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A B S T R A C T   

Remote sensors provide high resolution data over large spatial extents that can potentially be used to map soil 
properties such as the concentration of organic carbon or its moisture content. The sensors rarely measure the 
property of interest directly but instead measure a related property. There is a need to make ground measure
ments of the property of interest to calibrate a model or relationship between the soil property and the sensor 
data. 

We develop a framework for optimizing the locations and number of ground measurements of a soil property 
for surveys incorporating sensor data. The data are used to estimate a linear mixed model of the property where 
the fixed effects are a flexible spline-based function of the sensor measurements. 

The framework is used to map peat depth across a portion of Dartmoor National Park using radiometric po
tassium data measurements from an airborne survey. The most accurate maps result from using a geostatistical 
predictor to combine the relationship with the sensor data and the spatial correlation amongst the peat depth 
measurements. The optimal sampling designs suggest that ground measurements should be focussed where peat 
depths are largest and most uncertain. When measurements are made at 25 optimally selected sites, predictions 
that do not utilise the sensor data have 20% larger root mean square errors than those that do. For 200 ground 
measurements this benefit is 14%. The maps produced using the sensor data and 25 ground measurements have 
smaller root mean square errors than those based only upon 200 ground measurements.   

1. Introduction 

Soil forms over long time-scales and can be considered to be a non- 
renewable resource. Many natural and anthropogenic processes 
threaten soil health and quality. At the European scale, Stolte et al. 
(2015) identified and reviewed 11 of these threats. These were soil 
erosion by water, soil erosion by wind, decline of organic matter in peat, 
decline of organic matter in minerals soils, soil compaction, soil sealing, 
soil contamination, soil salinization, desertification, flooding and land
slides and decline in soil biodiversity. There is an urgent need to mea
sure soil health, quality and function to understand where these threats 
apply and to quantify their potential impacts. However, soil measure
ments are generally costly and time consuming and often require sam
ples of soil to be collected and taken to a laboratory for preparation and 
analyses. Also, many such samples are required for broad scale predic
tion of the variation of soil properties such as the concentrations of soil 
nutrients and contaminants or the depth of the soil. Remote sensing 
(Ravi Shanker, 2017) offers an alternative approach to monitoring soils 
that in many cases utilises existing data consisting of many more 

measurements and which cover a wider area than could be achieved by 
other means. 

Generally, remote sensing approaches do not directly measure the 
soil property that is of interest. For example, Minasny et al. (2019) re
view the use of remote sensing data to map the extent and quality of 
peatlands. Visible and infrared sensors provide an indication of the land 
cover and vegetation at a location and specific spectral signatures 
associated with peatlands can be identified (Dissanska et al., 2009). 
Radar sensors measure the energy backscattered from the surface and 
can provide an indication of soil moisture (Poggio and Gimona, 2014). 
Gamma radiometric sensors measure emanations of a set of radioactive 
isotopes from the soil and underlying rocks. These emanations occur 
from the natural decay of radioactive elements such as potassium, 
thorium and uranium. The amplitude of the radiometric signal 
emanating from rocks, which is dependent on the geological setting, is 
attenuated by overlying layers of peat and variation in the measured 
amplitudes can be used to infer variation in the depth of the peat 
(Beamish, 2014). It is therefore important to appreciate, quantify and 
take steps to minimise the uncertainties associated with inferring soil 
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properties from these indirect measurements. 
Remote sensing data might be used in one of two ways to map soil 

properties. A generally applicable relationship between the sensor data 
and the property of interest could be determined and then applied across 
either a subset of or the entire spatial-extent of the remote sensing data. 
This could lead to regional, national or even global maps of soil prop
erties. For instance, Airo et al. (2014) placed a threshold on radiometric 
potassium measurements to distinguish between shallow (less than 0.6 
m) and deep (greater than 0.6 m) peat across Finland. Alternatively, 
geostatistical approaches (Webster and Oliver, 2007) could be used to 
integrate measurements of the property of interest with the remote 
sensing data and to interpolate predictions of the property of interest 
where it has not been measured. Such approaches utilise any spatial 
autocorrelation amongst measurements of the property of interest which 
implies that measurements made a short distance apart are relatively 
likely to be similar. Keaney et al. (2013) used cokriging (Webster and 
Oliver, 2007) to integrate field measurements of peat depth with 
airborne gamma radiometric data and map peat depth across part of the 
Republic of Ireland. The inclusion of the radiometric data within their 
geostatistical model led to reduced uncertainty in the predictions of peat 
depth relative to that arising from interpolation of the measured peat 
depths. Both approaches require some measurements of the soil property 
of interest to calibrate a generally applicable model and in the second 
approach to include within the geostatistical predictor. The number and 
locations of the measurements must be chosen carefully to ensure that 
the full potential of using remote sensing data for mapping soil prop
erties is realised. 

In this paper we develop a framework for integrating remote sensing 
data with ground measurements of the soil property and for selecting the 
number and locations of ground measurements that are required. We use 
linear mixed models (Lark et al., 2006) to represent the spatial variation 
of the soil property of interest and the relationship with relevant cova
riates such as radiometric data, satellite imagery or elevation. This 
approach has similarities with the classical geostatistics techniques 
known as universal and regression kriging (Webster and Oliver, 2007). 
However, our approach differes in that we use the maximum likelihood 
estimator (Lark et al., 2006) to estimate model parameters meaning that 
the likelihood can be used as a criterion by which the appropriateness of 
different models can be compared. 

Within the linear mixed models we use spline basis-functions (Wood, 
2017) to relax the standard assumption of linear relationships between 
the property of interest and the covariates. Once a linear mixed model 
has been calibrated it can be used to simulate realistic sets of mea
surements of the property of interest. We use such realisations to 
compare the effectiveness of different survey designs for the necessary 
ground measurements of the property of interest. We consider three 
cases. In the first, the ground measurements are used to estimate the 
relationship between the property of interest and the covariates and 
then this relationship is used to predict the property of interest across the 
study region without utilising the spatial autocorrelation of the mea
surements of the property. This is a linear model rather than a linear 
mixed model. The second case utilises the spatial autocorrelation to 
interpolate measurements of the property of interest but does not use the 
remote sensing data. Finally the third case utilises both the underlying 
relationship with the remote sensing data and the spatial autocorrela
tion of the property of interest to predict this property where it has not 
been measured. 

In each case we use spatial simulated annealing (SSA) to optimize the 
configuration of measurement locations to minimise a relevant objective 
function (van Groenigen et al., 1999). The objective functions reflect the 
average expected errors in the predictions for the different cases. The 
SSA approach has been widely used to optimize geostatistical surveys. 
When it is used to optimize surveys for interpolation of a single variable 
using a known model of spatial autocorrelation it leads to measurement 
locations being spread evenly over the study region (van Groenigen 
et al., 1999). When it is used to optimize predictions using a linear model 

in isolation then the measurements are restricted to the locations of the 
largest and smallest values of the covariate and when a linear relation
ship and a geostatistical model are combined in a linear mixed model the 
resultant scheme both disperses the measurement locations and ensures 
that the extremes of the covariate are sampled (Brus and Heuvelink, 
2007). If the measurements in the design are to be used to estimate 
parameters of the geostatistical model then this leads to a proportion of 
closely located pairs of measurements in the design (Marchant and Lark, 
2007). We explore the optimal sample designs that are required for our 
extended version of the standard linear mixed model and compare the 
effectiveness of the three prediction cases in terms of the errors that 
result from specified numbers of measurements. 

We consider these approaches in the context of mapping peat depths 
in the Dartmoor National Park, England using radiometric data. The 
Dartmoor National Park was covered by the Tellus South West airborne 
radiometric survey (http://www.tellusgb.ac.uk/) which was flown 
throughout 2013 (Fig. 1). With reference to this and other airborne 
radiometric surveys, Beamish (2014) used a theoretical model to 
demonstrate how the bedrock radiometric signal is attenuated by 
overlying peat. This attenuation was used to map peat zones in case 
studies from across the UK (Beamish, 2013, 2014). However, Beamish 
(2014) concluded that the radiometric signal could not be used to 
generally map variations in peat depth since (i) for 80% saturated peat, 
90% of attenuation occurs in the top 60 cm and it is therefore difficult to 
discriminate between peats that are deeper than 60 cm, (ii) the degree of 
attenuation varies according to soil moisture levels, porosity and den
sity, and (iii) the radiogenic parent signal varies according to properties 
of the bedrock. Beamish (2015) studied the attenuation of the Tellus 
South West radiometric signals across different bedrock units. Beamish 
(2015) was able to accurately map peat soils based upon radiometric 
attenuation within subregions of this dataset. Intra-peat variations in 
attenuation were observed and interpreted as variations in moisture 
content, with the lowest amplitude zones corresponding to 100% 
saturation. 

Ground measurements of peat depth are generally made by inserting 
a thin (typically 1.5 cm diameter) metal probe into the peat until 
resistance from the underlying soil or bedrock is felt or by using a 
proximal ground-penetrating radar (Gatis et al., 2019). The peat depth 

Fig. 1. The south west of England. Black rectangle corresponds to the area 
covered by the radiometric potassium map shown in Fig. 3 and includes the 
Dartmoor National Park. BNG refers to British National Grid. 
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measurements used in this paper were made by Parry et al. (2012) using 
a metal probe and have been widely studied. Parry et al. (2012) divided 
the Dartmoor National Park peatland into nine carbon unit areas based 
on soil and vegetation. They estimated a linear model for peat depth in 
each carbon unit area using slope and elevation as explanatory cova
riates and then used these models to predict peat depths across the na
tional park. Subsequently, Parry and Charman (2013) combined the peat 
depth measurements with measurements of organic carbon concentra
tion and bulk density to predict soil organic carbon stocks across Dart
moor. The peat depth measurements of Parry et al. (2012) were also 
used by Fyfe et al. (2013) to inform a ground penetrating radar survey in 
a portion of Dartmoor and to assess the importance of sub-peat carbon 
storage. Young et al. (2018) noted that the linear models used by Parry 
et al. (2012) required the assumption that the model residuals were 
independent whereas there was evidence of spatial autocorrelation 
amongst these residuals. Therefore, Young et al. (2018) estimated linear 
mixed models of the same peat depth measurements that included slope 
and elevation as explanatory covariates and accounted for this spatial 
autocorrelation. This led to improved validation results. Finlayson et al. 
(In press) estimated similar linear mixed models of peat depths in the 
Loch Lomond and the Trossachs National Park, Scotland. Young et al. 
(2018) noted that their model predictions in Dartmoor were most un
certain on plateaus and in depressions where deep peats were predicted. 
They considered how future surveys of peat depth should be designed 
and recommended that plateaus and depressions should be sampled 
sufficiently densely that spatial autocorrelation between the measure
ments is evident and therefore the prediction accuracy is improved 
beyond that which can be achieved by the standard linear model. Gatis 
et al. (2019) integrated the radiometric data from the Tellus South West 
survey with the peat depth measurements of Parry et al. (2012). They 
estimated linear models of the natural logarithm of peat depth and found 
that the best predictions resulted from using the total radiometric dose 
and slope as explanatory covariates. 

2. Theory 

2.1. Linear mixed models 

We summarise the underlying theory of the spatial linear mixed 
models used in this paper. More details can be obtained from Webster 
and Oliver (2007) and Marchant (2018). The spatial variation of mea
surements of an environmental property can be represented by a linear 
mixed model. This model splits the variation into fixed effects which 
reflect underlying trends in the property that are related to covariates 
and random effects which reflect the residual variation that cannot be 
explained by these trends. We denote the measured value of the property 
at location xi by z(xi). The linear mixed model is written: 

z = Mβ+ ε, (1)  

where z = [z(x1), z(x2),⋯z(xn) ]
T is a vector containing the measured 

values from n locations. The Mβ are the fixed effects. Often, the first 
column of the n × q design matrix M contains 1 s and the remaining 
columns contain covariates that are linearly related to the measured 
values. The length q vector β contains estimated coefficients and thus the 
fixed effects are equal to a constant plus a linear sum reflecting the 
relationship between the measured values and a series of covariates. The 
length n vector ε contains the random effect or residual at each mea
surement location. The ε vector is assumed to have been realised from a 
multivariate Gaussian distribution with mean zero and n × n covariance 
matrix C. For many soil properties this assumption might not be plau
sible. For example, the vector of measured values might include a small 
number of large outlying values leading to the distribution being highly 
skewed. A transformation might be applied to such variables so that they 
comply with the Gaussian assumption. For highly skewed properties, a 
linear mixed model of the logarithm of the measured values is often 

estimated (Webster and Oliver, 2007). 
If the distribution of the random effects (possibly following a trans

formation) is assumed to be second order stationary then the variances 
on the main diagonal of C are identical. The off-diagonal terms indicate 
the degree of spatial correlation between pairs of random effects. In a 
linear model these off-diagonal elements are zero. The spatial correla
tion is assumed to decrease as the lag or distance between pairs of 
measurement locations become larger according to an authorized 
covariance function (Webster and Oliver, 2007). One authorised func
tion is the nested nugget and exponential: 

C(h) =

⎧
⎪⎨

⎪⎩

c0 + c1 if h = 0

c1exp
(
− h
a

)

if h > 0
(2)  

where h is the lag distance separating two measurement locations, c0 the 
nugget variance, c1 the partial sill variance (the variance of the spatially 
correlated component) and a is a spatial parameter. The spatial 
parameter must be greater than zero and the variances greater than or 
equal to zero. We refer to the sum of the nugget and partial sill variances 
as the sill variance. 

Both the fixed effects coefficients β and the random effects parame
ters α = [c0, c1, a] must be estimated from the available data. This can be 
achieved by maximum likelihood. The likelihood or probability that the 
measured data would have been realised from a proposed model can be 
calculated for any admissible values of α. The β values that will maxi
mise the likelihood for those α are: 

β =
(
MTC− 1M

)− 1MTC− 1z. (3) 

A numerical optimization routine can be used to find the α and β 
parameters which lead to the largest value of this likelihood. Further 
details of maximum likelihood estimation for spatial data are provided 
by Lark et al. (2006). 

One challenge when proposing linear mixed models or linear models 
of a particular property is deciding how many and which covariates 
should be included in the fixed effects design matrix M. The addition of 
an additional covariate to this matrix will not lead to a decrease in the 
maximised likelihood because an unaltered model and likelihood results 
if the additional element of β is zero. Therefore, it might appear that a 
model is being improved by the inclusion of additional covariates since 
the maximised likelihood tends to increase. However, the additional 
covariates might not be significantly related to the property of interest 
and the improvements in likelihood might only reflect patterns in the 
property and covariates that occur by chance. Such a model is said to be 
overfitted. The model accurately represents the variation in the data that 
are used to estimate it but is less accurate when applied to other data. 
The problem of overfitting in spatial models is often addressed using the 
Akaike Information Criterion (AIC; Akaike, 1973): 

AIC = 2k − 2L, (4)  

where k is the number of estimated parameters or coefficients in a model 
and L is the natural logarithm of the maximised likelihood. The design 
matrix M which leads to the smallest AIC is thought to contain the most 
appropriate covariates to represent the variation of the property of in
terest. This criterion favours models which have a large likelihood but 
penalizes complex models with many parameters. 

2.2. Basis splines 

In the linear mixed model described in the previous section the fixed 
effects relationship between a covariate and the measured values of the 
property of interest is linear. This assumption of linearity is rather 
restrictive. It can be relaxed by expressing the fixed effects as a linear 
sum of spline basis functions defined according to the value of the co
variate. Spline functions (Wood, 2017) are piecewise polynomials which 
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means that they consist of a series of smooth sub-functions. The points 
where these sub-functions meet are referred to as knots. 

Fig. 2 illustrates nonlinear fixed effects related to a covariate x. This 
covariate has been scaled so that its smallest value is zero and largest 
value is one. Examples of B or Basis splines are shown in the panels on 
the left of the figure. In each panel a single B-spline sub-function is 
highlighted in red. These sub-functions have compact support – they are 
only non-zero within a continuous subset of values of x. All of the sets of 
B-splines have five equally spaced knots between x = 0 and x = 1. In the 
top plot, the ith B-spline is equal to one between the (i − 1)th and ith 
knot and is zero otherwise. This is a first order B-spline. A fixed effect 
design matrix M could be defined such that each column contains the 
values of a first order B-spline sub-function corresponding to the co
variate value for each measurement. When this design matrix is multi
plied by a set of coefficients,β, a nonlinear fixed effect function results. 
This fixed effect function has a discontinuity or jump at each knot as can 
be seen in the top right panel of Fig. 2. 

The second order B-spline consists of a triangular sub-functions 
surrounding each knot. When this basis function is included in a 
design matrix, fixed effects with discontinuous derivatives at the knots 
result (Fig. 2, second row). Similarly a third order B-spline leads to fixed 
effects with discontinuous second derivatives at each knot. 

For a B-spline of a given order, the number of knots control the de
gree of smoothness of the resultant fixed effects. If the number of knots is 
almost as large as the number of measurements then the fixed effects 
might follow the measured relationships between the covariate and the 
property of interest almost exactly. However, it is unlikely that such a 
detailed relationship would be applicable to data not used in the cali
bration and the model is overfitted. When estimating B-spline models in 
a non-spatial context the objective might be to minimise the sum of the 
squared differences between the measured data and the results of the 
model. It is common to control for overfitting by introducing a term in 
the objective function that penalizes rough or non-smooth models 
(Wood, 2017). In a spatial context the model fitting procedure is more 
complex since it must account for any spatial autocorrelation amongst 

the data. This correlation implies that the errors cannot simply be 
summed within an objective function. 

The B-splines described here can be included in the spatial linear 
mixed model (Eqn. (1)) by using an appropriate M matrix. One might 
choose to use third order B-splines to ensure that the resultant fixed 
effects have continuous derivatives. Different numbers of uniform knots 
could be applied. The number of knots that leads to the lowest AIC might 
be considered to have the appropriate degree of smoothness. 

2.3. Spatial prediction 

Once the α and β parameters have been estimated the linear mixed 
model and measurements of the property of interest can be used to 
predict the expected value of the property at locations where it has not 
been measured. The values of any covariates within the fixed effects 
design matrix must be known at these locations. The np × q fixed effects 
design matrix containing these covariates at the prediction locations is 
denoted Mp. 

The estimated α and Eqn. (2) are used to calculate Cpo, the length 
np × n matrix of covariances between potential measurements at the 
locations where predictions are required and the actual measurements. 
Similarly, the np × np covariance matrix of potential measurements at 
the prediction locations is calculated and denoted Cpp. The predicted 
expectation of the possibly transformed property at the prediction lo
cations is: 

Ẑ
(
xp
)
= E

[
z
(
xp
) ]

= Mpβ + CpoC− 1(z − Mβ), (5)  

and the corresponding prediction covariance matrix is: 

V=
(
Mp − CpoC− 1M

)(
MTC− 1M

)− 1( Mp − CpoC− 1M
)T

+
(

Cpp − CpoC− 1CT
po

)

(6) 

If the autocorrelation of the property of interest is not utilised when 
making predictions then the matrix Cpo is treated as if all of its entries 
were zeros and the expected value and prediction variance are: 

Fig. 2. Examples of B-spline basis functions for covariate (x) values between zero and one (left) and of fixed effects that result by multiplying each set of basis 
functions by the same randomly selected regression coefficients (right). An individual basis sub-function is highlighted in red. The order of the B-splines increases 
from two to five upon moving down through the plots. All plots have five uniformly spaced knots. 

B.P. Marchant                                                                                                                                                                                                                                   



Geoderma 403 (2021) 115232

5

Ẑ
(
xp
)
= E

[
z
(
xp
) ]

= Mpβ, (7)  

and: 

V = Mp
(
MTC− 1M

)− 1Mp
T +Cpp. (8) 

For these linear model predictions the main diagonal entries of C and 
Cpp are equal to the sill variance and the off-diagonal entries are zero. 

For both the linear mixed model and linear model predictors the 
elements of the main diagonal of V correspond to the variance or un
certainty of the predictions. The first term on the right hand side of Eqs. 
(6) and (8) account for the uncertainty in the fixed effects. The second 
term accounts from the uncertainty that results from the residual spatial 
variation of the property. In Eq. (6) the CpoC− 1CT

po is the amount by 
which the spatial autocorrelation has reduced the prediction variances 
and covariances. Note that these uncertainties are related to the 
covariance matrices of the property of interest but not directly to the 
measured values. These matrices can be calculated if the α parameters 
are known. The uncertainty of the fixed effects can be calculated without 
knowing the value of the β coefficients. 

The assumption of Gaussian random effects in the linear mixed 
model and the linear model imply that the distribution of the predictions 
is multivariate Gaussian and therefore the expected values and covari
ance matrix are sufficient information to determine the probability 
density function for each prediction location. This also implies that it is 
possible to sample plausible realisations of the property by using the 
Cholesky decomposition (Webster and Oliver, 2007) to sample from the 
multivariate Gaussian distribution with expectation Ẑ

(
xp
)

and covari
ance matrix V. 

If the property of interest was transformed prior to modelling then a 
backtransform must be applied so that the predictions can be presented 
in their original units. It is not generally possible to simply apply the 
inverse of the transform to the predicted values of the property. For 
example, if the exponential of the prediction of a log transformed 
property is calculated then the result is equal to the median of the pre
dicted distribution in the original units rather than the mean. The 
backtransformation can be easily achieved using simulated values. If 
1000 simulated values of a log-transformed property at a particular 
location are produced then the exponential of each simulated value can 
be calculated. The mean of these values is an estimate of the mean of the 
predicted distribution of the property in original units. 

The effectiveness of different linear mixed models or linear models 
can be quantified by validation of the model predictions. Ideally, some 
measurements would be held back and not used in the model calibration 
so that they can be used for validation. Often, a scarcity of measure
ments means that this is not practical. Instead, a cross-validation pro
cedure is used where the model is re-estimated without a proportion of 
randomly selected measurements and then the property of interest is 
predicted at the locations of the omitted measurements. This procedure 
might be repeated, selecting different measurements to be omitted each 
time until each measurement has been omitted once. Upon cross- 
validation, the mean error (ME): 

ME =
1
n

∑n

i=1

{
zi − Ẑ i

}
, (9) 

indicates whether the spatial predictions are biased and the root 
mean squared error (RMSE): 

RMSE =

[
1
n
∑n

i=1

{
zi − Ẑ i

}2
]1

2

, (10)  

quantifies the accuracy of the predictions. Here, zi and Ẑi are the 
measured and cross-validation predicted value at xi. The correlation 
between measured and predicted values might be considered as an 
additional cross-validation metric. However, standard correlation co

efficients only consider the extent to which pairs of variables are linearly 
related to each other rather than the similarity between the two vari
ables. Lin’s concordance correlation (Lin, 1989) which does consider 
this similarity is therefore a better cross validation statistic. 

The prediction variances might be validated by calculating the 
standardised squared prediction errors (SSPEs): 

θi =

{
zi − Ẑ i

}2

Vi
, (11)  

where Vi is the variance of the prediction at location xi. The assumptions 
of Gaussian random effects in the linear mixed model and linear model 
imply that the θi should be realised from a chi-squared distribution with 
one degree of freedom. The mean θ and median ̃θ of such a distribution 
have expected values of 1.0 and 0.45 respectively and these quantities 
are often quoted (e.g. Minasny and McBratney, 2007) as measures of the 
accuracy with which the uncertainty in model predictions have been 
quantified. 

2.4. Optimized spatial sampling 

The data collected in a survey of a spatial variable must be suitable 
for both estimation of the α and β parameters of the model and spatial 
prediction of the variable. The number of measurements that can be 
made is often limited according to the resources available for the survey. 
Therefore it is important to select the measurement locations carefully. 
Van Groenigen et al. (1999) suggested the SSA optimization procedure 
to select the locations of a fixed number of measurements that constitute 
a spatial survey. The SSA procedure converges to a set of locations that 
minimize an objective function. The objective function is likely to reflect 
the level of uncertainty that will result from the survey. For example, if 
the α were known for a property that was represented by a linear mixed 
model (Eqn. (1)) the objective function could be the average variance of 
predictions (Eqn. (6)) at a number of specified prediction locations. This 
objective function could be calculated prior to sampling without 
knowledge of the measurement values or the entries of β. 

The SSA algorithm starts with a random selection of measurement 
locations. Then a location is perturbed randomly. The perturbation is 
accepted if it causes the objective function to decrease. A perturbation 
that increases the objective function might be accepted. The probability 
of acceptance decreases with the magnitude of the increase in the 
objective function. If the perturbation is not accepted then the mea
surement returns to its previous location. The algorithm continues 
iteratively, perturbing each measurement location in turn and then 
repeating the process across a number of cycles. The probability of 
accepting a perturbation that increases the objective function is 
decreased upon the start of each cycle and the locations converge to a 
pattern which minimizes the objective function. The stochastic nature of 
the algorithm means it is likely to converge to a global rather than local 
minima. 

If the linear mixed model has constant fixed effects and the objective 
function is the average prediction variance (Eqn. (6)) then the mea
surement locations are likely to be evenly dispersed across the study 
region. Such a design ensures that no prediction location is a large dis
tance from a measurement and therefore the measurements are suitable 
for interpolation. Brus and Heuvelink (2007) explored sample designs 
that minimised the average prediction variance when the fixed effects 
were linear functions of covariates. They found that as well as dispersing 
the measurement locations across the study region these designs tended 
to include both large and small values of the covariate in order to 
accurately estimate the gradient of the relationships with the covariates. 

Marchant and Lark (2007) and Zhu and Stein (2006) added addi
tional terms to the objective function which approximated the effects of 
uncertainty of the estimated α parameters. If the additional variance 
resulting from α parameter uncertainty in the prediction at xi is denoted 
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τ2
i then the prediction variance at this location is: 

Wii = Vii + τ2
i (12)  

where Vii is the ith entry of the main diagonal of V. Both sets of authors 
found that their objective functions led to sample designs where the 
measurement locations were generally evenly dispersed across the study 
region but there was a proportion of close pairs of locations which were 
particularly useful in estimating the nugget parameter. Lark and 
Marchant (2018) optimized survey designs for variables with different 
spatial model parameters and determined that if a tenth of observations 
are close pairs then the design is generally suitable for both covariance 
model estimation and geostatistical prediction. Wadoux et al. (2017) 
optimized survey designs for non-stationary geostatistical models where 
the variance of the property of interest varied according to a covariate. 
They found that sampling was particularly focussed where the variance 
was largest. 

3. Methods 

3.1. Peat depth measurements 

We consider the 425 peat depth measurements from the Dartmoor 
National Park (Fig. 3) which, as described in the Introduction, were 
studied by Young et al. (2018). These measurements were a subset of the 
measurements obtained by Parry et al. (2012) with the permission of the 
National Trust and Dartmoor National Park Authority. These two papers 
give full details of how the peat depths were measured, the sample 
design and of the study region and Young et al. (2018) describe how the 
subset of the data can be accessed. An extended dataset has since been 
studied by Gatis et al. (2019). 

Dartmoor has high average rainfall of 1974 mm (Met Office, 2010) 
and underlying geology of impermeable granite. This has led to the 
formation of extensive blanket peatland. The study region includes two 
blanket peat soil series - Crowdy and Winter Hill. The peat depths were 
measured with an extendable metal probe. The quoted depths are the 
average of five replicates. One measurement is made at a central point 
and the other four are made 4 m from this point to form a cross. Two 
different sampling approaches were employed. Peat depths were 
measured on a regular grid with 250 m intervals in the south of the study 

region. A stratified sample approach was used in both the north and 
south of the region to ensure representative sampling of slope and 
elevation. 

3.2. Covariate data 

The covariate data used in this study were originally compiled by 
Kirkwood et al. (2016) and used to map geochemical properties across 
the south west of England. We focus upon radiometric data obtained 
from the Tellus South West airborne survey (Beamish et al., 2014). The 
survey flew 61,000 km of lines across the south west of England with 
each line separated by 200 m. The radiometric data were sampled at 1 
Hz leading to a mean distance between measurements along the line of 
71 m. The horizontal support or footprint of each measurement varied 
according to the altitude and speed of the aircraft. Beamish (2013) 
determined that 90% of the response for a measurement from the Tellus 
Northern Ireland airborne survey flown at an altitude of 60 m would 
have an elliptical footprint of area 109 000 m2. The greatest contribution 
came from directly beneath the aircraft and it would fall off rapidly with 
lateral distance from the flight line. The Tellus South West survey was 
flown at an average altitude of 91.6 m. The radiometric counts of po
tassium, thorium and uranium and the total counts were interpolated to 
a 100 m grid using bicubic splines (Fig. 3). Beamish et al. (2014) provide 
full details of the radiometric component of the Tellus South West survey 
and the pre-processing of the data. 

Kirkwood et al. (2016) considered a further 22 covariates derived 
from the NextMap aerial elevation survey (Intermap Technologies, 
2007), a land gravity survey (British Geological Survey, 1968), the 
magnetic component of the Tellus South West survey (Beamish et al., 
2014) and Landsat-8 satellite imagery (Roy et al., 2014). All of these 
covariates were resampled to the same 100 m grid as the radiometric 
survey data. 

3.3. Statistical analyses 

The values of the covariates corresponding to each of the 425 loca
tions where peat depths were measured were determined by finding the 
nearest neighbour to the measurement locations amongst the covariate 
grid. Linear mixed models were then used to investigate the 

Fig. 3. (left) Interpolated map of BGS Tellus Survey radiometric potassium (%) for portion of south west England highlighted in Fig. 1; (right) locations where 
interpolated potassium is less than 1.9% (brown shading) with annotated measurement locations (black dots), area of predicted maps (southerly grey shading) and 
sub-region where optimized sampling is explored (northerly grey shading). Contains data sourced from Young et al. (2018). 

B.P. Marchant                                                                                                                                                                                                                                   



Geoderma 403 (2021) 115232

7

relationships between peat depth and these covariates. An initial linear 
mixed model with constant fixed effects was estimated by maximum 
likelihood. Then a series of linear mixed models which included one of 
the covariates compiled by Kirkwood et al. (2016) were estimated. The 
AIC of each model was recorded. Nonlinear relationships between the 
peat depths and covariates were accommodated by using third order B- 
spline basis functions of the covariates in the fixed effects design matrix. 
The knots of these basis functions were uniformly spaced between the 
smallest and largest covariate value. Such models were estimated with 
different numbers of knots varying between four and eight. The AIC was 
used as a criterion to decide upon the optimal number of knots for each 
covariate. Ten-fold cross validation was applied to the estimated models 
and the MEs, RMSEs, Lin’s concordance correlation, and the mean and 
median SSPEs were calculated and compared. 

The standard cross-validation results use the linear mixed model 
prediction equations (Eqs. (5) and (6)) and reflect the impact of both the 
fixed and random effects upon the predictions of peat depth. We also 
considered how effective the fixed effects were in isolation by using the 
linear model predictor (Eqs. (7) and (8)). 

Subsequent analyses focussed on the best fitting linear mixed model. 
This model used radiometric potassium measurements in the fixed ef
fects. The estimated model was used to predict maps of peat depths in 
the area covered by the gridded peat depth measurements in the south of 
the study region. Two sets of maps were produced. The first set were 
purely based upon the linear model predictor. The second set utilised 
both the fixed and the random effects in interpolating peat depth across 
the study region. Plots of the estimated peat depth and the width of the 
90% confidence interval were produced. 

Finally, we considered how the model incorporating radiometric 
potassium measurements could be used to optimize the design of a 
survey of peat depths. A 277 000 m2 sub-region in the north of the study 
region was selected. This sub-region was based on a 5800 m × 4800 m 
rectangle but locations where radiometric potassium was greater than 
1.9% (the largest measured value at the location of the peat depth 
measurements) were omitted. The peat depth measurements were 
assumed to be realized from the best fitting linear mixed or linear 
models. Spatial simulated annealing was used to design peat depth 
surveys for this sub-region that minimized the mean width of the 90% 
prediction intervals for both the linear mixed model and linear model 
predictions on a regular 100 m spaced grid of np prediction locations 
covering the sub-region. For Gaussian variables this objective function O 
was calculated using: 

O =
1
np

∑np

i=1
3.29

̅̅̅̅̅̅̅
Wii

√
, (13)  

where Wii was the ith main diagonal entry of the covariance matrix W 
defined in Eqs. (6) and (12) for the linear mixed model and Eqs. (8) and 
(12) for the linear model. The best fitting α values were assumed to be 
known and used to calculate the V and W covariance matrices. In the 
case of a variable that had undergone a log-transform then the objective 
function was calculated in the original units using: 

O =
1
np

∑np

i=1
exp

(
Mp(i)β + 1.64

̅̅̅̅̅̅̅
Wii

√ )
− exp

(
Mp(i)β − 1.64

̅̅̅̅̅̅̅
Wii

√ )
, (14)  

where Mp(i) is the ith row of the Mpmatrix. Note that Eq. (14) requires 
that the β are known. A survey was also designed where the fixed effects 
were assumed to be constant in order to quantify the improvement in 
prediction accuracy that resulted from the radiometric information. 

The number of measurements in these surveys was sequentially 
increased in increments of 25 from 25 to 200. The effectiveness of these 
sample designs was tested using simulated data. For each design, the 
linear mixed model was used to simulate peat depth at the suggested 
measurement locations and at the nodes of a prediction grid with in
terval 100 m covering the 277 000 m2 sub-region. A linear mixed model 

or a linear mixed model with the same fixed effects design matrix as that 
assumed in the survey design was estimated using the data from the 
proposed measurement locations. This model and the data from the 
proposed locations were then used to predict peat depth on the grid. This 
process was repeated 100 times and the mean of root mean squared 
difference between the predicted and simulated data for each realisation 
was recorded. 

4. Results 

4.1. Estimation of linear mixed models of peat depths 

The measured peat depths varied between 5 and 330 cm (Fig. 4). The 
distribution of these measurements had a positive skewness coefficient 
of 1.56. Webster and Oliver (2007) suggest that a variable with skewness 
coefficient greater than 1.0 cannot be considered to be consistent with a 
Gaussian distribution. The logarithm of peat depth plus one had a 
skewness of 0.25. We therefore used linear mixed models to represent 
the spatial variation of this transformed property. The estimated 
covariance function for the transformed peat depths with constant fixed 
effects is shown in Fig. 5. The sill variance is 0.72 (log cm)2 with a 
relatively small nugget variance of 0.04 (log cm)2. Spatial autocorrela
tion is evident up to 2000 m. 

The correlation between the shifted and log-transformed peat mea
surements and the radiometric potassium data was − 0.66. This was the 
largest magnitude correlation amongst the 22 covariates considered by 
Kirkwood et al. (2016). The fourth band (red, 0.64–0.67 µm) of the 
Landsat-8 imagery had a correlation of − 0.65 with the shifted and log- 
transformed peat measurements. The largest correlation between these 
transformed measurements and a topographic property was 0.45 with 
elevation. The estimated fixed effects for the linear mixed model of 
transformed peat depth with linear fixed effects of these three covariates 
are shown in Fig. 6. In these three examples, the AIC is improved beyond 
the value of the model with constant fixed effects. The lowest AIC is 
achieved by the model that includes radiometric potassium (Table 1). 

The AIC of the model that includes radiometric potassium is further 
improved by specifying the fixed effects to be B-spline nonlinear func
tions of radiometric potassium. The smallest AIC occurs for the B-splines 
with five knots (Table 1). The corresponding fixed effects are shown in 
Fig. 7. Nonlinear functions of Landsat-8 Band 4 and elevation do not 
improve the AIC beyond the values achieved when the fixed effects were 
linear functions of these variables. The covariance function of the 
random effects corresponding to these fixed effects is shown in Fig. 5 
(right). The inclusion of the fixed effects has reduced the sill to 0.28 (log 
cm)2. The nugget variance remains a small proportion of this sill but 
spatial autocorrelation is only evident up to distances of around 500 m. 

4.2. Validation of linear mixed models 

When a constant is used to predict the transformed peat depth 
measurements in 10-fold cross-validation the RMSE is 0.86 log(cm) and 
Lin’s concordance coefficient between the transformed measurements 
and predictions is 0.00 (Table 2). For the linear model predictions based 
on the nonlinear function of radiometric potassium or the linear func
tions of Landsat-8 Band 4 and elevation the RMSEs decrease to 0.53, 
0.73 and 0.76 log(cm) respectively and the Lin’s concordance co
efficients increase to 0.75, 0.31 and 0.31. The cross-validation results in 
Table 1 further indicate that all of these models are approximately un
biased and the uncertainty of the predictions is adequately modelled 
since the mean SSPE is close to 1.0 and the median SSPE close to 0.45. 
When these predictions are back-transformed to the original units the 
RMSE for the constant is 75.6 cm, for the nonlinear radiometric potas
sium model it is 45.7 cm, for the linear Landsat-8 Band 4 model it is 67.8 
cm and for the elevation model it is 67.7 cm. 

A linear mixed model with constant fixed effects achieves superior 
cross-validation results to any of the linear model predictions (Table 3). 
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The RMSE for the transformed peat depths is 0.46 log(cm) and Lin’s 
concordance coefficient is 0.83. There are small improvements to these 
cross-validation criteria when the fixed effects are specified to be the 
nonlinear function of radiometric potassium. Fixed effects that are linear 
functions of Landsat-8 Band 4 or elevation have almost identical cross- 
validation results to the constant fixed effects model. 

4.3. Spatial prediction of peat depths 

The predicted maps of peat depth covering the area where gridded 
measurements were made (Figs. 8 and 9) indicate that the depths are 
greatest in the south east of this region. This underlying trend can be 
seen when using the linear model predictions with nonlinear radio
metric potassium fixed effects. More detail is introduced to the maps 
when the linear mixed model predictor is applied and the random effects 

Fig. 4. Histograms of measured peat depth (left) and of shifted and log transformed measured peat depth (right) sourced from Young et al. (2018).  

Fig. 5. Estimated covariance function for log(peat depth + 1) with constant fixed effects (left) and with fixed effects that are nonlinear B-spline function of 
radiometric potassium (right). The crosses indicate the covariance for zero lag. 

Fig. 6. Fixed effects of estimated linear mixed models relating named covariate to log(peat depth + 1). Measured shifted and log transformed peat depths are 
denoted by black dots and the estimated linear fixed effects by black line. 
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are included in the predictions. In transformed units (Fig. 8), the width 
of the prediction interval when using the linear model predictor is 
relatively constant across the study region. When random effects are also 
included, smaller uncertainties are apparent in the vicinity of mea
surement locations. When the predictions are back-transformed to cm 
(Fig. 9) the degree of uncertainty is primarily controlled by the magni
tude of the prediction. Peat depth is more uncertain where it is predicted 
to be large. Some evidence of the uncertainty being reduced in the vi
cinity of measurement locations is apparent when the linear mixed 
model predictor is applied. 

4.4. Optimization of sample designs 

When a linear model is used to predict peat depths then the objective 
functions for optimal survey design (Eqns (13) and (14)) are only related 
to the distribution of covariate values within the sample rather than the 
spatial configuration of the observation locations. For example, when 
the model was specified as a linear function of radiometric potassium 
then the optimal design for prediction of transformed peat depths 
focussed sampling at the locations where radiometric potassium was 
either large or small (Fig. 10, left). The resultant measurements would 
be suitable to accurately estimate the gradient of the linear relationship. 
If the nonlinear B-spline fixed effects are specified then the measurement 
locations must have better coverage of the entire range of radiometric 
potassium values (Fig. 10, centre). If these fixed effects are to be used to 
predict peat depths back-transformed to cm (Eq. (14)) then there is a 
greater focus on measuring at locations with small radiometric potas
sium values (Fig. 10, right). At these sites the peat depth is particularly 
uncertain. 

When the spatially correlated random effects are also included in the 
predictions, the configuration of the measurement locations in space 
also controls the effectiveness of sample designs. In each of the examples 

presented in Fig. 11, the fixed effects are the nonlinear B-spline function 
of radiometric potassium. When the objective function requires accurate 
predictions of transformed peat depths (Eq. (13)) the measurement lo
cations are relatively evenly distributed across the study region. When 
the objective function reflects the uncertainty in back-transformed units 
(Eq. (14)) the measurement locations are focussed where radiometric 
potassium is small since this is where peat depth is most uncertain. Some 
measurements are still required at locations with large radiometric 

Table 1 
AIC values upon maximum likelihood estimation of linear mixed models with 
different fixed effects.  

Fixed effect Covariate 

Rad K LandSat-8 Altitude 

Constant  317.25  317.25  317.25 
Constant + Linear  286.47  302.14  313.26 
B-spline 4 knots  263.80  303.62  314.35 
B-spline 5 knots  262.65  304.75  315.73 
B-spline 6 knots  263.45  304.99  316.33 
B-spline 7 knots  264.50  303.87  317.33 
B-spline 8 knots  264.62  302.53  316.78  

Fig. 7. The estimated third order B-spline fixed effects with five knots relating radiometric potassium to log (peat depth + 1) (left) and the back transformed 
relationship (right). The measured values are denoted by black dots and the 90% confidence interval by grey shading. 

Table 2 
10-fold cross validation results for maximum likelihood estimated models with 
different fixed effects. Predictions include estimated fixed effects but ignore 
impacts of spatial correlation. For each covariate, the model achieving the 
lowest AIC is used.  

Criterion and unit Covariate 

None Rad. K LandSat-8 Altitude 

Unit: Log cm     
Bias − 0.11 − 0.01 − 0.08 − 0.09 
Concordance 0.00 0.75 0.31 0.31 
RMSE 0.86 0.53 0.73 0.76 
Mean θ  1.00 0.98 0.98 0.92 

Median θ̃  0.53 0.52 0.53 0.56 

Unit: cm     
Bias − 8.06 − 1.26 − 11.30 − 7.31 
Concordance 0.00 0.76 0.23 0.27 
RMSE 75.56 45.68 67.72 67.65  

Table 3 
10-fold cross validation results for maximum likelihood estimated models with 
different fixed effects. Predictions include estimated fixed effects and impacts of 
spatial correlation. For each covariate, the model achieving the lowest AIC is 
used.  

Criterion and unit Covariate 

None Rad. K LandSat-8 Altitude 

Unit: Log cm     
Bias  0.01  0.01  0.01  0.01 
Concordance  0.83  0.85  0.83  0.83 
RMSE  0.46  0.44  0.46  0.47 
Mean θ   1.08  1.12  1.10  1.09 

Median θ̃   0.40  0.38  0.40  0.37 

Unit: cm     
Bias  2.04  1.90  1.28  1.72 
Concordance  0.88  0.90  0.89  0.88 
RMSE  34.15  32.50  33.24  34.32  
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Fig. 8. Predictions of shifted and log transformed peat depth (log cm) in the south of the Dartmoor National Park. Top row uses linear mixed model predictor 
whereas bottom row uses linear model. Plots on the left are expected values and plots on the right are width of 90% prediction interval. Fixed effects are B-spline 
functions of radiometric potassium. 

Fig. 9. Predictions of peat depth (cm) in the south of the Dartmoor National Park. Top row uses linear mixed model predictor whereas bottom row uses linear model. 
Plots on the left are expected values and plots on the right are width of 90% prediction interval. Fixed effects are B-spline functions of radiometric potassium. 
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potassium values to ensure that the fixed effects coefficients are accu
rately estimated. The optimized designs considered thus far ignore the 
effects of uncertainty in estimating the α covariance function parame
ters. When this uncertainty is included in the objective function more 
close pairs of measurement locations are introduced (Fig. 11, right). 
These are required to accurately estimate the nugget parameter of the 
covariance function. 

The effectiveness of sample designs optimized to minimize the un
certainty of predictions in back-transformed units and including 
covariance parameter uncertainty was tested using simulated data. 
Optimal designs based on different objective functions were used for 
each model as detailed in Section 4.3. Fig. 12 indicates that for opti
mized surveys consisting of 25 points, a linear mixed model where the 
fixed effects are a nonlinear function of radiometric potassium had an 
average RMSE of 76.9 cm. The average RMSE of the linear model with 
the same fixed effects was 75.6 cm for the same sample size. The linear 
mixed model has a marginally smaller RMSE because it is a simpler 
model and therefore the parameters can be estimated from this small 
sample with more certainty. Predictions from a linear mixed model with 
constant fixed effects had a mean RMSE of 92.6 cm compared to an 
RMSE of 106.0 cm for a linear model with constant fixed effects. 

The average RMSEs for the linear mixed model decrease as the 
sample size is increased and are smaller than those for the linear model 
for all sample sizes greater than or equal to 50. This is an indication of 
the benefit of the spatially autocorrelated random effects. The mean 
RMSEs for the linear mixed model with constant fixed effects decrease 
more quickly than those for the nonlinear linear mixed model. This is 

Fig. 10. Histograms of radiometric potassium values in optimized sample designs for linear model prediction of peat depth. Objective functions are (left) mean 
prediction variances in log cm when fixed effects are linear function of radiometric potassium; (centre) mean prediction variances in log cm when fixed effects are B- 
spline function of radiometric potassium; (right) mean prediction variances in cm when fixed effects are B-spline function of radiometric potassium. 

Fig. 11. Optimized 200 location sample design when objective function is (left) width of 90% prediction interval in log cm; (centre) width of 90% prediction interval 
in cm and (right) width of 90% prediction interval in cm including the impact of model parameter uncertainty. Sample designs are superimposed on BGS Tellus 
Survey interpolated radiometric potassium values (%). 

Fig. 12. Mean based on 100 sets of simulated data of RMSE for predictions of 
peat depth (cm) using optimized designs of between 25 and 200 samples. Peat 
depths are simulated using the linear mixed model where fixed effects are B- 
spline function of radiometric potassium. Results are shown for linear mixed 
model (dots) and linear model (+) predictions where fixed effects are B-spline 
function of radiometric potassium, for linear mixed model (x) and linear model 
(o) predictions where fixed effects are constant. 
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likely to be because of the greater autocorrelation amongst the random 
effects for this model (see Fig. 5). The mean RMSEs for the linear model 
with constant fixed effects decreased slowly to 100 cm for a sample of 
size 200. 

5. Discussion 

5.1. A framework for integrating sensor data into predictions of soil 
properties 

The results illustrate how the integration of sensor data can lead to 
improved accuracy in spatial predictions of ground measured soil 
properties such as peat depth. The framework which delivered these 
improvements included a flexible linear mixed model where the fixed 
effects were a nonlinear function of the recorded sensor data. In contrast 
to the standard application of universal and regression kriging tech
niques (Webster and Oliver, 2007) the regression and covariance pa
rameters were estimated simultaneously by maximizing the likelihood 
of the observed data arising according to the proposed model. This 
meant that the AIC values from different models could be meaningfully 
compared and used to determine the optimal level of smoothing in the 
fixed effects. Further flexibility could be added in the model by, for 
example, including outputs from multiple sensors or by allowing the 
variance of the ground measurements to vary, perhaps nonlinearly, ac
cording to covariates. The cost of this flexibility will be the additional 
computation resources required to estimate a large number of linear 
mixed models and determine the appropriate level of model complexity. 
This could be a major disadvantage of the approach if the models were to 
be estimated sequentially on a single computer but modern high per
formance computing facilities permit all the models to be estimated 
simultaneously. 

The framework also included the use of the SSA algorithm to opti
mize the locations of the required ground measurements. A novel 
objective function was used which accommodated non-Gaussian 
random effects, nonlinear fixed effects and ensured that the survey 
was suitable to estimate both the α and β parameters of the linear mixed 
model. This lead to intuitively sensible survey designs which included 
close pairs of measurements to quantify short range variation, mea
surements being distributed over the range of covariate values to esti
mate the fixed effects and measurements being focussed in regions of the 
study area where the property was most uncertain. 

A common drawback of optimized sampling approaches is that the 
objective functions require a priori knowledge of the α and β parameters 
which are to be estimated from the eventual survey. Approximate values 
of these parameters must be assumed, perhaps based on surveys of the 
same soil property in similar circumstances. These assumed values 
should not greatly influence the final predictions since they will be re- 
estimated once the data have been collected. The optimal sampling 
approach is particularly efficient for adaptive (Marchant and Lark, 
2006) or multiphase (Marchant et al., 2013) sampling where the design 
is adjusted after initial phases of measurements have been used to es
timate the α and β parameters. Practitioners often assume that the fixed 
effects of spatial models are linear functions of a covariate. This 
assumption can lead to focussing sampling effort where the covariate 
values are particularly large or small. Our optimized designs based on 
nonlinear fixed effects lead to more even sampling across the range of 
values of the covariate so that deviations from the linear model can be 
identified. 

The measurements of peat depth considered in this paper were het
eroscedastic, their uncertainty or variance was larger for larger peat 
depths. This heteroscedasticity was accommodated in the model via the 
logarithmic transform and backtransform. When surveys were designed 
to minimise errors in the original units, these transforms led to a greater 
density of measurements where the peat depth were expected to be 
large. A similar effect was observed by Wadoux et al. (2017), when they 
accommodated heteroscedasticity of rainfall measurements by 

permitting the variance of the rainfall to be related to topographic 
covariates. 

5.2. The usefulness of radiometric potassium data in predicting peat 
depths 

The results of this study confirm the usefulness of including radio
metric information when mapping peat depths. Linear mixed models 
that include radiometric potassium values in the fixed effects better fit 
the measured peat depths from Dartmoor than models which assume 
constant fixed effects or fixed effects that are related to the other 
covariates compiled by Kirkwood et al. (2016). The fixed effects based 
on radiometric potassium also lead to superior cross-validation statistics 
relative to the other models. 

Linear mixed models consistently have smaller RMSEs than linear 
models because of the benefit of including the spatially autocorrelated 
random effects in the prediction. However, the benefit of including the 
radiometric potassium information is smaller for the linear mixed 
models in comparison to the linear models. Also, the range of the spatial 
autocorrelation amongst the random effects is much smaller for the 
linear mixed model including radiometric potassium than for the linear 
mixed model with constant fixed effects. These points indicate that the 
radiometric potassium is explaining a substantial proportion of the 
variation that could otherwise have been explained by collecting addi
tional ground measurements of peat depth and then using the spatial 
autocorrelation to predict at other locations. Inclusion of the radio
metric information therefore reduces the number of ground based 
measurements of peat depth that are required to achieve a specified 
degree of accuracy in the maps. 

In the experiments using simulated data to predict peat depth on a 
277 000 m2 sub-region of Dartmoor National Park, the linear mixed and 
linear models including fixed effects which were nonlinear functions of 
radiometric potassium had similar RMSEs when 50 or fewer ground 
measurements were made. For these small sampling densities there is 
little benefit from spatial autocorrelation in the predictions and the 
linear mixed model requires some of the sampling effort to be spent on 
estimating the random effect parameters of the model. As the sample 
size is increased the benefit of the linear mixed model becomes more 
evident. 

The linear mixed model with constant fixed effects has larger RMSEs 
than the linear mixed model that includes radiometric potassium in the 
fixed effects for all numbers of ground based samples. When 25 ground 
measurements are made then RMSEs for the constant fixed effects are 
20% larger. For 200 ground measurements the RMSEs for constant fixed 
effects are only 14% larger than the corresponding results including 
radiometric potassium but still larger than those achieved from making 
25 ground measurements and including radiometric potassium in the 
model. 

The uncertainty in the estimated relationship between radiometric 
potassium and peat depth is largest for the deepest peats when the 
radiometric signal is smallest (Fig. 7). This finding reflects the approx
imate log-Gaussian distribution of the measured data. It is consistent 
with the conclusions of Beamish (2014) who suggested that 60 cm of 
80% saturated peat was sufficient to absorb 90% of the radioactive 
signal from the underlying signal. This implies that a small radiometric 
potassium value could indicate any peat depth greater than 60 cm. It 
does appear that radiometric potassium data can be used to classify 
where peat depth is likely to be greater or less than 60 cm and is 
consistent with the application of radiometric potassium data by the 
Finnish Geological survey (Airo et al., 2014). 

The survey designs optimized to predict peat depth in cm focus 
measurements where radiometric potassium is smallest and peat depth 
most uncertain. Young et al. (2018) also suggested that peat depth 
measurements should be focussed where the peats were deep although 
they inferred the locations of the deepest peats from topographical pa
rameters. The relationship between peat depth and radiometric 
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potassium is likely to vary across the wider landscape. For example, the 
magnitude of the radioactive source signal is likely to vary according to 
the underlying geology and the rate of attenuation of this radioactive 
signal with peat depth is likely to vary according to the moisture content 
or other physical characteristics of the peat. Therefore, it is advisable to 
re-estimate the parameters of the linear mixed model for different case 
studies. The optimized sampling approach described in this paper en
sures that the correct proportions of the ground measurements are 
located to aid the estimation of the different model parameters and to 
interpolate from. 

6. Conclusions 

The relationships between sensor data and soil properties can be 
represented within linear mixed models leading to accurate spatial 
predictions of the soil property that require fewer ground measure
ments. Greater flexibility can be included in these models by using B- 
splines to permit nonlinear fixed effect relationships. The locations of 
the ground measurements can be chosen using an optimized sampling 
algorithm leading to greater efficiencies. Simulated data, based on the 
pattern of peat depth variation in Dartmoor, are used to demonstrate 
that this analysis and survey design framework can lead to more cost- 
effective surveys of peat depth. 
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