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• Simulated N deposition decreased eri-
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cling and may affect peat microbial
communities.
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Peatlands store one third of global soil carbon (C) and up to 15% of global soil nitrogen (N) but often have low
plant nutrient availability owing to slow organicmatter decomposition under acidic andwaterlogged conditions.
In rainwater-fed ombrotrophic peatlands, elevated atmospheric N deposition has increased N availability with
potential consequences to ecosystem nutrient cycling. Here, we studied how 14 years of continuous N addition
with either nitrate or ammonium had affected ericoid mycorrhizal (ERM) shrubs atWhim Bog, Scotland. We ex-
amined whether enrichment has influenced foliar nutrient stoichiometry and assessed using N stable isotopes
whether potential changes in plant nutrient constraints are linkedwith plant N uptake through ERM fungi versus
direct plant uptake. High doses of ammonium alleviated N deficiency in Calluna vulgaris and Erica tetralix,
whereas low doses of ammonium and nitrate improved plant phosphorus (P) nutrition, indicated by the lowered
foliar N:P ratios. Root acid phosphatase activities correlated positively with foliar N:P ratios, suggesting enhanced
P uptake as a result of improved N nutrition. Elevated foliar δ15N of fertilized shrubs suggested that ERM fungi
were less important for N supply with N fertilization. Increases in N availability in peat porewater and in direct
nonmycorrhizal N uptake likely have reduced plant nitrogen uptake via mycorrhizal pathways. As themycorrhi-
zal N uptake correlates with the reciprocal C supply from host plants to the soil, such reduction in ERM activity
may affect peat microbial communities and even accelerate C loss via decreased ERM activity and enhanced
saprotrophic activity. Our results thus introduce a previously unrecognized mechanism for how anthropogenic
N pollution may affect nutrient and carbon cycling within peatland ecosystems.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
History, University of Helsinki, Finland.
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1. Introduction

Northern peatlands accumulate carbon (C) and nitrogen (N) in peat
asmicrobial decomposition is largely suppressed bywaterlogged condi-
tions, lack of oxygen, and low pH and temperature (Clymo, 1984;
Gorham, 1991; Moore et al., 2005; Kayranli et al., 2010). Nitrogen and
other nutrients are tightly bound in organic compounds and thus
peatlands are nutrient-poor environments for plants (Aerts et al.,
1992; Bridgham et al., 1996, 1998). Ombrotrophic bogs are isolated
from mineral soils and rely on N derived from atmospheric sources
only, either via deposition or biological N2 fixation. Similarly, phospho-
rus (P) originates solely from atmospheric deposition and often limits
plant growth and ecosystem productivity together with N (Aerts et al.,
1992; Bridgham et al., 1996; Wang et al., 2016). Additionally, living
mosses effectively capture newly deposited nutrients, which then be-
come available for vascular plants only after peat decays (Pastor et al.,
2002; Limpens et al., 2006).

Many vascular plants growing in nutrient-limited environments can
bypass N mineralization by assimilating organic N when available as
free amino acids or short peptides (Kielland, 1994; Lipson and
Näsholm, 2001; Näsholm et al., 2009; Tegeder and Rentsch, 2010).
Evergreen shrubs of the Ericaceae use symbiotic ericoid mycorrhizal
(ERM) fungi to access otherwise unavailable nutrient pools in soil or-
ganic matter (Smith and Read, 2008). ERM fungi can mobilize N from
soil organic matter with their wide repertoire of extracellular proteases,
lipases, and carbohydrate-active enzymes (Bajwa et al., 1985; Martino
et al., 2018). Released simple peptides and amino acids are readily
absorbed by the ERMmycelium and N is provided to host plants in ex-
change for photosynthesized carbohydrates (Stribley and Read, 1980,
Smith and Read, 2008). In culture studies, ERM fungi also produce phos-
phatases and can transport inorganic phosphorus (P) to plant roots
(Pearson and Read, 1973, 1975), indicating that ERM symbionts also im-
prove P nutrition of their hosts.

During the last 150 years, anthropogenic N deposition has increased
the availability of inorganic N (Vitousek, 1997, Galloway et al., 2004).
This has changed nutrient limitations in many terrestrial and aquatic
ecosystems (e.g. Aerts et al., 1992; Elser et al., 2009; Crowley et al.,
2012; Chen et al., 2020). In ombrotrophic peatlands, increasing atmo-
spheric N deposition is effectively buffered by Sphagnummosses that in-
tercept ammonium (NH4

+) and nitrate (NO3
−) from precipitation (Aerts

et al., 1992; Lamers et al., 2000; Chiwa et al., 2016) and assimilate newly
deposited inorganic N into biomass. Thus, despite the increases in inor-
ganic N inputs, nitrogen concentration in peat porewater at first re-
mains largely unaffected (Lamers et al., 2000; Bragazza et al., 2005;
Chiwa et al., 2016). If the amount of N deposition exceeds a certain
level, the moss layer eventually becomes N-saturated. When the moss
filtering fails, virtually all deposited N leaks to porewater. A critical de-
position rate of 2.0 g N m−2 y−1 has been proposed for the Sphagnum
layer to reach N saturation (Lamers et al., 2000; Harmens et al., 2014).
Somewhat higher levels (up to 3.2 g N m−2 y−1) were, however, sug-
gested by Chiwa et al. (2016) based on 11 years of simulated N deposi-
tion in a long-term experiment atWhim Bog, Scotland (Sheppard et al.,
2004, 2014).

Here, we used the Whim Bog N manipulation experiment to study
how different levels of N additions and subsequent changes in
porewater N concentrations are reflected inmineral nutrition and nutri-
ent acquisition strategies of vascular plants. Our primary interest was in
ericoid mycorrhizal shrubs, Calluna vulgaris (L.) and Erica tetralix (L.), as
their metabolism is directly linked to below-ground carbon and nutri-
ent cycling via symbiotic ERM fungi. Increasing N availability in peat
porewater may reduce the need of plants to access soil organic N
sources and decrease their dependence on ERM symbionts. This, in
turn, may reduce the below-ground C investment of plants (Hobbie
and Hobbie, 2008; Högberg et al., 2010) which, together with improved
N availability, may alter competition among the peat microbial commu-
nity, potentially leading to increased saprotrophic activity and
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accelerated C loss (Gadgil and Gadgil, 1975, Högberg et al., 2003,
Averill andHawkes, 2016, Fernandez andKennedy, 2016). Negative cor-
relations between the strength of N deposition and growth or abun-
dance of mycorrhizal fungi have been documented especially in many
forest ecosystems dominated by ectomycorrhizal (ECM) fungi (e.g.
Wallenda and Kottke, 1998; Nilsson and Wallander, 2003; Treseder,
2004).

We studied plant C:N:P stoichiometry to assess how 14 years of ex-
perimental N addition have changed the nutritional constrains of the
ERM shrubs. Fertilization experiments in peatlands have shown a stron-
ger response of shrub biomass production and peat decomposition to
N + PK than N only addition (e.g., Bragazza et al., 2012; Kivimäki
et al., 2013; Larmola et al., 2013), suggesting that the plants become P
(or N/PK) (co-)limited under high atmospheric N deposition. This, in
turn, may lead to upregulation of enzymes involved in P uptake,
which we studied by comparing foliar N:P stoichiometry with root
acid phosphatase activity. In addition, we analyzed the ratios of the nat-
urally occurring nitrogen stable isotopes (15N:14N, expressed as δ15N) in
plant leaves to study whether experimentally increased N deposition
has decreased the dependence of ERM shrubs on theirmycorrhizal sym-
bionts in N acquisition. ERM and ECM fungi provide their host plants
with nitrogen depleted in 15N compared to the available soil N resources
(Hobbie and Högberg, 2012), and due to this, plants colonized with ERM
or ECM fungi have typicallymarkedly lower foliar δ15N than co-occurring
nonmycorrhizal plants in N-limited environments (Michelsen et al.,
1996, 1998; Hobbie et al., 2005; Craine et al., 2009). Decreases in mycor-
rhizal N supply, and a concurrent increase in direct root N uptake from
peat porewater, should thus increase foliar δ15N. Based on these pre-
mises we hypothesized the following:

1. Nitrogen fertilization decreases foliar C:N and increases foliar N:P ra-
tios, reflecting improved N nutrition.

2. Root acid phosphatase activity increases with the increasing foliar N:
P ratio, reflecting more severe P deficiency with N deposition.

3. Changes in foliar C:N:P stoichiometry are stronger with the increas-
ing N dose and most prominent under high-N treatments.

4. Foliar δ15N of ERM shrubs exposed to N fertilization are higher than
in untreated control plants, reflecting reduced N supply frommycor-
rhizal fungi and upregulated direct uptake of N.

5. Reduction in mycorrhizal N supply is strongest under the highest N
additions and reflect root-accessible N in peat porewater.

2. Materials and methods

2.1. Study site and experimental setup

The study was carried out at Whim Bog (Scotland, UK; 55°46′N,
3°16′W) where an N manipulation experiment has continued since
2002. The area has relatively low annual atmospheric backgrounddepo-
sition of approximately 0.8 g N m−2, a mean annual temperature of
7.9 °C and total precipitation of 1141 mm (Levy et al., 2019). The plots
(12.8 m2 each) established in a randomized block design are treated
with different annual doses (0, 0.8, 2.4, or 5.6 g m−2) of N in addition
to background deposition, supplied either as ammonium (NH4Cl) or ni-
trate (NaNO3). In addition to N-only treatments, half of the plots receiv-
ing the lowest and highest N doses are additionally fertilized with
phosphorus and potassium supplied as K2HPO4 (N + PK treatments,
see Table 1). Fertilization is sprayed gradually during ca. 120 experi-
mental precipitation events per year, simulating natural rainfall. Further
details on the experimental design are provided by Sheppard et al.
(2004, 2014).

2.2. Sampling of plant material and nutrient and isotope analysis

Foliar samples of the ericoid mycorrhizal shrubs Calluna vulgaris L.
and Erica tetralix L. and the nonmycorrhizal sedge Eriophorum



Table 1
Different treatment combinations of N doses (in addition to the 0.8 g N m−2 background)
and sources (ammoniumor nitrate, either alone or togetherwith PK) atWhimBogmanip-
ulation experiment. The experiment has been ongoing continuously since 2002.

N dose (g N m−2 y−1) Treatments with N alone
(number of plots)

Treatments with N + PK
(number of plots)

Control (0) No added fertilizers (4) –
Low N (0.8) NH4

+ (4), NO3
− (4) NH4

+ + PK (4), NO3
− + PK (4)

Medium N (2.4) NH4
+ (4), NO3

− (4) –
High N (5.6) NH4

+ (4), NO3
− (4) NH4

+ + PK (4), NO3
− + PK (4)
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vaginatum L.were collected inAugust 2016 (peak growing season) from
44 plots representing four replicate plots from the control, N alone and
N + PK treatments with different annual N doses and N sources
(Table 1). In addition, Sphagnum spp. shoots were sampled from the
control and high N plots. A composite sample (1 g dry mass) of top can-
opy current-year leaves of each vascular plant or top 10 cm of green
shoot of Sphagnum spp. were dried (+50 °C) and homogenized. Each
homogenized sample was divided into two subsamples: one subsample
(4 mg) was weighed in tin cups and analyzed for %C, %N, and 15N con-
tent using a Costech 4010 Elemental Analyzer coupled to a Delta XP
Mass Spectrometer with a precision on duplicate samples of 0.2‰
(University of New Hampshire, USA). Lab standards of sporocarps,
tuna muscle, apple leaves (NIST1515), and pine needles (NIST1575a)
were included with each run. The other parallel subsample (300 mg)
was analyzed for phosphorus content using microwave acid digestion
followed by ICP-MS elemental analysis (EPA method 3051) (University
of Helsinki, Finland).

2.3. Measuring porewater N concentration

Peat porewater was collected monthly from each treatment plot
during 2012–2015 using a syringe from dipwells installed vertically in
the soil (70 cm long black plastic pipeswith 40mm inner diameter hav-
ing 2 lines of 4 mm holes). The collected water samples were immedi-
ately filtered through a 0.45 μm membrane filter (PuradiscTM,
Whatman) and total N was analyzed by ANTEK. Concentrations of
NO3

− and NH4
+ were analyzed by ion chromatography (Metrohm). The

filtered samples were stored in the dark at +4 °C (for total N) or frozen
for (NO3

− and NH4
+) until chemical analysis.

2.4. Data analysis

Differences among treatments in foliar C:N and N:P ratios were ex-
amined using one-way ANOVA and Tukey's HSD test. A factorial ap-
proach was used instead of treating N load as a continuous variable so
as to detect also such changes in foliar nutrient stoichiometry that differ
between low-N and high-N treatments. Each of the plant species was
analyzed separately. In addition, data on root acid phosphatase activity
of the shrubs C. vulgaris and E. tetralix from Whim Bog were compared
with their respective foliar N:P ratios using linear regression to study
whether root phosphatase activity was either up-regulated or down-
regulated depending on plant nutritional status. Root acid phosphatase
data were produced by Kiheri et al. (2020), using enzymatic assay de-
scribed in Velmala et al. (2014), and were available from three control
plots and three replicate plots representing each of the four high-N
treatments (NH4

+ or NO3
−, with and without PK, see Table 1).

To eliminate δ15N variation caused by the isotopic composition of
added fertilizers we normalized the foliar δ15N values of C. vulgaris
and E. tetralix to that of nonmycorrhizal Eriophorum vaginatum. This
was done for both shrubs by subtracting their δ15N from those of
nonmycorrhizal Eriophorum growing in the same experimental plot.
The obtained new variable Δ15NNON–ERM, describing the δ15N difference
between the shrubs and Eriophorum in each plot, was compared with
the two variables N dose (0, 0.8, 2.4 or 5.6 g N m−2 y−1) and N source
(NH4

+ or NO3
−) using general linear models. Plant species (C. vulgaris
3

or E. tetralix), and a dummy variable for whether the N was supplied
alone or together with P and K, were included as additional fixed vari-
ables in the model to study their effects on Δ15NNON–ERM values of the
shrubs. Analyses treated variable N dose either as a numeric or a factor
variable, again, to find such differences in the response variable that dif-
fer between the low-N and the high-N treatments. However, as the two
alternativemodels gave similar results, only those from themodelswith
Ndose treated as a numeric variable are reported.We also studied, using
another linear model, the relation between the shrub Δ15NNON–ERM

values and average dissolved total nitrogen (DTN) content in peat
porewater to test whether changes in mycorrhizal N supply were di-
rectly related to peat porewater chemistry. Mean porewater DTN con-
centrations of different treatments were calculated separately based on
winter measurements from October to April and on summer measure-
ments from May to September. The latter mean was assumed to repre-
sent porewater concentrations during the active growth season.

All data were analyzed using R version 4.0.2 (R Core Team, 2019).
Residuals of all applied linear models were normally distributed and
did not show any patterns when plotted against fitted values.

3. Results

3.1. Simulated N deposition and plant nutrition

Long-term fertilization treatments affected foliar nutrient stoichi-
ometry but the effects varied between the different plant species and
the two N sources. Foliar C:N ratios of Calluna vulgaris and Erica tetralix
decreased significantly (p < 0.05) under the high-N ammonium treat-
ment but remained unaffected under other N fertilization treatments
(Fig. 1 A–B). When N was added together with phosphorus and potas-
sium (N+ PK), foliar C:N ratios of E. tetralix also decreased significantly
in high-N plots fertilized with nitrate, whereas foliar C:N of C. vulgaris
only decreased in plots fertilized with ammonium (Fig. S1). C:N ratios
of nonmycorrhizal Eriophorum vaginatum were always much lower
than those of the studied shrubs and remained unaffected in all treat-
ments (Fig. 1 A–B, Fig. S1). When N was supplied alone, C:N ratios of
Sphagnum spp. were much lower in high-N treatments than in control
plots, with the decline stronger in plots fertilized with ammonium
(Fig. 1 A–B). However, in both N + PK treatments, C:N ratios of
Sphagnum were not significantly affected (Fig. S1).

Compared to control plots, the N:P ratios of C. vulgaris and E. tetralix
decreased in low-N plots without PK addition, although this decrease
was only significant (p < 0.05) in C. vulgaris in ammonium-treated
plots (Fig. 1C). In contrast to low-N treatments, N:P ratios of shrubs in
high-N treatments (without PK) were somewhat but not significantly
elevated compared to control plots. Foliar N:P ratios of shrubs were sig-
nificantly higher (p values ranging from 0.012 to <0.001) in high-N
treatments than in low-N treatments with the same N source, except
in nitrate-fertilized E. tetralix (Fig. 1 C\\D). In Eriophorum vaginatum,
N:P ratios tended to decrease (although non-significantly) in low- and
moderate-N nitrate treatments (Fig. 1D) but remained unaffected in
all ammonium treatments (Fig. 1C). Nitrogen to phosphorus ratios of
Sphagnum spp. increased with N fertilization, but the differences rela-
tive to control plots were small in both ammonium and nitrate treat-
ments (Fig. 1 C\\D).

Average root acid phosphatase activities of Calluna vulgaris and Erica
tetralix correlatedpositivelywith foliarN:P ratios (Fig. 2). The acid phos-
phatase activities of the two shrub species differed from each other,
with C. vulgaris values significantly higher (p < 0.01) than E. tetralix.
The linear model explaining root acid phosphatase activity with foliar
N:P ratios and species together with their highly significant interaction
(i.e., root acid phosphatase activity= foliar N:P+ species+ foliar N:P ×
species) yielded an adjusted R2 value of 0.63 (F(3, 26) = 17.46, p <
0.001, see Table S1 for estimates and p-values for each variable).
Regression equations and R2 values are shown separately for Calluna
and Erica in Fig. 2.
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3.2. Simulated N deposition and foliar 15N abundance

Foliar δ15N values increased in all plants as the experimental N dose
increased (Fig. 3). The difference of δ15N values between the control
plots and high-N plots was largest in Sphagnum spp. (Fig. 3D), interme-
diate in Calluna vulgaris and Erica tetralix (Fig. 3 A-B), and smallest in
Eriophorum vaginatum (Fig. 3C).
y = -5.36 + 0.67 x
r  = 0.712

y = 1.85 + 0.17 x
r  = 0.452

-1
-1

C. vulgaris
E. tetralix

Fig. 2. Linear regression between root acid phosphatase activity and foliar N:P ratios in
Erica tetralix (open) and Calluna vulgaris (closed symbols). Circle = untreated control
plots, squares = high N treatment without PK addition, triangles = high N treatment
with PK addition.
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Foliar δ15N values of the ERM shrubs C. vulgaris and E. tetralix were
lower than those of nonmycorrhizal Eriophorum vaginatum within the
same treatments (Fig. 3), except in two high N plots (one fertilized
with ammonium and one with nitrate) where Eriophorum had lower
δ15N than the shrubs. In control plots, the average 15N depletion of
both ERM shrubs to Eriophorum (Δ15NNON–ERM) was 5.9‰ (Figs. 3 and
4). The Δ15NNON–ERM values of C. vulgaris and E. tetralix decreased as
the experimental N dose increased (coefficient = −0.783, p < 0.001,
R2 = 0.47; Fig. 4). Neither the form of added nitrogen (NH4

+ or NO3
−)

nor the plant species (C. vulgaris or E. tetralix) significantly affected
Δ15NNON–ERM values when included in regression models with N dose,
although C. vulgaris had slightly (0.8‰) higher Δ15NNON–ERM values
than E. tetralix (p = 0.053, see Table S2 for further details). Whether N
was provided alone or together with phosphorus and potassium (N
vs. N + PK treatments) was not a significant factor explaining
Δ15NNON–ERM values of the shrubs. We also analyzed the data without
the four outlying datapoints having negative Δ15NNON–ERM values
(that is, data points originating from two exceptional study plots
where Eriophorum had lower δ15N than shrubs) to assess their potential
influence on results. Omitting outliers improved model fit (regression
coefficient = −0.62, p < 0.001, adjusted R2 = 0.53) and also made
plant species a significant variable (p < 0.01, see Table S2 for compari-
son of the analysis with and without outliers).

The Δ15NNON-ERM values of C. vulgaris and E. tetralix correlated nega-
tively with the dissolved total nitrogen (DTN) in porewater (Fig. 5). This
correlation was stronger in winter (coefficient = −0.028, F(1, 86) =
57.45, p < 0.001, R2 = 0.40, Fig. 5A) than during the growing season
(coefficient = −0.020, F(1, 86) = 38.21, p < 0.001, R2 = 0.31,
Fig. 5B). Plant species was not a significant factor in either regression.
Additional analysis of the data without the outliers (four data points
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having negative Δ15NNON–ERM values) resulted in shallower regression
slopes and lowermodel fits, but the p-valueswere still highly significant
(winter: coefficient =−0.021, F(1, 82) = 24.49, p < 0.001, R2 = 0.23;
summer: coefficient=−0.011, F(1, 82)=11.29, p=0.001, R2=0.12).

4. Discussion

Our results demonstrate that elevated N deposition changes the nu-
trition and nitrogen sources of ericoid mycorrhizal shrubs in
ombrotrophic peatlands. Both the C:N:P stoichiometry and δ15N in
leaves of Calluna vulgaris and Erica tetralix were altered during the
14 years of N addition at Whim Bog. These effects were related to the
level of N deposition: in agreement with our hypothesis, the foliar
δ15N of shrubs increased linearly with increasing N deposition, but the
Δ
ER

M
N

O
N

A B

+

- C. vulgaris
E. tetralix

y = 6.44   0.78 x
            r  = 0.472

Experimental N dose (g m-2 y-1  )

-

Fig. 4. Regression between Δ15NNON–ERM values (i.e. δ15N difference to nonmycorrhizal
Eriophorum vaginatum) of ericoid mycorrhizal shrubs and the annual N dose at Whim
Bog. There was no significant difference between the two N sources (A) or species
(B) although Calluna vulgaris tended to have slightly higher Δ15NNON–ERM values than
Erica tetralix. See results, for coefficients and R2 without negative outliers.
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Fig. 5. Linear regression between foliar Δ15NNON–ERM values of Calluna vulgaris and Erica
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experimental plots in 2012–2015 either during winter (A) or summer (B). See results,
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effects on nutrient ratios were more complicated. In contrast to our ex-
pectations, when N was added in low doses, the N:P ratios of C. vulgaris
were lower than the control plants, suggesting improved P nutrition via
upregulated P uptake. The positive correlation between root phospha-
tase activity and the foliar N:P ratios further supports this interpretation
and additionally implies that the shrubs subjected to high-N treatments
(without PK)had shifted fromNPco-limitation towards P limitation as a
result of long-term N manipulation.

4.1. Nutrition of vascular plants under elevated N load

Partially in congruence with Hypothesis 1, Calluna vulgaris and Erica
tetralix had significantly lower foliar C:N ratios in the high-N ammo-
niumplots compared to controls (Fig. 1A). This suggests enhanced N ac-
quisition as a result of long-term ammonium fertilization. In contrast,
shrubs growing in nitrate-fertilized plots did not change C:N stoichiom-
etry (Fig. 1B), except E. tetralixwhen nitrate was supplied together with
P and K (Fig. S1). This demonstrates that the impact of elevated N depo-
sition on foliar N:P stoichiometry depends on the form of nitrogen and
may also be related to the availability of other nutrients. The foliar N:P
ratios of both shrubs tended to be somewhat higher in high-N plots
compared to controls (Fig. 1C), suggesting a shift from NP co-
limitation towards P limitation in shrubs under high-N addition levels
without added P and K.

Chiwa et al. (2016) showed that the Sphagnum layer at Whim Bog
could retain added N of up to 2.4 g m−2 y−1 above background deposi-
tion. The highest %N in moss capitula and highest inorganic N concen-
trations in peat porewater were in treatment plots receiving 5.4 g N
m−2 y−1 as ammonium (Sheppard et al., 2013; Chiwa et al., 2016). To
effectively capture N from short rain pulses, Sphagnummosses can rap-
idly take up inorganic N, particularly ammonium (Wiedermann et al.,
2009; Fritz et al., 2014). Subsequent increases in intracellular ammo-
nium levels affect moss growth negatively due to increased C demand
of N assimilation and toxic effects of unassimilated ammonium
(Nordin and Gunnarsson, 2000; Limpens and Berendse, 2003). Such de-
clines in Sphagnum growth and simultaneous accumulation of excess
amino acids have probably led to permanent N saturation in the high-
N ammonium plots at Whim Bog. The much lower C:N ratios of mosses
in the high-N ammonium plots versus the high-N nitrate plots support
this idea. Different degrees of N saturation likely also reflect C:N ratios
of ERM shrubs that differ between the high-N plots treated either with
ammonium or nitrate (Fig. 1 A—B).

In contrast to ERM shrubs, foliar C:N ratios of the nonmycorrhizal
sedge Eriophorum vaginatum remained at the same level in all treat-
ments (including N + PK), but the level was lower than in either of
the shrubs (Fig. 1 A–B, Fig. S1). Low C:N ratios, together with relatively
high N:P ratios, suggest that Eriophorum vaginatum atWhim Bog is gen-
erally less N deficient than Calluna vulgarisor Erica tetralix. Thismight be
due to its deeper root system (Wallén, 1992; Iversen et al., 2015)
allowing Eriophorum to acquire N from potentially less utilized peat
layers. Such a relationship between rooting depth and utilized N pools
was demonstrated for Phragmites australis that effectively used inor-
ganic N from deep peat layers down to 2 m that were inaccessible to
other plants (Kohzu et al., 2003).

In contrast to treatments with the highest N doses (without PK), the
lowest levels of additional N deposition decreased the foliar N:P ratios
of the vascular plants (Fig. 1 C\\D). Although significant only in Calluna
vulgaris, changes in N:P ratios demonstrate that low-level and high-
level N deposition may have different effects on plant nutrient
stoichiometry, which falsifies Hypothesis 3. In C. vulgaris, foliar N:P ra-
tios decreased from 16 in control plots to less than 10 in low-N ammo-
nium treatments. This finding indicated paradoxically that, while the
shrubs at Whim Bog might originally be limited more by P than N,
small-dose N addition (without added P) shifted the plants towards N
deficiency and alleviated P limitation. N fertilization often improves
plant P uptake by enhancing phosphatase production (Marklein and
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Houlton, 2012, Chen et al., 2020). As N-rich proteins, root phosphatases
are a major investment for plants to produce, and individuals suffering
from N deficiency often cannot afford their synthesis. Our results dem-
onstrated thatwhenN availabilitywas experimentally increased, vascu-
lar plants and especially ERM shrubs invested the excess N to increased
phosphatase activity, which effectively alleviated P limitation.

Interestingly, C. vulgaris, which had the strongest decline in foliar N:
P ratios when subjected to low-N treatments, also showed much stron-
ger response in root acid phosphatase activity in relation to changes in
N:P stoichiometry than E. tetralix. Although root phosphatase data
were not available from the low-N treatments, the steeper regression
slope of C. vulgaris compared to E. tetralix in Fig. 2 suggests that the for-
mer upregulates root phosphatase activity more efficiently than the lat-
ter in response to small changes in N:P stoichiometry.

Wang et al. (2016) did not observe decreases in N:P ratios of shrub
leaves in a corresponding long-term N fertilization experiment in Mer
Bleue Bog (Canada) but soil phosphatase activity was significantly
higher in fertilized plots than in control plots (Pinsonneault et al.,
2016). The reason for these contrasting results from two different
ombrotrophic peatlands might be related to the availability of N or P
or to the water table level, which is much higher at Whim Bog than in
Mer Bleue.

At Whim Bog, rates of N-acquiring enzymes in roots of peatland
shrubs increased slightly along with increasing acid phosphatase activ-
ity, but the rates were not strongly coupled (Kiheri et al., 2020). The ef-
ficient uptake bymycorrhizal fungi and roots of P by peatland plants not
only maintains plant stoichiometry but can be one reason for fast
recycling of P from peat relative to C (Wang et al., 2015). This, in turn,
may play a critical role in the observed narrow range of long-term C ac-
cumulation rates in northern peatlands (Wang et al., 2015, Schillereff
et al., 2021 preprint).

When Nwas added together with P (N+ PK treatments, Fig. S1), fo-
liar N:P ratios declined in all plants, although the difference to controls
was significant only in C. vulgaris subjected to low-N treatments.
Phosphorus was supplied at a ratio of 14:1 N:P, corresponding to levels
of nutrient stoichiometry measured from many wetland plants
(Sheppard et al., 2004, Güsewell and Koerselman, 2002). These changes
in foliar N:P ratios indicated that P limitation was lifted in all plants, the
resulting level apparently representing the N:P ratio of the shrubs in
conditions where neither N nor P limits plant growth. Both shrubs
maintained their N:P stoichiometry at a constant level under all N +
PK treatments despite the increasing doses of N (Fig. S1), which agrees
with the findings of Wang et al. (2016) that peatland shrubs show
strong C:N:P homeostasis. All these observations together underline
how crucially N and P cycling are linked together in bog ecosystems,
with availability of one also regulating availability of the other.

4.2. Plant-mycorrhizal interactions under elevated N load

The nitrogen isotope composition of leaves can be used to assess N
sources and N-acquiring pathways of plants. Foliar δ15N is affected by
several factors, most importantly by the isotopic composition of soil ni-
trogen and root–microbial interactions (Högberg, 1997; Hobbie and
Högberg, 2012). The δ15N values have vertical gradients in peat profiles,
with an average increase of 1–4‰ from the peat surface to a depth of
50 cm being common in Sphagnum-covered ombrotrophic peatlands
(Kohzu et al., 2003; Hobbie et al., 2017; Moore and Bubier, 2020). This
is mainly due to differences in δ15N values between peatland shrubs
and mosses (Moore and Bubier, 2020). While ericoid mycorrhizal
shrubs rely mostly on N provided by their mycobionts, that is 15N-
depleted relative to other soil N sources (putative mechanisms
discussed below), the δ15N values of mosses are largely defined by the
isotopic composition of precipitation (Bragazza et al., 2005; Zechmeister
et al., 2008). Due to these contrasting N sources, Sphagnummosses tend
to be enriched in 15N compared to shrubs, as was also found at Whim
Bog (Fig. 3). As the roots of vascular plants mostly occur in the surface
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peat, and Sphagnum litter decomposes more slowly than vascular plant
litter, peat δ15N values tend to approach those of Sphagnum as the
depth increases (Moore and Bubier, 2020). Soil microbial processes,
such as nitrification, denitrification, and N fixation (e.g., Elzen et al.
2018, Larmola et al., 2014) may additionally alter the δ15N differences
among peat layers. Because of this vertical δ15N gradient, deep-rooted
plants become more enriched in 15N than shallow-rooted plants (Kohzu
et al., 2003; Moore and Bubier, 2020).

The rooting depth, however, is not the only factor that regulates fo-
liar δ15N in peatlands. Ericoid plants show typically much lower foliar
δ15N levels than other plants growing in same habitats (Michelsen
et al., 1996, 1998; Nadelhoffer et al., 1996; Craine et al., 2009), which
is thought to resultmainly from the different N pools that the plants uti-
lize (Emmerton et al., 2001; Hobbie and Högberg, 2012). Organic N in
fresh litter is typically 15N-depleted compared to other soil N sources
(Nadelhoffer & Nadelhoffer and Fry, 1988, Högberg, 1997). ERM fungi
provide their host plants with access to this fresh N pool (Bajwa et al.,
1985; Michelsen et al., 1998; Hobbie and Högberg, 2012), whereas
nonmycorrhizal plants rely on older N pools that are typically higher
in δ15N compared to fresh litter. Fungal 15N discrimination while trans-
ferring N to host plants, substantially affecting the δ15N levels in ECM
plants (Hobbie and Colpaert, 2003; Hobbie and Högberg, 2012) but
also demonstrated for ERM symbiotic Vaccinium vitis-idaea (Emmerton
et al., 2001), might additionally decrease the plant δ15N levels.

According to Hypothesis 4, the mycorrhizal supply of N relative to
direct root uptake in ERM shrubs was expected to decrease as a result
of long-term N fertilization and subsequent increase in the concentra-
tions of plant available N. This should be reflected in increased foliar
δ15N as the proportion of fungal-derived nitrogen (low δ15N) decreases
in relation to nitrogen originating from inorganic N pools (high δ15N).
The applied fertilizers, however, may also have direct effects on plant
δ15N levels reflecting their own isotopic composition. This was seen es-
pecially in Sphagnum that effectively takes nitrogen from precipitation.
Sphagnum δ15N values increased from −7‰ in control plots to +1‰
in plots fertilized with the highest N doses (Fig. 3), suggesting that the
δ15N values of the applied fertilizers were higher than any of the initial
soil N pools at Whim Bog. We could eliminate this direct effect of fertil-
izers on foliar δ15N using another variable, Δ15NNON–ERM, which com-
pares the isotopic difference between the studied ERM shrubs and the
identically treated nonmycorrhizal Eriophorum vaginatum growing in
same experimental plots. In addition to δ15N variance caused by using
N acquired either via mycorrhizal uptake or direct root uptake, the
Δ15NNON–ERM values still include the δ15N difference caused by the dif-
ferent rooting depths. This component, however, should not exceed
the typical δ15N variance of 1–4‰ found within peat profiles of other
comparable peatlands (Kohzu et al., 2003; Hobbie et al., 2017; Moore
and Bubier, 2020). The Δ15NNON–ERM values of both Calluna vulgaris
and Erica tetralix decreased an average of 4‰ as a result of high-N fertil-
ization treatments (Fig. 4). This decrease was likely caused by the de-
creased mycorrhizal N supply and the increased direct uptake of
inorganic N in ERM shrubs butmay also partially reflect 15N enrichment
of surface peat and a subsequent decrease in the δ15N gradient with soil
depth. However, as the vertical δ15N gradients in peat are largely caused
andmaintained by the constant supply of 15N-depleted nitrogen to ERM
shrubs via mycorrhizal fungi, potential decreases in this component, as
well, are likely to indirectly reflect lowered activity of mycorrhizal com-
munities at a longer timescale. Thus, Δ15NNON–ERM values may reflect
relative plant N supply via mycorrhizal uptake vs. direct N uptake in
ERM shrubs, with decreasing values suggesting reducedmycorrhizal ac-
tivity. A model describing this interpretation is shown in Fig. 6.

The negative relationships between the Δ15NNON–ERM values of
Calluna vulgaris and Erica tetralix and the experimental N dose (Fig. 4)
strongly suggests that the proportion of N acquired via mycorrhizal up-
take was reduced due to long-term N fertilization, thus supporting
Hypothesis 4. In sharp contrast, Kiheri et al. (2020) found that N fertili-
zation increased root ERM colonization frequencies in both C. vulgaris
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and E. tetralix at these same treatment plots at Whim Bog. These seem-
ingly contradictory observations imply that root colonization frequen-
cies do not necessarily reflect the functional status of the mycorrhizal
interaction. Abundance of dark septate endophytes (DSE) may provide
another explanation:while ERMabundance increased due toN fertiliza-
tion, colonization frequencies of DSE fungi decreased dramatically
(Kiheri et al., 2020). Although the ecology of these relatively common
fungi is currently poorly known, there is some evidence that DSE fungi
may contribute to plant nutrition by providing access to organic N and
P sources (Mandyam and Jumpponen, 2005, Andrade-Linares and
Franken, 2013).

InHypothesis 5,we proposed that themycorrhizal N supply could be
related to the concentrations of plant-available N in peat porewater.
This relation was studied using dissolved total nitrogen (DTN) levels
monitored at the treatment plots. DTN concentrations were used in-
stead of inorganic N as both inorganic and organic N forms can be
taken up directly by roots of most vascular plants (Sokolovski et al.,
2002; Näsholm et al., 2009; Tegeder and Rentsch, 2010). The porewater
DTN concentration and the Δ15NNON–ERM values of both shrubs corre-
lated negatively (Fig. 5), thus supporting the hypothesis. This relation-
ship was stronger when the foliar Δ15NNON–ERM values were compared
withDTN concentrationsmonitored duringwinter (Fig. 5A) than during
summermonths (Fig. 5B), reflecting the seasonal variation in porewater
DTN levels. Although the ammonium-fertilized plots were the most N-
saturated plots with the highest inorganic and total N concentrations
in porewater (Chiwa et al., 2016), we found no indication that the my-
corrhizal N supply of ERM shrubs (i.e. Δ15NNON–ERM) would have de-
creased more in ammonium than in nitrate treatments (Fig. 4A). In
addition to root uptake, some forest trees grown under high N deposi-
tion levels receive a substantial proportion of their total N via foliar up-
take (Rennenberg & Rennenberg and Gessler, 1999, Gaige et al., 2007,
Adriaenssens et al., 2011). Chiwa et al. (2019) demonstrated that cano-
pies of C. vulgaris retained a significant proportion of N from the exper-
imental N deposition atWhim Bog, suggesting that such foliar N uptake
could also take place in peatland shrubs under high N load. If so, nitro-
gen uptake via leaves could reduce the dependence of ERM shrubs on
their mycorrhizal fungi and on soil N resources.

5. Conclusions

Our results introduce a previously unrecognized mode of how an-
thropogenic N pollution may affect nutrient cycling within peatland
ecosystems. The foliar N stable isotopes of two peatland shrubs, Calluna
vulgaris and Erica tetralix, indicated a lowered N supply via mycorrhizal
uptake as a result of 14 years of N fertilization at Whim Bog.
Concurrently, the high-dose ammonium treatment significantly in-
creased foliar N concentrations in relation to carbon in both shrubs, ap-
parently through enhanced direct uptake of N, without mycorrhizal
interactions. Low levels of N fertilization decreased N:P ratios of
C. vulgaris and promoted P uptake, which underlines the crucial interac-
tions between these two major nutrients. The observed reduction in
mycorrhizal N supply, when associated with the suppressed reciprocal
C fluxes from host plants, may impair the ability of peatland ericoidmy-
corrhizal fungi to compete with saprotrophic microbes not dependent
on host carbon. This may ultimately accelerate peat C loss. Studies on
fungal communities in peatlands subjected to long-term N manipula-
tion experiments are needed to address these issues.
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