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A B S T R A C T   

Soil moisture is an important component of the Earth system and plays a key role in land-atmosphere in
teractions. Remote sensing of soil moisture is of great scientific interest and the scientific community has made 
significant progress in soil moisture estimation using Earth observations. Currently, several satellite-based coarse 
spatial resolution soil moisture datasets have been produced and widely used for various applications in climate 
science, hydrology, ecosystem research and agriculture. Owing to the strong demand for soil moisture data with 
high spatial resolution for regional applications, much effort has recently been devoted to the generation of high 
spatial resolution soil moisture data from either high-resolution satellite observations or by downscaling existing 
coarse-resolution satellite-based soil moisture datasets. In addition, land surface models provide an alternative 
way to obtain consistent high-resolution soil moisture information when forced with high-resolution inputs. The 
aim of this study is to create and evaluate high-resolution soil moisture products derived from multiple sources 
including satellite observations and land surface model simulations. The JULES-CHESS simulated soil moisture 
and satellite-based soil moisture datasets including SMAP L3E, SMAP L4, SMOS L4, Sentinel 1, ASCAT, and 
Sentinel 1/SMAP combined products were first validated against observed soil moisture from COSMOS-UK, a 
network of in-situ cosmic-ray based sensors. Second, an approach based on triple collocation was applied to 
compare these satellite products in the absence of a known reference dataset. Third, a combined soil moisture 
product was generated to integrate the better-performing soil moisture estimates based on triple collocation error 
estimation and a least-squares merging scheme. From further evaluation, it is found that the merged soil moisture 
integrates the characteristics of model simulation and satellite observations and particularly improves the limited 
temporal variability of the JULES-CHESS simulation. Therefore, we conclude that the triple collocation merging 
scheme is a simple and reliable way to combine satellite-based soil moisture products with outputs from the 
JULES-CHESS simulation for estimating model-data fused high-resolution soil moisture for the British mainland.   

1. Introduction 

Soil moisture plays an important role in the Earth system, controlling 
surface runoff, infiltration, and the partition of surface energy fluxes (e. 
g., Koster et al., 2004; Miralles et al., 2014; Seneviratne et al., 2010; 
Taylor et al., 2012). Therefore, spatially and temporally accurate soil 
moisture information is significant for a wide range of applications such 
as Numerical Weather Prediction (de Rosnay et al., 2014; de Rosnay 

et al., 2013), climate modeling (Seneviratne et al., 2013; Van den Hurk 
et al., 2016), flood forecasting (Crow et al., 2017; Massari et al., 2018), 
and drought monitoring (Martínez-Fernández et al., 2016; Nicolai-Shaw 
et al., 2017; Peng et al., 2020b). 

Satellite remote sensing – particularly microwave remote sensing – 
has been widely applied to estimate surface soil moisture from regional 
to global scales (e.g., Babaeian et al., 2019; Brocca et al., 2017; Dorigo 
et al., 2017; Peng et al., 2021; Wagner et al., 2007). Currently, there are 
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several global soil moisture products provided by different satellite- 
borne sensors such as Soil Moisture and Ocean Salinity (SMOS) (Kerr 
et al., 2010), Soil Moisture Active Passive (SMAP) (Entekhabi et al., 
2010), Advanced Microwave Scanning Radiometer2 (AMSR2) (Kim 
et al., 2015) on board the Global Change Observation Mission-Water 
(GCOM-W), and Advanced Scatterometer (ASCAT) (Bartalis et al., 
2007) on board the Metop satellites (Metop-A, Metop-B, and Metop-C). 
These products usually have moderate temporal resolution (1–2 days) 
and coarse spatial resolution from 25 to 50 km. 

However, soil moisture products with high spatial resolution (< 10 
km) are highly desirable for many regional applications (Leng et al., 
2014; Merlin et al., 2008; Peng et al., 2016; Sabaghy et al., 2020; Su 
et al., 2020). Taking advantage of high-resolution Copernicus Sentinel 1 
Synthetic Aperture Radar (SAR) observations, a 1 km soil moisture 
product over Europe has been produced and distributed by the Coper
nicus Global Land service (Bauer-Marschallinger et al., 2018). In addi
tion, various downscaling approaches have been developed to improve 
the spatial resolution of global soil moisture products (Peng et al., 2017). 
For example, National Aeronautics and Space Administration (NASA) 
has recently released the fused SMAP/Sentinel 1 active-passive high- 
resolution soil moisture product at 3 km (Das et al., 2019). High- 
resolution SMOS soil moisture at 1 km has also been produced via the 
fusion of SMOS microwave with Moderate Resolution Imaging Spec
troradiometer (MODIS) optical observations (Portal et al., 2020). 

An alternative way to obtain high-resolution soil moisture estimates 
is through model simulation. With high-resolution meteorological 
forcing data as inputs, the land surface model simulated soil moisture 
has the advantages of self-consistency and completeness. Models are 
also able to simulate soil moisture to deeper layers in the root zone 
(Reichle et al., 2017a). Various simulation studies have computed soil 
moisture at different spatial scales with a wide range of models (e.g., 
Gebler et al., 2017; Samaniego et al., 2018). The accuracy of simulated 
soil moisture is closely related to the accuracy of model parameteriza
tion and the quality of meteorological forcing data (Pinnington et al., 
2018; Vereecken et al., 2016). Recently, a long-term high-resolution soil 
moisture dataset (CHESS-land) was generated with the Joint UK Land 
Environment Simulator (JULES) based on 1 km meteorological forcing 
data for the UK (Martinez-de la Torre et al., 2018; Robinson et al., 2017; 
Robinson et al., 2020). 

While high-resolution soil moisture datasets offer potential for 
various regional applications, comprehensive assessment of these 
products is essential for their further improvement and to provide 
guidance on their suitability for potential applications (Gruber et al., 
2020; Loew et al., 2017; Zeng et al., 2019; Zeng et al., 2015b). The 
validation of satellite-based products is typically conducted via direct 
comparison with ground-based soil moisture measurements at point- 
scale (e.g., Al-Yaari et al., 2019; Albergel et al., 2012; Colliander 
et al., 2017; Ma et al., 2019; Zeng et al., 2015a). Although the ongoing 
establishment of dense soil moisture networks across the globe can 
relieve the scale mismatch between ground-based measurements and 
satellite estimates, robust evaluation of satellite products in areas with 
sparse or no soil moisture networks remains challenging. To address this 
challenge, novel measurement techniques such as the COsmic-ray Soil 
Moisture Observing System (COSMOS) have been investigated to mea
sure soil moisture with a footprint around 700 m in diameter (Bogena 
et al., 2015; Evans et al., 2016; Zreda et al., 2012). Compared with 
traditional soil moisture measurements at point scale, the COSMOS soil 
moisture measured with a relatively large footprint is more suitable for 
validating satellite-derived soil moisture as well as modeled soil mois
ture (Montzka et al., 2017). Several studies have successfully evaluated 
satellite-based coarse soil moisture products using COSMOS soil mois
ture measurements over different areas such as Australia, Kenya, Ger
many, India, and the United States (Duygu and Akyürek, 2019; Kędzior 
and Zawadzki, 2016; Kim et al., 2015; Montzka et al., 2017; Mwangi 
et al., 2020; Upadhyaya et al., 2021). To facilitate water resources and 
environment related applications, the UK Centre for Ecology & 

Hydrology has established and maintained a long-term and spatially- 
dense COSMOS network for the United Kingdom (COSMOS-UK) since 
2011 (Evans et al., 2016). In the present study, the soil moisture mea
surements from COSMOS-UK are used as the reference dataset for the 
validation of the above-mentioned high-resolution soil moisture prod
ucts with grid size at kilometer scale. The good practice guidelines for 
soil moisture validation provided by Gruber et al. (2020) are applied in 
this analysis. Evans et al. (2016) compared COSMOS-UK observations 
with a single satellite product (ASCAT) for two sites, as a demonstration 
of the potential of the network for evaluation of remotely sensed soil 
moisture. However, to our knowledge, this study is the first study that 
attempts to comprehensively evaluate existing high-resolution satellite 
soil moisture estimates and JULES simulation across the UK using 
COSMOS-UK measurements. 

In addition to direct comparison with ground-based measurements, 
the triple collocation (TC) method has been explored to estimate error 
variances of geophysical variables (Gruber et al., 2016; Roebeling et al., 
2012; Stoffelen, 1998). It has the advantage that there is no requirement 
for a reference dataset and the technique has therefore become an 
important method for evaluating satellite-based soil moisture products 
(e.g., Al-Yaari et al., 2014; Chen et al., 2018; Polcher et al., 2016; Su 
et al., 2014). In the present study, we also adopt the TC method to 
provide an independent assessment of high-resolution soil moisture 
products without specifying a reference dataset. It is expected that all of 
these products have individual error characteristics (Jackson et al., 
2010; Loew et al., 2017). Several studies have demonstrated that 
merging different sources of products can lead to a better hybrid esti
mate (Gruber et al., 2017; Yilmaz et al., 2012; Zeng et al., 2016; Zhuang 
et al., 2020). For example, the European Space Agency's Climate Change 
Initiative for Soil Moisture (ESA CCI SM) team has chosen the TC-based 
method as the principal merging scheme for the generation of long-term 
harmonized soil moisture dataset with spatial resolution of 25 km based 
on multiple coarse-resolution satellite-based soil moisture products 
(Gruber et al., 2019b). Many studies have explored the improvement of 
model simulations through the assimilation of satellite products (e.g., 
Gruber et al., 2019a; Reichle et al., 2008), which is a more rigorous 
method than the TC-based merging approach (Crow and Van den Berg, 
2010). However, the TC-based method has the advantage of being 
simple and transparent and is based on objective estimates of the rela
tive error of various soil moisture products. To investigate and generate 
the best high-resolution soil moisture estimate for the UK in this study, 
the satellite-based and model-simulated soil moisture products are 
merged together based on error characteristics calculated using the TC 
method. The paper is organized as follows. Details of the satellite- 
derived products, JULES model simulated soil moisture and COSMOS 
measurements are described in section 2. The evaluation strategy and 
TC-based merging scheme are presented in section 3. The results are 
presented and discussed in section 4. Finally, the conclusions are given 
in section 5. 

2. Data 

2.1. Satellite-based soil moisture products 

The satellite-based soil moisture products used in this study are listed 
in Table 1. More details of each product are introduced in subsections 
below. It is noted that these products represent soil moisture at the top 
surface (0–5 cm). 

2.1.1. Sentinel 1 
The Sentinel 1 satellites, operated by ESA, were launched in 2014 

and 2016 to provide C-band (5.405 GHz) Synthetic Aperture Radar data 
with a typical spatial resolution of 20 m and a temporal resolution of 12 
days at global scale (Torres et al., 2012). The frequent Sentinel 1 SAR 
data opens a new era for global high-resolution soil moisture estimation 
(Paloscia et al., 2013). Various methods with a range of complexity have 
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been tested to demonstrate the feasibility of retrieving soil moisture with 
Sentinel 1 SAR data (e.g., Alexakis et al., 2017; Bauer-Marschallinger 
et al., 2018; El Hajj et al., 2017; Gao et al., 2017; Mattia et al., 2017). 
Among them, Bauer-Marschallinger et al. (2018) adapted the change 
detection method to estimate global soil moisture at 1 km spatial reso
lution based on radiometrically calibrated and geo-corrected Sentinel 1 
backscatter data. Currently, their method has been applied to deliver 
daily 1 km soil moisture in an operational manner for the whole of 
Europe. The Sentinel 1 (version 1) product is available from January 
2015 until present, and is disseminated by the Copernicus Global Land 
Service (https://land.copernicus.eu/global/products/ssm). 

2.1.2. SMOS L4 
The SMOS is an ESA satellite mission that was specifically designed 

to provide soil moisture and sea surface salinity with a L-band (1.4 GHz) 
radiometer. After the successful launch in November 2009, SMOS has 
provided more than 10 years global fully polarized multi-angular ob
servations at both ascending (6:00 a.m. local time) and descending 
(6:00 p.m. local time) orbit (e.g., Alexakis et al., 2017; Bauer-Mar
schallinger et al., 2018; El Hajj et al., 2017; Gao et al., 2017; Mattia 
et al., 2017). The original spatial resolution of retrieved global SMOS 
soil moisture is around 40 km, which is too coarse for regional appli
cations. A downscaled high-resolution SMOS L4 product covering 
Europe was therefore developed and released by the Barcelona Expert 
Center (BEC) (Portal et al., 2020; Piles et al., 2015). This product has 
spatial resolution of 1 km and is based on the universal triangle concept 
to merge together the SMOS brightness temperature, SMOS coarse res
olution soil moisture, MODIS Normalized difference vegetation index 
(NDVI) and European Centre for Medium-Range Weather Forecasts 
(ECMWF) temperature (Kerr et al., 2010). The SMOS L4 (version 5) 1 km 
soil moisture product is available from the Barcelona Expert Center (htt 
p://bec.icm.csic.es). In this study, the ascending and descending SMOS 
L4 soil moisture are simply averaged to get daily SMOS L4 soil moisture. 

2.1.3. SMAP L3E and SMAP L4 
The SMAP satellite is the second L-band mission from NASA, aiming 

to monitor global land soil moisture and freeze/thaw state. It was 
launched in January 2015 and carries both radar (1.26 GHz) and radi
ometer (1.41 GHz) to respectively provide observations at about 3 km 
and 40 km spatial resolution with 40◦ constant incidence angle (Piles 
et al., 2015; Portal et al., 2020; Portal et al., 2018). Owing to the failure 
of the radar's power supply in early 2015, only the radiometer can 
operate and deliver observations from 2015 until now. Different levels 
of soil moisture products have been developed and distributed by the 
SMAP mission. These products include swath-based SMAP L2, daily 
composite SMAP L3, and model assimilated SMAP L4 (Entekhabi et al., 
2010). The SMAP soil moisture used in this study is the enhanced SMAP 
L3 (SMAP L3E) global daily 9 km soil moisture, which is derived from 
the SMAP interpolated brightness temperature using the Backus-Gilbert 
optimal interpolation technique (Colliander et al., 2017). The SMAP L3E 
(version 3) soil moisture is downloaded from the NASA National Snow 
and Ice Data Center (NSIDC) (https://nsidc.org/data/SPL3SMP_E/v 

ersions/3). Similar to SMOS, the SMAP L3E soil moisture at ascending 
(6:00 p.m. local time) and descending (6:00 a.m. local time) modes are 
simply averaged to obtain daily soil moisture in this study. The SMAP L4 
product is produced based on the assimilation of brightness temperature 
into the land surface model to improve soil moisture estimates (Reichle 
et al., 2017a; Reichle et al., 2017b). In the present study, SMAP L4 
Global 3-hourly 9 km EASE-Grid Surface (0–5 cm) volumetric soil 
moisture (version 5) is used, which is available from NSIDC (https:// 
nsidc.org/data/SPL4SMGP/versions/5). 

2.1.4. SMAP/sentinel 1 combined soil moisture 
One of the objectives of SMAP mission is to deliver global 9 km soil 

moisture from the downscaled radiometer brightness temperature with 
the use of radar backscatter measurement (O'Neill et al., 2016). How
ever, the failure of SMAP radar hampers the SMAP mission to generate a 
high-resolution soil moisture product. The Sentinel 1 SAR data were 
found to be suitable for the fusion with SMAP radiometer. Based on the 
SMAP/Sentinel active-passive retrieval algorithm (Entekhabi et al., 
2010), the SMAP team recently released the global SMAP/Sentinel 1 
active-passive high-resolution surface soil moisture product with 3 km 
spatial resolution (Das et al., 2013; Jagdhuber et al., 2019). This SMAP/ 
Sentinel 1 (version 3) combined product is available from April 2015 to 
the present, and can be downloaded from the NSIDC (https://nsidc. 
org/data/spl2smap_s). 

2.1.5. ASCAT 
The Advanced Scatterometer (ASCAT), on board the Metop-A, 

Metop-B and Metop-C satellite, operates at the C band (5.255GHz) in 
vertical polarization and provides observations at around 25 km and 50 
km spatial resolution in both descending (9:30 am) and ascending (9:30 
pm) nodes. The change detection algorithm developed by the Vienna 
University of Technology has been applied to derive soil moisture from 
the ASCAT backscatter measurements (Wagner et al., 1999). In this 
study, we use the surface soil moisture Climate Data Record H115 
produced by the EUMETSAT Satellite Application Facility on Support to 
Operational Hydrology and Water Management (H SAF, http://hsaf.met 
eoam.it). Same as Sentinel 1 soil moisture product, it is relative soil 
moisture represented by degree of saturation ranging from 0% to 100%. 
The product covers the period from January 2007 to December 2018 
with a spatial sampling of 12.5 km. 

2.2. JULES-CHESS simulation 

The Joint UK Land Environment Simulator (JULES) is a community 
land surface model that integrates a full suite of land surface process (e. 
g., water and energy balance, carbon cycle, dynamic vegetation) and 
allows the interaction between these processes to be investigated. JULES 
can be run as a standalone model, and is also the land surface component 
of the next generation UK Earth System Model (UKESM). A detailed 
model description is given by Best et al. (2011) and Clark et al. (2011). 
In order to better assess the water, energy and carbon budgets of UK, 
long-term high-resolution JULES simulation is generated driven with the 

Table 1 
Overview of the high-resolution satellite-based soil moisture products used in this study.  

Soil moisture 
product 

Temporal 
resolution 

Time period Coverage Grid 
size 

Original band 
frequency 

Data Provider 

Sentinel 1 Daily January 2015-now Europe 1 km C-band (5.405 
GHz) 

Copernicus Global Land Service 

SMOS L4 Daily June 2010-now Europe 1 km L-band (1.4 GHz) Barcelona Expert Center 
SMAP L3E Daily March 2015-now Globe 9 km L-band (1.41 GHz) NASA National Snow and Ice Data Center 
SMAP L4 3-hourly March 2015-now Globe 9 km L-band (1.41 GHz) NASA National Snow and Ice Data Center 
Sentinel 1/SMAP 

combined 
Daily April 2015-now Globe 3 km L/C-band NASA National Snow and Ice Data Center 

ASCAT (H115) Daily January 
2007–December 2018 

Globe 12.5 
km 

C-band 
(5.255GHz) 

EUMETSAT Satellite Application Facility on Support to 
Operational Hydrology and Water Management (H SAF)  
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Climate Hydrology and Ecology research Support System meteorology 
(CHESS-met) dataset, which includes 1 km resolution gridded meteo
rological variables over the UK (Robinson et al., 2017). The JULES- 
CHESS model was used to simulate water, carbon and energy fluxes 
mainly including evaporation, soil moisture, runoff, surface tempera
ture, snow mass, plant respiration, and net gross primary productivities 
at both daily and monthly scale, beginning in 1961 (Blyth et al., 2019; 
Martinez-de la Torre et al., 2018). The model configuration, including 
ancillary files, science options and parameters, is described in Blyth et al. 
(2019). The land cover data were derived from the CEH Land Cover Map 
2000 (Fuller et al., 2002). Canopy heights were set to constant values for 
each PFT, which were globally representative, except C3 grass which 
was reduced to better represent UK grassland. The JULES-CHESS 
configuration uses the van Genuchten approach to solve the Darcy 
Richards equation (Van Genuchten, 1980). The soil parameters were 
derived from the soil textures given by the Harmonized World Soil 
Database, using texture classes (Wösten et al., 1999). JULES-CHESS used 
the Probability Distribution Model (PDM) for saturation excess runoff, 
with parameters dependent on terrain slope (Martínez-de la Torre et al., 
2019). The slope was derived from the CEH-IHDTM (Morris and Flavin, 
1994). The hydrological cycle of JULES-CHESS has been evaluated 
against country-scale observed river flows and observation-based 
evaporation products, and site-scale latent and sensible heat fluxes 
(Blyth et al., 2019). Recent work has evaluated the ability of JULES to 
model soil moisture in the UK against satellite and COSMOS data, albeit 
with different pedotransfer functions (Pinnington et al., 2020) and with 
different driving data and soil physics (Cooper et al., 2020). The JULES- 
CHESS data can be downloaded from the Environmental Information 
Data Centre (EIDC; https://catalogue.ceh.ac.uk/documents/c76096d6 
-45d4-4a69-a310-4c67f8dcf096). The JULES-CHESS simulated soil 
moisture in the top layer, which is 10 cm thick, from 2015 to 2017 is 
used in the present study. It is noted that the modeled soil moisture has 
different depth from that of satellite-based estimates. As stated by Pin
nington et al. (2020), the differences between JULES simulated soil 
moisture at 5 cm and at 10 cm are marginal. Similar results have been 
reported by previous studies such as Shellito et al. (2018) and Shellito 
et al. (2020). Therefore, the default JULES top layer (10 cm) soil 
moisture is directly used to compare and merge with satellite-based soil 
moisture. 

2.3. COSMOS-UK measurements 

The COsmic-ray Soil Moisture Observing System (COSMOS) mea
sures soil moisture based on the theory that the neutrons derived from 
cosmic rays are attenuated by water present in soil. A detailed 
description of COSMOS is provided by Zreda et al. (2012) and Evans 
et al. (2016). In 2013, COSMOS-UK was established by UKCEH to pro
vide near-real time soil moisture measurements from an intensive 
network of COSMOS stations across the UK. There are currently 51 
stations installed and the COSMOS-UK network is likely to expand in 
future. Each station is equipped with various sensors to measure not only 
cosmic-ray neutron counts but also other hydro-meteorological vari
ables. Volumetric soil moisture is derived from corrected neutron counts 
based on site-specific field calibration (Cooper et al., 2021; Evans et al., 
2016; Franz et al., 2013). Hourly and daily volumetric soil moisture data 
from 2013 to 2017 for 46 COSMOS-UK stations are freely available from 
the COSMOS-UK website (https://cosmos.ceh.ac.uk) (Cooper et al., 
2021). Fig. 1 shows the locations of 38 sites that are used in this study. 
These sites are selected because they are located in the UK mainland and 
were installed before 2017. Details of these sites are provided in Ap
pendix Table A1. On the basis of Köhli et al. (2015), it is estimated that 
the COSMOS vertical sensing depth, for 86% response, is around 20 cm 
for typical soil moisture content in the UK (0.03 m3/m3), while the radial 
footprint is around 150–200 m. However, as the sensitivity decays 
exponentially with depth, it has been estimated that on average (over a 
year), for some typical COSMOS-UK sites, the first 50% of the response is 

from the top 10 cm soil layer (Beale et al., 2021). 

3. Methods 

All the data products used in this study were aggregated to daily 
temporal resolution and a subset was taken to cover the UK mainland 
from 2015.04.01 to 2017.10.12. The evaluation strategy, statistical 
scores, and merging scheme are described in the following sub-sections. 

3.1. Evaluation strategy 

3.1.1. Direct comparison with in-situ measurements 
For the direct comparison between COSMOS-UK measurements and 

satellite-based or model-simulated soil moisture, two approaches are 
applied. One approach uses all available soil moisture values for each 
product during the study period 2015–2017, while the other is based on 
collocated measurements that have common dates for all products. The 
evaluation based on all available measurements can provide the actual 
accuracy for each product. Using common dates between different 
products is necessary for a fair comparison of different products. These 
two approaches can also help to investigate the influence of data sample 
size on the evaluation. It is noted that all soil moisture products are 
given in volumetric units (m3/m3), except Sentinel 1 and ASCAT whose 
unit is degree of saturation. To facilitate the comparison, we converted 
the Sentinel 1 and ASCAT soil moisture to volumetric soil moisture 
based on the soil porosity information extracted from the Harmonized 
World Soil Database (HWSD) (Dorigo et al., 2017; Reynolds et al., 2000). 

In addition to direct comparison of absolute soil moisture values, soil 
moisture anomalies were calculated to remove the impacts of seasonal 
variability on the evaluation. The comparison of soil moisture anomalies 
can also reduce the representative errors caused by the mismatch of 
measured soil depth and footprint between COSMOS-UK and satellite or 
JULES-CHESS soil moisture (Albergel et al., 2012; Gruber et al., 2020). 
The anomaly was calculated with the following equation (Gruber et al., 
2013; Peng et al., 2015). 

Anomt = SMt − SMw (1) 

Where Anomt is the soil moisture anomaly, SMt is the soil moisture at 
day t, and SMw refers to the temporal mean soil moisture over the 

Fig. 1. Distributions of 38 COSMOS-UK stations used in this study. The base 
map is the spatial pattern of simulated soil moisture from JULES-CHESS 
on 2015.04.22. 
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moving window of 35 days. The anomaly is calculated only when the 
soil moisture sample size within the moving window is larger than 6. 
The use of a 35-day moving window has been suggested in previous soil 
moisture evaluation studies (Al-Yaari et al., 2019; Albergel et al., 2012; 
Gruber et al., 2020) to calculate short-term soil moisture anomaly. 

Three statistical metrics that have been widely adopted in the soil 
moisture community, namely Pearson correlation coefficient (R), Bias, 
and unbiased Root Mean Square Difference (ubRMSD) are used to 
quantify the differences between each soil moisture product and the 
COSMOS-UK measurements. These metrics are defined as follows: 

R =
cov(SMProduct, SMCOSMOS)

σProductσCOSMOS
(2)  

Bias = SMProduct − SMCOSMOS (3)  

ubRMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
((

SMProduct − SMproduct

)
−
(

SMCOSMOS − SMCOSMOS

))2
√

(4) 

Where SMProduct is the soil moisture dataset to be evaluated, SMCOS

MOS is the COSMOS-UK reference soil moisture. Cov is the covariance of 
both soil moisture time period, while σProduct and σCOSMOS are the stan
dard deviations of the soil moisture period. The overbar in each equation 
indicates the temporal mean of entire time period. 

3.1.2. Evaluation with triple collocation analysis 
Furthermore, the method of triple collocation (TC) is applied in this 

study to estimate the random error variances of the satellite-based 
products. In contrast to direct comparison with ground-based refer
ence data, the TC-based analysis provides an additional way to quantify 
errors without knowing the truth. The implementation of TC method 
needs three independent measurements of soil moisture. Moreover, a 
few assumptions are required by the TC method (Chen et al., 2018; 
Gebler et al., 2017): 1) the three measurements are linearly related to 
the true soil moisture; 2) there is no correlation between errors and the 
true soil moisture; 3) the errors of the three measurements are inde
pendent; 4) the signal and error statistics are stationary. If these as
sumptions are met, the absolute error standard deviation for each 
measurement is given as: 

σεX =

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒σ2

X −
σXY σXZ

σYZ

⃒
⃒
⃒
⃒

√

σεY =

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒σ2

Y −
σYXσYZ

σXZ

⃒
⃒
⃒
⃒

√

σεZ =

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒σ2

Z −
σZXσZY

σXY

⃒
⃒
⃒
⃒

√

(5) 

Where σi
2 refers to the variances of measurements X, Y and Z, and σij 

is the covariance of the measurements. Details of the derivation can be 
found in (Gruber et al., 2016). Another measure is the signal-to-noise 
ratio (SNR), which is given in decibel units (dB) and is calculated as: 

SNRX = − 10log
(

σ2
XσYZ

σXY σXZ
− 1

)

SNRY = − 10log
(

σ2
Y σXZ

σYXσYZ
− 1

)

SNRZ = − 10log
(

σ2
ZσXY

σZXσZY
− 1

)

(6) 

In this study, X is the COSMOS-UK soil moisture, Y is one of the 
satellite-based soil moisture products, and Z is the JULES-CHESS simu
lated soil moisture. As suggested by previous studies such as Gruber 
et al. (2016) and Al-Yaari et al. (2014), the error statistics are calculated 

only when temporally and spatially collocated triplets have at least 100 
measurements. The TC analysis is performed for both original soil 
moisture and anomalies at all COSMOS-UK stations. It is noted that the 
TC analysis here aims to provide a relevant evaluation of the perfor
mance of different satellite-based soil moisture products at the COSMOS 
site scale. 

3.2. Merging scheme 

Merging different soil moisture products is advantageous because it 
minimizes random retrieval errors. The current study applies a least- 
squares merging scheme to obtain optimal estimates of soil moisture 
over the UK mainland. The least squares framework can be described as 
(Yilmaz et al., 2012): 

SM merged = wXSMX +wY SMY +wZSMZ (7) 

Where SM_merged is the merged soil moisture, SMi is the individual 
soil moisture product, and wi is the weight that is assigned to each 
product. The weights are calculated to minimize the random errors in 
the merged product. The weights are decided by the error variances and 
covariances of the soil moisture products (Gruber et al., 2019b). As 
stated in the previous section, the TC method is an effective way to es
timate random error variances. It can also be used to derive relative 
rescaling factors that will match the variability of different products to a 
common data space. For example, taking product X as the reference, 
then the scaling factors can be calculated as (Gruber et al., 2016): 

βX = 1  

βY =
σXZ

σYZ  

βZ =
σXY

σZY
(8) 

Where βi is the scaling factor for each product and is determined by 
error covariances. Clearly, βX is set to 1 due to its serving as the refer
ence. Then the products Y and Z are rescaled using the following 
equations (Gruber et al., 2017; Gruber et al., 2016): 

Yrescaled = βY *
(

Y − Y
)
+X  

Zrescaled = βZ*
(

Z − Z
)
+X (9) 

Where X, Y and Z are the temporal mean of X, Y and Z respectively. 
The weight wi of each product is then derived as follows (Gruber et al., 
2017; Zeng et al., 2016): 

wX =
σ2

Y σ2
Z

σ2
Xσ2

Y + σ2
Xσ2

Z + σ2
Y σ2

Z  

wY =
σ2

Xσ2
Z

σ2
Xσ2

Y + σ2
Xσ2

Z + σ2
Y σ2

Z  

wZ =
σ2

Xσ2
Y

σ2
Xσ2

Y + σ2
Xσ2

Z + σ2
Y σ2

Z
(10) 

For collocated triplets, the above formula is used to estimate weights 
from the rescaled products and merge the rescaled products based on eq. 
7. In order to increase the data coverage of the merged product, a 
merging scheme proposed by Gruber et al. (2017) based on the one- 
tailed Pearson's correlation significance is applied for the non- 
collocated samples. TC weighted merging is applied if p-value is less 
0.05 among the three products. Where only two datasets are available, 
the least-squared-based weights are derived from the uncertainties and a 
weighted average between the two products is used for merging. Table 2 
details the alternative methods used if TC merging is rejected, including 
the decision on whether to use one product, the arithmetic mean of two 
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products, or to disregard the pixel. This simple averaging scheme might 
become problematic if one product is well sampled in time but with 
significantly low quality. The use of this product to fill the gaps of higher 
quality dataset may reduce the overall quality of the merged time series. 
However, improved soil moisture temporal coverage is preferable to 
absolute quality for many applications such as drought monitoring and 
runoff simulation. Therefore, this simple averaging scheme is used in 
order to provide the highest possible sample density. In the present 
study, SMAP L3E and JULES-CHESS are firstly resampled to 12.5 km 
spatial resolution and then merged together with ASCAT using the 
proposed scheme. 

4. Results and discussion 

4.1. Comparison with all available observations 

Fig. 2 shows the error statistics for satellite-based and JULES-CHESS 
soil moisture compared to COSMOS-UK observations at 38 stations. Note 
that the data sample size for each product might be different because for 
each individual product all available observations between April 2015 
and October 2017 are used. For most stations, the SMAP L3E and JULES- 
CHESS outperform other soil moisture products with higher R and lower 
ubRMSD values. There is a large variation in the error scores over 
different stations for all the products. Relatively low R values are found 
at stations GLENS, HARWD, RDMER, TADHM for all the products. This 
is because all these locations have organic soils and low bulk density. 
There are still large uncertainties in retrieving soil moisture from 
organic soils via satellite microwave signals. Specifically, the surface 
roughness and vegetation parameters used in the radiative transfer 
model normally only account for mineral soils and are not properly 
calibrated over organic soils (Jonard et al., 2018; Peng et al., 2021). The 

results suggest the importance of deriving specific roughness and 
vegetation parameters for the improvement of microwave soil moisture 
products over surfaces with organic soil. The JULES model simulation 
also has large uncertainties over organic soils, due to its limitation in 
representation of organic soil process in the current model structure. In 
addition, the COSMOS measured soil moisture also has certain un
certainties in organic soil, where organic matter contains hydrogen and 
has strong impacts on measured COSMOS soil moisture particularly for 
wet soil in winter months. Generally negative Bias are found for all 
products, which is likely due to the vertical depth mismatch between 
COSMOS and other products. There are no simple approaches to cali
brate all these products to represent the same depth. One way to make a 
fair comparison is to use COSMOS data to calibrate hydrological models 
(e.g. Hydrus) at COSMOS sites. The first layer soil moisture can then be 
extracted from the model and compared with satellite-based products. 

In order to have a general view of the performance of different 
products, Fig. 3 summarizes the statistical scores for all stations with box 
plots. It is shown that the JULES-CHESS soil moisture has the best per
formance with median R of 0.85, median ubRMSD of 0.041 m3/m3. The 
SMAP L3E has similar median ubRMSD (0.048 m3/m3) and median R 
(0.76) compared to SMAP L4 (ubRMSD = 0.046 m3/m3, R = 0.71). The 
other products have relatively high ubRMSD values larger than 0.062 
m3/m3. Since the SMOS L4 is a downscaled soil moisture product, the 
bias is attributed to the downscaling method and the input data such as 
original SMOS product and MODIS NDVI product (Piles et al., 2011). 
The accuracy of SMOS soil moisture is also highly influenced by the 
impacts of Radio Frequency Interference (RFI) compared to SMAP, 
which has an improved technology for RFI filtering (Entekhabi et al., 
2010). For Sentinel 1 and ASCAT, the large difference might be caused 
by uncertainties introduced during the conversion of relative soil 
moisture unit into volumetric soil moisture, which relies on the coarse 
soil porosity data derived from the HWSD soil texture (Wagner et al., 
2013). High-quality and high-resolution soil porosity data is therefore 
required to improve the accuracy of Sentinel 1 and ASCAT volumetric 
soil moisture. In addition, the impacts of dynamic vegetation are not 
accounted for in the current Sentinel 1 product and the improvement of 
the algorithm with dynamic vegetation correction is expected to boost 
the quality (Al-Yaari et al., 2014; Bauer-Marschallinger et al., 2018). 

The results for the comparison of soil moisture anomalies are sum
marized in Figs. 4 and 5. Compared to absolute soil moisture, the R 
values for anomalies drop significantly for all the products (with median 
R ranging from 0.25 to 0.73, Fig. 5). This is attributed to the removal of 
seasonal cycle that contributes to the strong correlation for absolute soil 
moisture comparison (Al-Yaari et al., 2019; Peng et al., 2015). Due to the 
decrease of soil moisture magnitude, the ubRMSD for anomalies also 
diminish for all the products. The smallest ubRMSD is found for JULES- 
CHESS (0.021 m3/m3), followed by SMAP L4 (0.024 m3/m3), SMAP L3E 
(0.033 m3/m3), SMOS L4 (0.047 m3/m3), ASCAT (0.055 m3/m3), 

Table 2 
Merging scheme for non-collocated grids. X, Y, and Z refer to different soil 
moisture products.  

p-value <0.05 
(X–Y) 

p-value <0.05 
(X–Z) 

p-value <0.05 
(Y–Z) 

Merging scheme 

yes yes yes TCA weighted mean(X, 
Y, Z)a 

yes yes no X 
no yes yes Z 
yes no yes Y 
yes no no Arithmetic mean (X, Y) 
no yes no Arithmetic mean (X, Z) 
no no yes Arithmetic mean (Y, Z) 
no no no Disregard  

a where only two datasets are available, the least-squared-based weights are 
derived from the uncertainties and a weighted average between the two prod
ucts is used in the merging. 

Fig. 2. Statistical scores for the direct comparison between all soil moisture products against COSMOS-UK measurements from April 2015 to October 2017.  
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SMAP/Sentinel 1 (0.059 m3/m3), and Sentinel 1 (0.071 m3/m3). 
Therefore, this comparison of anomalies generally shows similar results 
to the absolute soil moisture comparison, highlighting the relatively 
better performance of JULES-CHESS and SMAP (L3E and L4) soil 
moisture products. 

4.2. Comparison based on temporal collocated observations 

In order to make a relative fair comparison between all the products, 
the analysis is limited to temporal collocated dates for different prod
ucts. Appendix Fig. A1 presents the evaluation scores for absolute soil 
moisture, while the results for anomalies are summarized in Fig. A2. 
Generally, it can be seen that the evaluation scores here are different 
from the results shown in Figs. 3 and 5, which is due to different sample 
dates that are considered in comparisons either for all available 

observations or for observations only on common dates. The perfor
mance of all the products are better for common dates than all available 
dates with higher median R and lower median ubRMSD values. The 
improvement in the magnitudes of statistical scores is higher for abso
lute values comparisons than anomaly comparisons. This may be 
because that the reduced sample size can represent a complete seasonal 
variation. In addition, the temporal collocated samples might poten
tially remove low quality data for all products, which is caused by 
different quality flag standards in each product. In terms of the ranking 
for all products, it is the same as the results from all available obser
vations, with better performance found for JULES-CHESS, SMAP L3E 
and SMAP L4, followed by ASCAT, SMOS L4, SMAP/Sentinel 1, and 
Sentinel 1. Specifically, the SMAP L3E and JULES-CHESS respectively 
have median ubRMSD of 0.042 m3/m3 and 0.039 m3/m3, which are 
close to the target accuracy (0.04 m3/m3) set by the SMAP mission. The 

Fig. 3. Box plots of the statistical scores for direct comparison of absolute soil moisture at 38 COSMOS-UK stations: (a) R; (b) Bias; (c) ubRMSD.  

Fig. 4. Statistical scores for the comparison of soil moisture anomalies from April 2015 to October 2017.  
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findings here are in line with the results from previous studies such as 
Colliander et al. (2017) and Montzka et al. (2017). Although the 
COSMOS measurements can reduce the representation errors caused by 
spatial resolution mismatch between the reference and soil moisture 
products, other sources of uncertainties still exist and contribute to the 
final evaluation scores (Al Bitar et al., 2017; Gruber et al., 2020). For 
example, the measured soil depths vary among different techniques, 
which could lead to different dynamics and responses in the measured 
soil moisture. In addition, the calibration model used, does not strictly 
apply to very high soil moisture content, and highly organic soils, thus 
further work is required to reduce these uncertainties. Therefore, in 
addition to direct comparison with the COSMOS data, the TC approach 
is recommended among the soil moisture community as a method for 
achieving an independent evaluation of satellite-based products without 
specifying a reference. 

4.3. Comparison based on triple collocation 

Fig. 6 shows the summary of absolute error standard deviation and 
SNR for each product calculated based on TC analysis at all COSMOS 
sites. It is found that the SMAP L3E and SMAP L4 have the best per
formance with relative low error and high SNR among all the satellite 
products. Compared to SMAP L3E and SMAP L4, ASCAT and SMOS L4 
have worse performance but better performance than SMAP/Sentinel 1 
and Sentinel 1. The same ranking of the performance of these products is 
found for the TC analyses based on absolute soil moisture (Fig. 6) and 

anomalies (Appendix Fig. A3). The results obtained here are generally 
consistent with the direct evaluation presented in Sections 4.1 and 4.2. 
In addition, similar findings based on triple collocation also highlighted 
the generally better performance of SMAP L3E compared with other 
coarse-resolution satellite products (Chen et al., 2018; Montzka et al., 
2017). It has been reported that using two passive microwave soil 
moisture products in the triple collocation analysis is subject to error- 
correlation, which can lead to unreliable TC estimates (Gruber et al., 
2020). Considering the active microwave characteristics of ASCAT and 
its comparable accuracy with SMOS L4, the SMAP L3E and ASCAT 
products are selected to merge with JULES-CHESS soil moisture over the 
British mainland in this study. 

4.4. Evaluation of TC merged soil moisture 

The weights are estimated based on the error variances of SMAP L3E, 
ASCAT and JULES-CHESS that are calculated by triple collocation. Low 
error variances in the triple collocation analysis are assigned relatively 
high weights, while high error variances indicate low weights. Fig. 7 
shows the relative weights that are used to merge the three soil moisture 
products. Compared with SMAP L3E and JULES-CHESS, ASCAT partic
ularly has relatively higher weights in coastal and northern regions of 
the British mainland, implying that the merged soil moisture over these 
parts will be more heavily weighted towards ASCAT than the other 
products. SMAP L3E has relatively high weights in southeastern regions, 
while high weights are generally assigned to JULES-CHESS over inland 

Fig. 5. Box plots of the statistical scores for comparison of soil moisture anomalies at 38 COSMOS-UK stations: (a) R; (b) ubRMSD.  

Fig. 6. Box plots of (a) the absolute error standard deviation, and (b) SNR [dB] for each satellite-based product calculated from the triple collocation analysis of 
absolute soil moisture at all COSMOS sites. 
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areas. Note that the white areas in the maps correspond to non- 
collocated pixels, which are merged using the scheme listed in 
Table 2. Fig. 8 below shows the spatial distribution of the merging 
method applied in this study. In the vast majority of cases, TC merging 
was used. The arithmetic mean between two products was very rarely 
used. The combination of TC merging approach and simple average 
scheme can increase the data coverage of the merged product. On the 
other hand, it may cause temporal non-continuity for data points when 
not all products are available. 

It is noted that the merged soil moisture has 12.5 km spatial 

resolution and daily time scale. Fig. 9 shows the spatial patterns of 
original soil moisture and merged soil moisture for March 2016. It can 
be seen that the merged product integrates the characteristics of all the 
original products and should theoretically minimize the random 
retrieval errors associated with the original products. It is found that the 
spatial variation is different for all products, but the merged products 
has similar wet and dry patterns to SMAP L3E, presenting higher levels 
of soil moisture in northern and southwestern parts of the UK, and a 
general decrease in wetness in southwestern regions. 

In order to evaluate the accuracy of the merged product, we present 
comparisons of absolute values against independent COSMOS-UK mea
surements in Fig. 10. Note that the comparison here is based on collo
cated dates for different products (SMAP L3E, SMAP L4, SMOS L4, 
ASCAT, JULES-CHESS, Merge). Comparison of the absolute values 
shows that the merged product and JULES-CHESS have the best error 
scores in R and ubRMSD compared to other products, with a slightly 
better performance observed in the median values for merged product 
(R = 0.87, ubRMSD = 0.038 m3/m3). However, JULES-CHESS and 
SMAP L4 present lower bias than others, and the merged product has 
similar bias to SMAP L3E. The same comparison of anomalies was also 
conducted and the results are shown in Appendix Fig. A4. The perfor
mance of anomalies was found to be similar to that of absolute values, 
with JULES-CHESS and the merged products outperforming other 
products, but the median R and ubRMSD values for JULES-CHESS were 
found to be slightly better than the merged product. In order to gain 
insight into the performance of the original and merged products, the 
time series of soil moisture over six stations are plotted and explored in 
Fig. 11. It can be seen that SMAP L3E, ASCAT, and the merged products 
generally have a greater range of temporal variability compared with 
JULES-CHESS and SMAP L4. On one hand, this finding suggests that the 
JULES-CHESS simulation has more muted temporal dynamics, which 
might be attributed to uncertainties from either the forcing datasets or 

Fig. 7. The soil moisture weights estimated using triple collocation, which are used for merging together the SMAP L3E, ASCAT and JULES-CHESS soil moisture.  

Fig. 8. Map of merging method used. 0 = TCA, 1 = SMAP only, 2 = CHESS 
only, 3 = ASCAT only, 4 = Arithmetic mean (SMAP, CHESS), 5 = Arithmetic 
mean (SMAP, ASCAT), 6 = Arithmetic mean (CHESS, ASCAT). 
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the JULES model soil parameters. The method of temporal disaggrega
tion in JULES-CHESS uses smoothly varying diurnal cycles and simple 
disaggregation of rainfall (Williams and Clark, 2014). This may not fully 
represent sub-daily extremes of both supply (precipitation) and demand 
(evaporation, calculated from temperature, air pressure, humidity, wind 
speed and radiation variables) of water into and out of the soil, which 
may suppress short timescale dynamics. The soil properties, in particular 
hydraulic conductivity at saturation and soil moisture at saturation, 
have an effect on both the temporal dynamics of the soil moisture and 
the overall range that the soil moisture can attain. Recent work with 
other pedotransfer functions suggests changes to these parameters can 
improve the temporal dynamics as well as the overall mean (Pinnington 
et al., 2020; Cooper et al., 2020). On the other hand, the improved 
temporal dynamics present in the merged product benefits from the 
integration of information from the satellite soil moisture products. 
Specifically, in the current study, this improvement results from the 
rescaling of JULES-CHESS to SMAP L3E, which has similar temporal 
variability to COSMOS measurements and was used as the reference for 
TC merging. Similar results have been reported by a recent study that 
assimilates SMAP data into the JULES model to improve soil moisture 
prediction (Pinnington et al., 2020). The improved performance of the 
merged product in the absolute value comparison is due to the mini
mization of sampling errors associated in parent products. However, the 
removal of seasonal variability in the anomaly analysis reduces its 
performance and results in similar error scores compared to JULES- 
CHESS soil moisture. In addition, it is found that the merged product 
does not always improve or outperform original products compared to 
the measurements. For example, large discrepancies between the 
merged product and COSMOS measurements at sites RDMER and 
TADHM may be due to the presence of organic soils at these sites. As 
stated in section 4.1, all products including model simulation, satellite 

and COSMOS have large uncertainties over peatland with organic soils. 
The accuracy of the merged product is also contingent on the reference 
product during the TC analysis, which is SMAP L3E in this study. If 
SMAP L3E products have large biases compared to COSMOS measure
ments, then there might be no improvements of the merged product. In 
summary, the results presented here highlight the advantages of the 
merged product, which integrates the desirable characteristics of the 
component soil moisture products and reduces unwanted random 
retrieval errors. The TC merging scheme can facilitate the generation of 
high-quality, temporally and spatially consistent soil moisture infor
mation via fusing model simulation and satellite products over the UK 
mainland. Given the availability of satellite soil moisture products, and 
the potential for near-real-time JULES-CHESS if the driving datasets are 
available in a timely manner, this provides a simple way to integrate the 
advantages of multi-source soil moisture and provide high-quality soil 
moisture estimates. This would be beneficial for a wide range of appli
cations in climate science, hydrology, ecosystem research and agricul
ture, along with a range of other sectors. 

4.5. Comparison of TC and arithmetic mean merging methods 

Fig. 12 shows the comparison between the TC merged product, the 
simple arithmetic average product, and the JULES-CHESS product. It 
can be seen from the box plots that all products have similar perfor
mance in terms of R, ubRMSD, and bias. For JULES-CHESS and the TC 
merged product, the results here are almost the same to the comparison 
shown in Fig. 10. Although slightly worse performance on R and 
ubRMSD was found for the arithmetic average product compared to 
JULES-CHESS and the TC merged product, the median bias value of the 
arithmetic average product is slightly smaller than that of the TC merged 
product. It suggests that simple averaging also leads to a merged product 

Fig. 9. Comparison of spatial maps between original and merged soil moisture on March 2016.  
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with similar performance as the one based on the TC merging approach. 
Yilmaz et al. (2012) also reported that the TC merging scheme did not 
always produce a better product than that of simple averaging. Such 
similarity could be due either to the approximately equal weighting of 
the three original products or to the optimal TC weighting but small 
differences among the original products. It further implies that the sta
tionary random error assumption associated with the TC merging 
approach should be improved to better account for the spatial and 
temporal non-stationary error (Zhou et al., 2021). Nevertheless, the TC- 
based approach should be preferred over the simple averaging method, 
because it can provide optimal weights and would provide a better 
merged product in areas where the parent products have large 
differences. 

5. Conclusion 

High-quality and high-resolution soil moisture information is of 
significance for various hydrological and meteorological applications in 
the UK. Currently, there are several soil moisture products available 
either from satellite retrievals (e.g., SMAP L3E, SMAP L4, SMOS L4, 
SMAP/Sentinel 1, Sentinel 1, ASCAT) or model simulations (e.g., JULES- 
CHESS). The aim of this study is to comprehensively evaluate these 
products and merge the better-performing products together to generate 
the best soil moisture product for the UK. Direct comparison with 
COSMOS-UK measurements and independent comparison based on tri
ple collocation were applied to evaluate the quality and consistency of 
these products. A least-squares merging scheme with error variances 
estimated by triple collocation was used to merge the different soil 
moisture products. Several conclusions are drawn from the above 
analyses.  

1. JULES-CHESS and SMAP L3E soil moisture have lower errors 
compared with other products when compared directly with 
COSMOS-UK measurements and when evaluated using independent 
triple collocation. All the products studied here show high errors in 
organic soils, which suggests that specific roughness and vegetation 
parameters are required for the improvement of satellite-based soil 
moisture over surfaces with organic soils. The JULES model also 
needs to be improved to better simulate soil moisture over organic 
soils.  

2. The COSMOS-UK network provides a valuable reference dataset for 
the evaluation of satellite and model-based soil moisture products, 
and reduces footprint representative errors to certain extent. How
ever, the mismatch in soil depth and footprint among different 
products, as well as COSMOS-UK soil moisture calibration uncer
tainty particularly over highly organic soils still exist and contribute 
to the error scores presented in the current study. 

3. The TC merged soil moisture dataset presented in this paper in
tegrates the characteristics of the model simulated and satellite- 
based soil moisture products. In particular, the limited temporal 
variability of JULES-CHESS simulated soil moisture can be improved 
in situations where the satellite soil moisture has better temporal 
dynamics. The TC merging scheme is preferred over simple arith
metic averaging because it provides optimal weighting and the 
ability to produce a better merge product in areas where there are 
large differences between the parent products. The stationary error 
assumption associated with the TC merge scheme should be 
improved to account for the spatial and temporal non-stationary 
errors, which would result in improved merging skills. 

Fig. 10. Evaluation of ASCAT, SMAP L3E, SMAP L4, JULES-CHESS, and merged absolute soil moisture values against independent COSMOS-UK measurements.  
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Fig. 11. Time series of the soil moisture from JULES-CHESS and merged soil moisture on the left hand side, and ASCAT, SMAP L3E and SMAP L4 on the right hand 
side at COSMOS-UK stations distributed over different areas of UK. 
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Appendix A  

Table A1 
List of the COSMOS-UK stations used in the current study.  

Station name Station ID Latitude (o) Longitude (o) Elevation (m) Land cover Start date 

Alice Holt ALIC1 51.154 N 0.858 W 80 Deciduous Broadleaf Forest 6-Mar-15 
Balruddery BALRD 56.482 N 3.112 W 130 Farmland 16-May-14 
Bickley Hall BICKL 53.026 N 2.701 W 78 Improved Grassland 28-Jan-15 
Bunny Park BUNNY 52.861 N 1.127 W 39 Arable 27-Jan-15 
Cardington CARDT 52.106 N 0.425 W 29 Grassland 24-Jun-15 
Chimney Meadows CHIMN 51.708 N 1.479 W 65 Grassland 2-Oct-13 
Chobham Common CHOBH 51.368 N 0.598 W 47 Heath 24-Feb-15 
Cockle Park COCLP 55.216 N 1.694 W 87 Grassland and Arable 21-Nov-14 
Crichton CRICH 55.043 N 3.583 W 42 Grassland 2-Dec-14 
Easter Bush EASTB 55.867 N 3.207 W 208 Grassland 14-Aug-14 
Elmsett ELMST 52.095 N 0.993E 76 Arable 11-Aug-16 
Euston EUSTN 52.336 N 0.796E 18 Improved Grassland 31-Mar-16 
Gisburn Forest GISBN 54.024 N 2.385 W 246 Coniferous Woodland 15-Aug-14 
Glensaugh GLENS 56.914 N 2.562 W 399 Grass and Heather Moorland 14-May-14 
Hadlow HADLW 51.229 N 0.320E 33 Improved Grassland 27-Oct-16 
Hartwood Home HARTW 55.810 N 3.829 W 225 Grassland/ Woodland 20-May-14 

(continued on next page) 

Fig. 12. Box plots of the statistical scores for JULES-CHESS, TC merged and arithmetic average soil moisture compared with COSMOS-UK measurements.  
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Table A1 (continued ) 

Station name Station ID Latitude (o) Longitude (o) Elevation (m) Land cover Start date 

Harwood Forest HARWD 55.216 N 2.024 W 300 Coniferous Woodland 20-May-15 
Henfaes Farm HENFS 53.225 N 4.012 W 287 Semi-Natural Grassland 17-Dec-15 
Hollin Hill HOLLN 54.111 N 0.960 W 82 Grassland 25-Mar-14 
The Lizard LIZRD 50.033 N 5.200 W 85 Grassland/Heath 17-Oct-14 
Loddington LODTN 52.610 N 0.826 W 186 Arable 26-Apr-16 
Lullington Heath LULLN 50.794 N 0.189E 119 Grassland/Heath 16-Dec-14 
Moor House MOORH 54.659 N 2.468 W 565 Cotton Grass/Heather 4-Dec-14 
Morley MORLY 52.548 N 1.034E 55 Arable 14-May-14 
North Wyke NWYKE 50.774 N 3.906 W 181 Grassland/Pasture 16-Oct-14 
Plynlimon PLYNL 52.453 N 3.763 W 542 Semi-Natural Grassland 5-Nov-14 
Porton Down PORTN 51.120 N 1.681 W 146 Grassland 18-Dec-14 
Redmere RDMER 52.446 N 0.421E 3 Shallow Arable 11-Feb-15 
Redhill REDHL 51.263 N 0.429E 91 Improved Grassland 18-Feb-16 
Riseholme RISEH 53.262 N 0.526 W 53 Improved Grassland 4-May-16 
Rothamsted ROTHD 51.814 N 0.3783 W 131 Crops and Grassland 25-Jul-14 
Sheepdrove SHEEP 51.530 N 1.482 W 170 Grassland 24-Oct-13 
Sourhope SOURH 55.480 N 2.230 W 487 Coarse Grassland 9-Dec-14 
Spen Farm SPENF 53.869 N 1.319 W 57 Arable and horticulture 23-Nov-16 
Stoughton STGHT 52.602 N 1.047 W 130 Arable 18-Aug-15 
Stiperstones STIPS 52.581 N 2.945 W 432 Heathland 6-Nov-14 
Tadham Moor TADHM 51.208 N 2.829 W 7 Grassland 14-Oct-14 
Waddesdon WADDN 51.840 N 0.948 W 98 Grassland 4-Nov-13  

Fig. A1. Box plots of the statistical scores for comparison of absolute soil moisture for temporal collocated observations at 38 COSMOS-UK stations: (a) R; (b) Bias; 
(c) ubRMSD.  
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Fig. A2. Box plots of the statistical scores for comparison of soil moisture anomalies for temporal collocated observations at 38 COSMOS-UK stations: (a) R; 
(b) ubRMSD. 

Fig. A3. Box plots of (a) the absolute error standard deviation, and (b) SNR [dB] for each satellite-based product calculated from the triple collocation analysis of soil 
moisture anomalies at all COSMOS sites. 

Fig. A4. Evaluation of SMOS L4, SMAP L3E, SMAP L4, JULES-CHESS, and merged soil moisture anomalies against COSMOS-UK measurements.  
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Jiménez, C., 2016. Satellite soil moisture for agricultural drought monitoring: 
assessment of the SMOS derived soil water deficit index. Remote Sens. Environ. 177, 
277–286. 

Massari, C., Camici, S., Ciabatta, L., Brocca, L., 2018. Exploiting satellite-based surface 
soil moisture for flood forecasting in the Mediterranean area: state update versus 
rainfall correction. Remote Sens. 10, 292. 

Mattia, F., Balenzano, A., Satalino, G., Lovergine, F., Loew, A., Peng, J., Wegmuller, U., 
Santoro, M., Cartus, O., Dabrowska-Zielinska, K., 2017. Sentinel-1 high resolution 
soil moisture. In: 2017 IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS). IEEE, pp. 5533–5536. 

Merlin, O., Walker, J.P., Chehbouni, A., Kerr, Y., 2008. Towards deterministic 
downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. 
Remote Sens. Environ. 112, 3935–3946. 

Miralles, D.G., Van Den Berg, M.J., Gash, J.H., Parinussa, R.M., De Jeu, R.A., Beck, H.E., 
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