If the soil from the property of a suspect 192 

contains in situ pollen and spores together with reworked microfossils characteristic of a 193 

crime scene, this is powerful evidence to place a person at the locality in question (section 1; 194 

Wiltshire, 1998). Certain reworked microfossils are superior to others for forensic work. 195 

Many soils are slightly acidic and this will tend to dissolve calcareous microfossils such as 196 

calcareous nannofossils, foraminiferal shells and ostracods. Furthermore, of the siliceous 197 
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groups, diatoms are similarly susceptible to shell thinning and dissolution, and reducing 198 

levels of silicification (Lewin, 1961; Ehrlich et al., 2010; Petrou et al., 2019). Despite this, 199 

calcareous nannofossils, foraminifera and diatoms have all been used in in forensic studies 200 

(e.g. Bailey et al., 2017; Levkov et al., 2017). 201 

Of the other major microfossil groups, reworked conodonts and palynomorphs are the 202 

most chemically and physically robust, hence will normally remain in the soil for longer than 203 

other microfossils (Riding, 2021). Conodonts are the phosphatic hard part remains of a group 204 

of extinct agnathan chordates which resemble eels (Briggs et al., 1983; Donoghue et al., 205 

2000). Palynomorphs are organic-walled microfossils such as acritarchs, angiosperm and 206 

gymnosperm pollen grains, chitinozoa, dinoflagellate cysts, fungal spores, microforaminiferal 207 

linings, plant spores, prasinophytes and scolecodonts (Jansonius and McGregor, 1996; 208 

Riding, 2021). Conodonts have a range of Cambrian to Triassic so are entirely absent from 209 

the Jurassic onwards. By contrast, palynomorphs are first found in Proterozoic rocks, and are 210 

extant. The stratigraphical extents and the taxonomic richness of the major ten palynomorph 211 

groups are illustrated in Fig. 1. Furthermore, they are substantially more abundant, 212 

biologically/taxonomically diverse, smaller and ubiquitous than conodonts. Thus, of all the 213 

groups of microfossils, allochthonous palynomorphs have by far the greatest utility in 214 

forensic geocience. 215 

Many soil forensic samples are examined for in situ pollen and spores, and thus the 216 

same laboratory preparation will also contain any reworked palynomorph (Riding, 2021). 217 

Because of the clear advantages of palynomorphs over the other microfossil groups, the 218 

remainder of this account will concentrate on them. However, the principles discussed are 219 

applicable to all microfossils. 220 

 221 

4.2. Reworked palynomorphs in general 222 

Palynomorphs are common reworked components in sedimentary rocks. Their small 223 

size means that if small fragments of a pre-existing sedimentary rock are mobilised during 224 

weathering, these can be incorporated into a younger sedimentary unit. This scenario means 225 

that the reworked palynomorphs are protected from damage from oxidation as they are fully 226 

surrounded by rock matrix. Palynomorphs are extremely chemically robust, but they can be 227 

degraded and ultimately destroyed by oxidation during weathering and microbial activity 228 

(Riding, 2021). A familiar example of the reworking of pre-Quaternary palynomorphs is the 229 

stratigraphical recycling of Carboniferous spores into Mesozoic strata (e.g. Windle, 1979; 230 

Riding et al., 1999; Hesselbo et al., 2020). Similarly, Palaeozoic and Mesozoic palynomorphs 231 
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may be reworked into Cenozoic strata (e.g. Collinson et al. 1985). Because they reliably 232 

reflect parent material, reworked palynomorphs have been frequently used to determine the 233 

provenance of sedimentary rock units (e.g. Streel and Bless, 1980; Eshet et al., 1988; Riding 234 

et al., 1997; Lopes et al., 2014). If a soil forms above a bedrock of Pleistocene (Quaternary) 235 

age, reworked pollen and spores may be recruited into the soil profile. These allochthonous 236 

palynomorphs will probably be indistinguishable from their modern counterparts because 237 

virtually all Quaternary plants are extant. 238 

As an analogy for forensic studies, one of the most successful use of reworked 239 

palynomorphs is their use in determining the provenance of glacial sediments of all ages, and 240 

hence glaciers. The glacier picks up rock fragments as it slowly moves, and these are 241 

deposited as till when the glacier melts. If palynomorphs extracted from a till are from 242 

distinctive lithostratigraphical units, as determined from biostratigraphy, the flow path of the 243 

glacier can be reconstructed (e.g. Lee et al., 2002; Davies et al., 2009; Powell et al., 2016; 244 

Hall and Riding, 2016; Hall et al., 2016; Rose et al., 2021 for Quaternary glacigenic 245 

sediments). Similarly, Harding et al. (2004) used dinoflagellate cysts and other marine 246 

palynomorphs to help determine the provenance of flint artefacts from the UK. 247 

 248 

4.3. Reworked palynomorphs in soil in forensic investigations and some constraints on 249 

their use 250 

Reworked palynomorphs in soil will normally be rare in comparison to the in situ 251 

pollen and spores. It is possible that derived specimens may be relatively common, for 252 

example if a spore-rich coal or highly organic shale is incorporated into the soil profile. In the 253 

case of the latter, Lower and Upper Jurassic black, bituminous shales such as Mulgrave Shale 254 

Member (Lower Toarcian) and the Kimmeridge Clay Formation (Kimmeridgian) regularly 255 

provided stratigraphically recycled palynomorphs into tills in the UK (e.g. Busfield et al., 256 

2015; Hodkin et al., 2016). This is due to the relative mechanical robustness and the 257 

resistance to oxidation during weathering of these relatively hard and physically strong 258 

lithotypes. 259 

Certain palynomorph groups and ages may be more frequent than others. Some Early 260 

Palaeozoic acritarchs and most chitinozoa of this age can be relatively refractive and hence 261 

may readily survive in soil. Likewise, many Carboniferous spores are thick-walled and robust 262 

(Smith and Butterworth, 1967). Genera such as Cingulizonates, Densosporites Radiizonates 263 

and Tripartities, and species such as Cirratriradites saturni and Lycospora pusilla tend to 264 

rework easily and may even survive more than one sedimentary cycle (Riding et al., 2003). 265 
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Some Mesozoic and Cenozoic dinoflagellate cysts may be thin-walled and, it is the thicker-266 

walled genera such as Cribroperidinium that tend to be most frequently stratigraphically 267 

recycled (Riding et al., 2003). A montage of palynomorphs which may be regularly reworked 268 

is given as Fig. 7. Table 1 lists the palynomorph groups characteristic of the Phanerozoic of 269 

the UK, period-by-period. 270 

 It should not be expected that reworked palynomorphs from bedrock will be present 271 

in every sample of soil. Organic microfossils are only sporadically recorded and this is due to 272 

several factors. These include the dominance of in situ pollen grains and plant spores over 273 

reworked palynomorphs, oxidation or partial oxidation of allochthonous pre-Quaternary 274 

palynomorphs in the soil profile, and palynomorph-free or organic–lean bedrock. The 275 

sporadic nature of reworked palynomorphs in soil may, however, be somewhat of a 276 

misconception. This is because most forensic palynologists are specialists in modern pollen 277 

and spores. If these practitioners encounter aquatic palynomorphs and/or 278 

Palaeozoic/Mesozoic pollen and spores, they may simply classify them as indeterminate 279 

forms or ‘reworking’. For the latter reason, it is currently not possible to provide a reliable 280 

guide to the occurrence and relative proportions of reworked palynomorphs in soil. 281 

As mentioned above, not all rock units yield palynomorphs. For example, all igneous 282 

and metamorphic (‘crystalline’) rocks are devoid of any fossils. Another factor is, if the 283 

uppermost part of the bedrock has been heavily weathered, the oxidation during this process 284 

will probably have destroyed much of the sedimentary organic mattter including the 285 

palynomorphs (Riding, 2021). Furthermore, many limestones and sandstones are extremely 286 

organic-lean and will not generally contribute many, if any, palynomorphs to the soil. 287 

Examples of organic-poor lithostratigraphical units are the Carboniferous Limestone 288 

Supergroup and the Millstone Grit Group of Carboniferous age in the UK (Table 1). As 289 

mentioned above, the most promising bedrock type for palynomorphs would be a dark, fine-290 

grained clay rich sedimentary rock. 291 

Much of the UK is blanketed by various glacial sediments of Quaternary age (e.g. 292 

Clark et al., 2004). These include glaciofluvial deposits, glaciolacustrine clays, outwash sands 293 

and gravels, and till. Of these, the glaciolacustrine clays and till are the most consistent in 294 

yielding palynomorphs. Both these sediments commonly yield palynofloras (Riding et al., 295 

2003; Hodkin et al., 2016). In the case of till, the content of these assemblages is dependent 296 

on the sedimentary rocks entrained into the ice on route taken by the glacier. Frequently, tills 297 

contain a mixture of Palaeozoic, Mesozoic and Cenozoic palynomorphs (Busfield et al., 298 

2015). For example the Irish Sea Till from offshore west Wales contains a particularly wide 299 
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variety of organic microfossils (unpublished data). This admixture of palynomorphs can be 300 

potentially extremely helpful in forensic cases. If the mixture is highly characteristic of a 301 

specific glacial sediment the palynomorphs from, for example, a glaciolacustrine clay or till 302 

may have substantial evidentiary value. Taphonomic factors dictate the configuration of 303 

reworked palynomorphs in the matrix of a till. This means that the palynomorphs in a till are 304 

substantially variable, and hence could be used to link a suspect to a place via a comparison 305 

between a crime scene and an exhibit. On the other hand, if the abundance and variety of pre-306 

Quaternary palynomorphs is too low, the association may not be conclusive of a particular 307 

locality. 308 

 309 

5. Modus operandus 310 

If there is soil evidence in a crime, especially where there is a specific locus such as a 311 

body deposition site, the geoscientific element should at the very least be considered in any 312 

forensic investigation. The bedrock geology should be identified using up-to-date geological 313 

maps, and consideration should be made if the relevant lithostratigraphical unit would 314 

potentially provide diagnostic lithic fragments, microfossils or mineral grains. A consultant, 315 

or consultants, could then be employed to check any soil samples for these materials. The 316 

same palynomorph slides as used by the expert in modern pollen and spores could be used by 317 

the pre-Quaternary palynology consultant. The same preparation procedures are used to 318 

extract and concentrate modern pollen and spores and their pre-Quaternary counterparts 319 

(Riding, 2021). 320 

 321 

6. Conclusions 322 

This article seeks to briefly review the use of geological materials which have been 323 

incorporated into the soil in forensic investigations. These are microfossils (with the 324 

emphasis on palynomorphs), lithic fragments and mineral grains that are entrained into soil 325 

during its formation. The main aim of this paper is to inform investigative authorities of the 326 

potential of reworked materials in the soil as evidence, principally to connect people to 327 

places. Because bedrock is continuously being weathered, microfossils and small rock 328 

fragments enter the pedosphere from below at a relatively constant rate. This means that 329 

potentially distinctive rock types, which may include characteristic palynomorphs and 330 

minerals, become reworked into the soil. If the geological material in soil on the clothing, 331 
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vehicle etc. of a suspect matches that at the crime scene, this helps to link that person to that 332 

place. If the outcrop area of distinctive or unique rock type is relatively small and well 333 

known, it clearly has substantial potential evidentiary value. Similarly, the clay mineral 334 

assemblage, geochemical profile, mineral species and mineral surface texture may help to 335 

link a suspect to a locality. This is especially important in missing person and clandestine 336 

grave searches. 337 

Reworked macrofossils have limited utility in forensic geoscience due to their relatively 338 

large size, however microfossils can potentially be extremely useful largely due to their 339 

abundance, small size and ubiquity. Of the several groups of microfossils, palynomorphs are 340 

most likely to be useful forensically. Any microfossil species with restricted temporal ranges 341 

which are reworked into the soil profile can accurately indicate the age of the bedrock. 342 

Therefore, this also can help place a person at a specific locality. It should be remembered 343 

that reworked palynomorphs in soil can be relatively rare and sporadic, many rock types and 344 

units do not yield palynomorphs, and glacial tills can provide a diverse, mixed (and hence 345 

potentially complex) palynomorph associations. 346 

There are presently no published examples of reworked palynomorphs being used in a 347 

criminal case. In order to better demonstrate the utility of soil geological materials as lines of 348 

forensic evidence, it would be beneficial to undertake pilot studies in the future. These could 349 

be, for example, palynological analyses of soils developed over specific lithostratigraphical 350 

units or in different soil types. Additionally, it would be beneficial to execute detailed studies 351 

of the absolute palynomorph concentrations throughout specific soil profiles. This topic 352 

would also markedly benefit from specialists on modern pollen and spores starting to 353 

document reworking in a much more consistent and robust manner. 354 

In summary therefore, the use of geological materials extracted from soil samples in a 355 

forensic investigation should be seriously considered in any major crime where soil forms 356 

part of the array of evidence. 357 

 358 
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Display materials: 798 

 799 

Fig. 1. The overall stratigraphical extents of the ten most important palynomorph groups 800 

adapted from Riding (2021). The relative widths of the lines indicate overall trends in 801 

taxonomic richness. Note that the diversity variations depicted here are strictly indicative in 802 

that the breadths of the lines are not precisely calibrated to numbers of taxa. The dashed lines 803 

indicate that the respective palynomorph group is relatively sparse. The ranges and 804 
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taxonomic richness trends are taken from key publications such as Millay and Taylor (1976), 805 

MacRae et al. (1996) and Grahn and Paris (2011). 806 

 807 

Fig. 2. A typical soil profile illustrating the three main soil horizons overlain by an organic-808 

rich layer of plant litter and underlain by solid bedrock. The A (surface) horizon comprises 809 

humus-rich topsoil and is underlain by clayey subsoil (the B horizon or subsoil). The C 810 

(substratum) horizon consists of weathered rock fragments. This diagram is adapted from 811 

several sources including Weil and Brady (2017). 812 

 813 

Fig. 3. A small outcrop of bedrock in moderately steep grassy terrain within an upland 814 

setting; note the relatively thin soil surrounding the outcrop. The very thin soil at these type 815 

of localities will be very rich in fragments of the bedrock. This locality is ~0.75 km NNW of 816 

Wildboarclough, Cheshire, UK (NGR SJ 98017 69312) and the rocks exposed are dark shales 817 

of the Millstone Grit Group intercalated between a Bilinguites superbilinguis marine band 818 

and the Chatsworth Grit (Pennsylvanian). 819 

 820 

Fig. 4. A small scale geological map of the UK and Ireland produced by the British 821 

Geological Survey (BGS) illustrating the principal rock types, and the ages of the 822 

metamorphic and sedimentary rocks. Individual lithostratigraphical units, such as the 823 

Millstone Grit Group mentioned in the text, are not distinguished at this scale. Substantially 824 

larger scale maps are available from BGS. Geological map BGS © UKRI (2019). 825 

 826 

Fig. 5. A cut and polished hand specimen of Shap Granite from Shap Quarry, Cumbria, 827 

northwest England (NGR NY 55884 08519). The specimen is curated in the National 828 

Building Stone Collection of BGS. This image is BGS number P750651 and is used with 829 

permission. The size of the specimen is 150 mm x 115 mm. Note the highly distinctive 830 

texture of abundant potassium feldspar megacrysts in a much finer-grained groundmass. This 831 

bimodal crystal size in indicative of two distinct phases of cooling. The first of these stages 832 

was slow, in a deep crustal setting which allowed the potassium feldspar megacrysts to form. 833 

By contrast the second was substantially faster, clearly in a shallower position in the crust 834 

thereby causing the minerals in the groundmass to crystallise (BGS © UKRI). 835 

 836 
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Fig. 6. A geological map of the Lake District in northwest England to illustrate the relatively 837 

small areal extent (~8 km2) of the Shap Granite outcrop. The Shap Granite Pluton (Sh) is 838 

located in the Shap Fells of Cumbria, adjacent to the northeast corner of the Windermere 839 

Supergroup and is part of the Northern England Devonian Plutonic Suite. This map is themed 840 

to illustrate the principal Ordovician and Devonian igneous bodies and their relationship to 841 

major structural features. This figure is from Stone et al. (2010, fig. 13) and BGS file 842 

P916043.jpg is reproduced with permission BGS © UKRI 843 

http://earthwise.bgs.ac.uk/index.php?title=File:P916043.jpg&filetimestamp=2016041217111844 

3&. 845 

 846 

Fig. 7. A montage of nine selected aquatic and terrestrial palynomorphs from the Silurian, 847 

Carboniferous, Jurassic, Cretaceous and Paleogene. 848 

1. The cryptogam spore Reinschospora speciosa (Loose 1934) Schopf, Wilson & 849 

Bentall 1944 from the Argill Shell Bed at Argill Beck, Stainmore, Cumbria, UK 850 

(Lower Pennsylvanian [Bashkirian]). BGS specimen number MPK 7433; 94 µm in 851 

diameter. 852 

2. The cryptogam spore Concavissimisporites sp. from the Wealden Group (lowermost 853 

Cretaceous [Berriasian]) of southeast England. BGS specimen MPK 14717; 62 μm in 854 

diameter. 855 

3. The gymnospermous pollen grain Callialasporites trilobatus (Balme 1957) Sukh Dev 856 

1961 from the Brent Group (Middle Jurassic) of the northern North Sea. BGS 857 

specimen MPK 14718; 51 μm in diameter. 858 

4. The bisaccate gymnospermous pollen grain Alisporites sp. from the Brent Group 859 

(Middle Jurassic) of the northern North Sea. BGS specimen number MPK 14719; 87 860 

μm wide and 62 μm high. 861 

5. The netromorph acritarch Dorsennidium europaeum forma wenlockianum (Downie 862 

1959 ex Wall & Downie 1963) Sarjeant & Stancliffe 1994 from the Silurian of Wales. 863 

BGS specimen MPK 14723; 56 μm in diameter. 864 

6. The angiosperm pollen grain Gambierina edwardsii Stover in Stover & Partridge 865 

1973 from the Paleogene of the Sabrina Coast, East Antarctica (Smith et al., 2019). 866 

The diameter of this specimen is 35 μm. Scanning electron microscope image by 867 

Sophie Warny and reproduced with permission. 868 
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7. The dinoflagellate cyst Senoniasphaera jurassica Gitmez & Sarjeant 1972) Lentin & 869 

Williams 1976 from the Kimmeridge Clay Formation (Upper Jurassic [Tithonian]) of 870 

Warlingham, Surrey, southern England. BGS specimen MPK 1265; 89 μm long and 871 

75 μm wide at the cingulum. 872 

8. The dinoflagellate cyst Oligosphaeridium complex (White 1842) Davey & Williams 873 

1966 from the Cromer Knoll Group (Lower Cretaceous) of the central North Sea. 874 

BGS specimen MPK 14587; the cyst body (which is subcircular in outline) is 50 μm 875 

in diameter 876 

9. A representative of the chitinozoan genus Ancyrochitina from the Visby Formation of 877 

the Lusklint 1 section, Gotland, eastern Sweden (Silurian) (Vandenbroucke et al., 878 

2013, fig. 5D). The overall length is 100 μm. Scanning electron microscope image by 879 

Thijs R.A. Vandenbroucke and reproduced with permission. 880 

 881 

Table 1. A listing of the typical palynomorph spectra from the Proterozoic and Phanerozoic 882 

successions of the UK and adjacent areas, their potential for reworking into the soil profile, 883 

examples of relevant lithostratigraphical units and selected references. Generally, reworking 884 

potential increases with decreasing geological age because younger lithostratigraphical units 885 

generally have higher palynomorph concentrations. The Carboniferous and Cretaceous 886 

periods have been subdivided because of the substantial disparity in palynological 887 

productivity between their constituent epochs. The geochronological scale is taken from 888 

Gradstein et al. (2021). Certain lithostratigraphical units such as thermally-altered strata, 889 

highly oxidised/red-brown sedimentary rocks and highly crystallised and/or pure limestones 890 

are unlikely to release large numbers of palynomorphs into the soil profile due to their 891 

relatively organic-lean nature (Riding, 2021). In particular, geographically extensive units 892 

such as Lower Palaeozoic slaty mudstones, the Old Red Sandstone Supergroup, the 893 

Carboniferous Limestone Supergroup, the New Red Sandstone Supergroup and the Chalk 894 

Group of the UK are all organic-lean. There is, nonetheless, some variation. For example 895 

some Lower Palaeozoic and Devonian units are highly palyniferous, whereas palynomorphs 896 

are effectively absent throughout the Carboniferous Limestone Supergroup. Whereas some 897 

lithostratigraphical units are geographically widespread, others are local in distribution. The 898 

supergroups, groups and formations listed are generally southern UK-centric (Waters et al., 899 

2007). For example, the Lower Cretaceous and Paleogene units are largely confined to 900 

southern England. Other major units which are of local extent are the Longmyndian 901 

Supergroup, and the Sleat, Stoer and Torridon groups; these are only present at outcrop in the 902 
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Welsh Borderland and northwest Scotland respectively. Similarly, the Cambrian through 903 

Silurian lithostratigraphical units mentioned are those that are found in the Welsh Borderland 904 

and the West Midlands of England. There are no widespread Neogene deposits in the UK 905 

(Boulter, 1971; Pound and Riding, 2015). Abbreviations: angio. = angiosperm; gymno. = 906 

gymnosperm; dino. cysts = dinoflagellate cysts; p. spores = plant spores. 907 

 908 


