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Abstract

The use of lead was ubiquitous throughout the Roman Empire, including material for

water pipes, eating vessels, medicine, and even as a sweetener for wine. The toxicity

of lead is well established today, resulting in long-term psychological and neurological

deficits as well as metabolic diseases. Children are particularly susceptible to the

effects of lead, and it is likely that the widespread use of this deadly metal among

Roman populations led to a range of adverse health effects. Indeed, lead poisoning

has even been implicated in the downfall of the Roman Empire. This research exam-

ines, for the first time, the direct effect of lead poisoning on the inhabitants of the

Empire. It explores whether the dramatic increase in lead during this period contrib-

uted to the failure to thrive evident within the skeletal remains of Roman children.

Lead concentration and paleopathological analyses were used to explore the associa-

tion between lead burdens and health during the Roman period. This study includes

173 individuals (66 adults and 107 non-adults) from five sites, AD 1st–4th centuries,

located throughout the Roman Empire. Results show a negative correlation between

age-at-death and core tooth enamel lead concentrations. Furthermore, higher lead

concentrations were observed in children with skeletal evidence of metabolic disease

than those without. This study provides the first bioarcheological evidence that lead

poisoning was a contributing factor to the high infant mortality and childhood mor-

bidity rates seen within the Roman world.
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1 | INTRODUCTION

Few historical subjects evoke more fervent debate than what brought

about the fall of the Roman Empire. For centuries, scholars have put

forth arguments for a plethora of singular causes for its decline,

positing everything from the conversion to Christianity, to environ-

mental catastrophe in the wake of a volcanic eruption (Gilfillian, 1990;

Harper, 2017). It is, however, the notion that lead poisoning was a key

contributing factor behind its decline that has captured the interest of

scholars and general enthusiasts alike. The urban myth-like quality

of this theory has ensured its endurance. Historical texts describe a

range of maladies associated with lead poisoning, affirming that

Roman populations did indeed suffer the deleterious effects of lead

toxicity (Lessler, 1988; Needleman, 2009; Retief & Cilliers, 2006;
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Waldron, 1973). Nriagu's (1983) interpretation of the historical litera-

ture in terms of the endemicity of lead poisoning and its role in the

downfall of the Empire proved particularly influential. The impact of

lead poisoning on Roman health and the Empire's ultimate decline,

however, is still refuted by many scholars (Cilliers & Retief, 2014;

Drasch, 1982; Gaebel, 1983; Needleman & Needleman, 1985;

Scarborough, 1984). Although it is unlikely that these debates will

ever be fully resolved, the effect that lead had on childhood health

and mortality throughout the Empire can be explored directly via skel-

etal analyses, an immensely important but often under-utilized line of

evidence in Roman studies.

Lead is a cumulative poison, and one to which children are particu-

larly susceptible due to the rapid development of their bodies absorbing

higher quantities of ingested lead (Hursh & Suomela, 1968; Rabinowitz

et al., 1976). Due to the omnipresence of lead within the environment,

some ingestion and subsequent accumulation within the body is

unavoidable. A diachronic study of childhood lead burdens in British

archeological populations (Figure 1) has shown that natural lead con-

centrations in the tooth enamel of pre-Roman populations rarely

exceeded 0.4 ppm (Montgomery et al., 2010). This is below the World

Health Organization's recommended blood lead limit of 5 μg dL�1

(WHO, 2010), equating to an enamel lead concentration of 0.5 ppm

(Grobler et al., 2000). Symptoms of metabolic disease begin to manifest

with lead concentrations as low as 15 μg dL�1 and become fatal when

levels exceed 140 μg dL�1 (Bellinger & Bellinger, 2006). In contrast to

prehistoric samples, the analysis of Roman dental remains from Britain

have revealed enamel lead concentrations equating to blood lead levels

over double this fatal limit (Montgomery et al., 2010). However, a

recent study by Eshel et al. (2020) highlights in vivo lead pollution in

Near Eastern Iron Age individuals (BC 13th–6th centuries), which

demonstrates low lead burdens were not ubiquitous in pre-Roman

regions or eras. Notwithstanding, the magnitude with which lead is

exploited markedly increases in the Roman Period as revealed through

rises in atmospheric lead pollution evidenced in Greenland and Alpine

ice cores (McConnell et al., 2018; Preunkert et al., 2019). Further, the

decline in this atmospheric pollution coincides with the later Roman

Period further solidifying the link between the abundant uses of lead

ores with Roman culture.

The dramatic increase in the bioavailability of lead during the

Roman period and its general ubiquity due to the widespread and

varied use of lead compounds, rendered the Empire's children at an

unprecedented risk of exposure (Mackie et al., 1975; Montgomery

et al., 2010). Roman children were repeatedly exposed to lead in most

aspects of their everyday life through water sources, medicines,

utensils, cooking pots, food preservatives and sweeteners, pewter

household items, coins, toys, potentially through work-related

activities, etc. (Retief & Cilliers, 2006). There is no doubt that

childhood was a perilous stage of life during the Roman period, with

failure to thrive being an all too common occurrence, evident by high

numbers of infant remains in cemeteries and other burial contexts

(Carroll, 2014, 2018). Despite this, and modern documentary evidence

of lead poisoning being responsible for stillbirths, spontaneous abor-

tion, and deformities in infants (Gilfillian, 1965; Hertz-Picciotto, 2000;

Nriagu, 1983; Oliver, 1914; Wibberley et al., 1977; Woolley, 1984),

little has been done to explore any link between childhood lead

exposure and high infant mortality rates in the Roman Empire. Human

skeletal remains provide a rich source of direct information pertaining

to the lives and living conditions of past populations (Scott, 2013).

This study therefore aims to investigate the degree of lead toxicity in

four different regions of the Roman Empire and its impact on

childhood health and mortality using paired paleopathological and lead

trace element analyses.

2 | MATERIALS AND METHODS

2.1 | Samples

This study incorporates paleopathological and core tooth enamel lead

concentration data from 173 individuals (adults = 66 and non-adults

[<18 years] = 107) from five sites of AD 1st to 4th centuries

European and Near Eastern from the Roman Empire (see Table 1 and

Figure 2). Each of the sites were Roman necropolises located outside

the walls of large urban centers. These sites were specifically selected

to encompass broad geographical representations of the Empire that

are often excluded in Roman studies, as well as for their distance from

major lead mining and production centers (e.g., Britannia, Noricum) in

order to mitigate the effects of environmental lead pollution (Aguelo

et al., 2001; Arroyo et al., 2005; Gligor et al., 2010; i Prast, 2011;

Ota, 2009; Paillard & Alduc-Le Bagousse, 2012). The mixed burial rites

(simple pits, tegula graves, sarcophagi, and mausolea) and variety of

grave goods at each site indicates that the cemeteries included indi-

viduals from various socioeconomic strata. The results of the analyses

are provided in the supporting information.

F IGURE 1 Diachronic trends in British human tooth enamel lead
concentrations (ppm) from the Neolithic to the 19th century. Adapted
from Montgomery et al. (2010), with additional Roman data from
Shaw et al. (2016) and 18th–19th century data from Millard
et al. (2014). The red dashed line indicates the threshold at which
symptoms of lead induced metabolic disease begin to manifest
(1.5 ppm) [Colour figure can be viewed at wileyonlinelibrary.com]
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2.2 | Osteological analyses

Adult sex was determined using the sexually dimorphic traits of the

pelvis and skull as described by Phenice (1969), Ferembach

et al. (1979), and Walker (2005). Following standard practice

(e.g., Buikstra & Ubelaker, 1994), sex assessment was not attempted

for the non-adult individuals, all of which were categorized as

indeterminate.

TABLE 1 Number of individuals analyzed from each site by age-at-death category

Age category

Site

TotalAlba Iulia (Romania) Beirut (Lebanon) Barcelona (Spain) Tarragona (Spain) Lisieux (France)

Fetal 7 0 1 1 1 10

0–1 year 5 4 3 5 5 22

2–6 years 3 10 8 4 8 33

7–12 years 8 5 6 3 6 28

13–18 years 3 4 4 1 2 14

Adult (18 + years) 11 16 13 12 14 66

Total 37 39 35 26 36 173

F IGURE 2 Locations of the sites used in this
study (drawn by S. Kellett) [Colour figure can be
viewed at wileyonlinelibrary.com]
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Non-adults were categorized as those aged less than 18 years,

assessed using dental development (AlQahtani et al., 2010), long bone

length (Scheuer et al., 1980; Scheuer & Black, 2000) and epiphyseal

fusion (Scheuer & Black, 2000). Adult age was estimated using mor-

phological changes in the pubic symphysis (Brooks & Suchey, 1990),

the auricular surface (Buckberry & Chamberlain, 2002; Lovejoy

et al., 1985), cranial suture closure (Meindl & Lovejoy, 1985), and den-

tal wear (Brothwell, 1981).

2.3 | Paleopathological analyses

Lead is an insidious poison and the gradual accumulation of the metal

in bodily tissues becomes increasingly toxic. Due to the systemic

nature of lead poisoning, the clinical manifestations of toxicity are var-

ied and complex. With the exception of lead lines visible at the grow-

ing ends of bones (metaphyses) on radiographs, no specific skeletal

lesions have been associated with lead poisoning (Rabinowitz

et al., 1993). This is most likely due to the toxicodynamics of absorbed

lead culminating in clinical manifestations that are common to many

other disease processes. However, with its propensity to disrupt met-

abolic pathways, it is unsurprising that both modern and historical

clinical literature associate lead poisoning with a number of metabolic

diseases, such as rickets, scurvy and anemia (Rabinowitz et al., 1993;

Caffey, 1938; Waldron, 1966; Smith et al., 1938). Therefore, it is

probable that individuals who died suffering the ill effects of chronic

lead poisoning would exhibit pathological skeletal alterations consis-

tent with these metabolic diseases.

Paleopathological analysis of the non-adult individuals focused on

the identification of metabolic diseases associated in the clinical litera-

ture with lead poisoning (Landrigan, 1989; Landrigan & Todd, 1994).

The following section outlines the paleopathological features of the

metabolic stress often associated with lead poisoning and the parame-

ters used to diagnose these diseases within the skeletal assemblages.

No radiographs were available for any of the study sites; therefore,

diagnoses were made solely from macroscopic examination of

F IGURE 3 Non-adult skeletal elements
exhibiting areas of abnormal cortical porosity and
subperiosteal new bone formation consistent
with metabolic disease [Colour figure can be
viewed at wileyonlinelibrary.com]
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individuals with observable elements. Examples of the skeletal mani-

festation of these metabolic diseases are presented in Figure 3.

2.3.1 | Rickets

Rickets is generally identified by bowing of the long bones and/or the

presence of widened, cupped and porous/frayed (“brush end”) epiph-
yses, sternal rib-end flaring (“rachitic rosary”) and cranial vault thin-

ning (Waldron, 2009, p. 129). Additional manifestations of the disease

in non-adults can also include orbital roof porosity, deformation of the

mandibular ramus, porosity of the sternal rib-ends and deformation of

the ribs (Brickley et al., 2005; Brickley & Ives, 2010; Mays et al., 2006;

Ortner, 2003; Ortner & Mays, 1998). Using the published diagnostic

criteria outlined in Table 2, macroscopic lesions were recorded as

either present or absent. Because many of the lesions associated with

rickets can have multiple etiologies (Mays et al., 2006; Ortner &

Mays, 1998), a diagnosis of rickets was only recorded if three or more

probable rachitic features were present, or if there were bending

deformities of the long bones plus one other feature. This was done

to avoid over diagnoses of rickets in the sample population.

Individuals exhibiting no probable features but three or more possible

features alongside any non-diagnostic features were considered

as possibly rachitic. Using Ortner and Mays (1998) definition, a

distinction was also made between healed and active rickets.

2.3.2 | Scurvy

Pathological alterations indicative of scurvy primarily consist of

abnormal cortical porosity (often with subperiosteal new bone forma-

tion) on the ectocranial surface, scapulae, long bone metaphyses, and

mandible (Schattmann et al., 2016; Snoddy et al., 2018; Stark, 2014).

These lesions tend to manifest bilaterally and are thought to be caused

by chronic, low-grade hemorrhage of weakened blood vessels, predom-

inantly at muscle attachment sites, which stimulates an inflammatory

response (Ortner et al., 1999, 2001; Ortner & Ericksen, 1997). Although

abnormal cortical porosity is the primary lesion associated with scurvy,

it is also common to many other disease processes such as specific

and non-specific infection, hemoglobinopathies, anemias, and other

metabolic disorders (Brown & Ortner, 2011; Lagia et al., 2007). It is

therefore important to analyze the porosity in relation to its distribution

across the entire skeleton. Using the published diagnostic criteria out-

lined in Table 3, macroscopic lesions were recorded as either present or

absent. In line with recommendations by Snoddy et al. (2018),

individuals were recorded as scorbutic if two or more diagnostic

scorbutic features were present. If the individual revealed multiple

suggestive features, they were considered as possibly scorbutic.

2.3.3 | Cribra orbitalia and porotic hyperostosis

Cribra orbitalia was identified as porotic changes of the orbital roofs

and recorded for each orbit using the Stuart-Macadam (1991) grading

system. Any individual with cribrotic lesions over the age of 10 was

designated as having the healed form of cribra orbitalia due to the

red-to-yellow marrow conversion that occurs around this age, thereby

precluding the formation of these lesions (Simonson & Kao, 1992).

Porotic hyperostosis was identified as abnormal cortical porosity of

the cranial vault, and recorded as either present or absent (Mann &

Hunt, 2013, p. 28; Waldron, 2009, p. 137). Cross-sections of parietal

bones that showed abnormal widening/thickening of the diploic space

was also noted as potential marrow hyperplasia (thickening) of the

cranial vault.

TABLE 2 Rachitic lesions used in the identification of rickets and their diagnostic category

Diagnostic
category Probable Possible Non-diagnostic

Cranial Deformed mandibular

ramus

Cranial vault porosity Delayed closure of fontanelles

Orbital roof porosity Cranial bone thinning

Layers of speculated, irregular porous bone can

occur during healing when osteoid is

mineralising

Frontal and parietal bossing

Craniotabes (softening of bone behind ears over

occipital region and adjacent to lambdoid

suture)

Formation of large, square shaped head

Post-cranial Deformed arm bones Flaring of sternal rib-ends Superior flattening of the femora

Deformed leg bones Porosity of sternal rib-ends

Ilium concavity Long bone metaphyseal flaring

Altered rib angle Long bone thickening

Porous roughening of long bone metaphyses

Long bone concave curvature porosity

Note: After Brickley and Ives (2010), Hess (1930), Mays et al. (2006), Ortner and Mays (1998), and Pettifor (2011).
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2.4 | Lead concentration analysis

Initial sample preparation was carried out at the Archaeological Iso-

tope and Peptide Laboratory (AIPRL), Durham University, following

procedures outlined by Montgomery (2002), briefly described here:

The enamel surface was abraded using a tungsten carbide dental bur

to remove surface contamination. Following this, a chip of enamel

was removed using a flexible diamond edged rotary saw, all exposed

surfaces of the chip were abraded to remove any adhering dentine

and potential sources of contamination. Enamel chips were stored

in clean micro-centrifuge tubes for transfer to the National Environ-

mental Isotope Facility (NEIF), British Geological Survey, Keyworth.

All dental tools were cleaned between samples via ultra-sonication in

Decon for 5 min and rinsed three times with ultra-pure de-ionized

water.

Trace element analysis was carried out at NEIF using an Agilent

7500cx ICP-MS fitted with a CETAC ASX-520 autosampler. Sample

introduction from the autosampler to the Inductively Coupled Plasma

Mass Spectrometry (ICP-MS) was controlled by a CETAC ASXpress +

vacuum pump. Multi-element quality control (QC) check standards,

containing the trace elements of interest at 25 μg L�1, and a separate

major element QC were analyzed at the start and end of each run and

after no more than every 20 samples. To overcome polyatomic inter-

ferences the ICP-MS collision cell was operated in He mode at a flow

rate of 5.5 mL min�1 for all analytes except Se, for which H2 gas was

used at 4.5 mL min�1 due to the more intense interferences experi-

enced with Se because of argon (Ar) dimers formed in the plasma.

Samples were diluted with 1% v/v HNO3. 0.5% v/v HCl before analy-

sis. Quantitative data analysis was carried out using MassHunter

Workstation software (Agilent).

TABLE 3 Scorbutic lesions used in the identification of scurvy and their diagnostic category

Diagnostic

category Probable Possible Non-diagnostic

Cranial Porosity and/or new bone formation on

the greater wing of the sphenoid

Porosity on the posterior aspect of the

mandible

Porosity on the temporal bone

Porosity in the mandibular coronoid

fossae

Porosity and/or new bone formation on

the lesser wing of the sphenoid

Porosity at the infraorbital foramen on

the maxilla

Porosity and/or new bone formation on

the orbital roof

Porosity and/or new bone formation on

the pars basilaris

Porosity on the palate of the maxilla

Porosity in the maxilla and/or

mandibular alveola processes

Porosity and/or new bone formation on

the endocranium

Post-cranial Porosity and/or new bone formation in

the supraspinous and/or infraspinous

fossae

Metaphyseal flaring of long bones

Flaring of sternal rib-ends

Porosity and/or new bone formation on

the long bones

Metaphyseal porosity

Note: After Brickley and Ives (2006, 2010), Geber and Murphy (2012), Moore and Koon (2017), Ortner (2003), Ortner et al. (1999, 2001), and Ortner and

Ericksen (1997).

F IGURE 4 Box and whisker plot comparing core tooth enamel
lead concentrations (ppm) from adult (n = 66) and non-adult (n = 107)
Roman individuals [Colour figure can be viewed at wileyonlinelibrary.
com]

F IGURE 5 Box and whisker plot comparing core tooth enamel
lead concentrations (ppm) with age-at-death (n = 173) [Colour figure
can be viewed at wileyonlinelibrary.com]
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3 | RESULTS AND DISCUSSION

Lead is incorporated into the mineral matrix of tooth enamel during

childhood and does not alter in vivo or undergo diagenetic changes

from the burial environment after the tissue mineralises; therefore,

lead concentrations acquired in this way represent an individual's

childhood exposure to the toxic metal (Montgomery et al., 2010).

Early studies show that deciduous tooth enamel often has higher lead

concentrations than permanent tooth enamel, and this is thought to

be because younger children absorb higher quantities of lead relative

to older children with similar exposure (Shapiro et al., 1972). If age-

related absorption rates led to higher lead concentrations in decidu-

ous teeth, regardless of exposure level, then co-forming permanent

teeth would be expected to yield similarly high lead concentrations.

However, a recent study shows no significant difference in median

tooth enamel lead concentration between earlier and later permanent

tooth types (e.g., second and third molars) (Moore, 2019). This sug-

gests that age-related lead absorption rates are not the dominant

F IGURE 6 Prevalence of metabolic diseases
in the observable (a) non-adult (n = 65) and
(b) adult (n = 51) sample populations [Colour
figure can be viewed at wileyonlinelibrary.com]
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factor influencing lead concentrations in tooth enamel, and that com-

paring lead concentrations in deciduous and permanent tooth enamel

provides a useful means of investigating the effects of lead exposure

on childhood health (ibid). In this study a comparison of the lead con-

centration data from the adult and non-adult individuals show that

those who survived into adulthood had lower childhood lead burdens

(median = 2.6 ppm) than those who died during childhood

(median = 7.2 ppm) (see Figure 4). The results of a Kruskal–Wallis test

showed that the median lead concentrations in these two groups

were statistically significantly different (X2 = 12.181, p = 0.0005).

Children have more than double the lead concentrations observed in

adults, suggesting that higher lead burdens are accompanied by lower

life expectancies. These results offer the first bioarcheological evi-

dence that lead poisoning resulted in increased frailty for citizens of

the Roman Empire.

It is evident from the archeological record that there is a real

failure to thrive in children throughout the Roman period

(Carroll, 2014; Rohnbogner, 2017; Rohnbogner & Lewis, 2017). It is

estimated that up to 50% of children died before the age of

10 years old, with 20–40% of these not reaching the age of 1 year

(Carroll, 2014, 2018). Children are more susceptible to lead poison-

ing than adults as their developing bodies are prone to absorbing

higher quantities of ingested lead. To explore whether the high lead

burdens characteristic of Roman individuals contributed to the high

childhood mortality rates in the Roman Empire, lead concentrations

were further compared to age-at-death (see Figure 5). A negative

correlation between lead concentration and age-at-death is evident,

again indicating that individuals with lower lead burdens lived longer

than those with higher lead burdens. This is particularly interesting

with regards to children under the age of 1 year. Explanations for

high infant mortality rates during the Roman period have ranged

from malnutrition and disease to infanticide and exposure (Gowland

et al., 2014; Mays, 1993; Pilkington, 2013; Rohnbogner, 2017). The

results of this study offer new insights into the previously over-

looked role that lead may have played in these high infant mortality

rates. Unfortunately, little research has been done to understand

how lead concentrations in tooth enamel reflect in vivo lead

burdens, or how they correlate to manifestations of lead poisoning

during life (Grobler et al., 2000; Rabinowitz et al., 1993). As such,

identifying high lead concentrations in archeological remains alone is

unlikely to be sufficient to determine those who may have died

from lead poisoning. However, using modern clinical literature and

the known biochemical pathogenesis of lead toxicity it may be

possible to further elucidate the effect of lead poisoning on the

health of archeological populations.

Of the sample population, 65/107 non-adults and 51/66 adults

demonstrated suitable preservation for paleopathological evaluation.

Results indicate that 46/65 (71%) non-adults with observable

elements exhibit pathological lesions diagnostic or consistent with

rickets, scurvy, and/or cribra orbitalia and porotic hyperostosis (see

Figure 6, S1). This is considerably lower when compared to the adult

“survivor” population, of which 15/51 (29%) demonstrate lesions

consistent with these metabolic diseases.

The non-adult individuals exhibiting pathological lesions diagnos-

tic of metabolic disease had significantly higher lead concentrations

(median = 8.1 ppm) than those without (median = 4.9 ppm) (see

Figure 7). A Kruskal–Wallis test showed a statistically significant

difference in lead concentrations between these two groups

(X2 = 4.007, p = 0.0453). While these metabolic diseases have multi-

ple etiologies, the association with lead supports the presupposition

that high lead concentrations are also implicated in Roman-period

skeletons. Thus, elevated levels of environmental lead pollution char-

acteristic of the Roman period did have a negative impact upon

childhood health. In future, it is worth exploring if differences in lead

concentrations exist chronologically (i.e., earlier vs. later Roman

contexts), examining the extent to which geographical differences

influence childhood lead burdens, and exploring how lead isotope

ratios vary between different regions to better understand mobility

and trade networks within the Empire.

4 | CONCLUSION

Through the combination of paleopathological and trace element

analyses, lead poisoning can tentatively be identified in archeological

human remains. The results of this study demonstrate that increased

exposure to anthropogenically produced lead was a contributing

factor to the ill health and failure to thrive seen in many Roman

F IGURE 7 Box and whisker plot comparing core tooth enamel
lead concentrations (ppm) from non-adults with pathological lesions
consistent with metabolic disease (n = 46) and non-adults with no
skeletal evidence of metabolic disease (n = 31) [Colour figure can be
viewed at wileyonlinelibrary.com]
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infants and children, thereby providing the first bioarcheological

evidence that lead poisoning may have been a contributing factor to

the high infant mortality rates seen in Roman skeletal populations.

The introduction of a bioarcheological perspective to the decades old

debate regarding the impact of lead on Roman health offers new

insights into the effects of environmental lead pollution on child

health during this period.
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