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Due to the COVID-19 pandemic, citizens of the United Kingdom were required to

stay at home for many months in 2020. In the weeks before and months following

lockdown, including when it was not being enforced, citizens were advised to stay at

home where possible. As a result, in a megacity such as London, where long-distance

commuting is common, spatial and temporal changes to patterns of water demand

are inevitable. This, in turn, may change where people’s waste is treated and ultimately

impact the in-river quality of effluent receiving waters. To assess large scale impacts,

such as COVID-19, at the city scale, an integrated modelling approach that captures

everything between households and rivers is needed. A framework to achieve this is

presented in this study and used to explore changes in water use and the associated

impacts on wastewater treatment and in-river quality as a result of government and

societal responses to COVID-19. Our modelling results revealed significant changes

to household water consumption under a range of impact scenarios, however, they

only showed significant impacts on pollutant concentrations in household wastewater

in central London. Pollutant concentrations in rivers simulated by the model were most

sensitive in the tributaries of the River Thames, highlighting the vulnerability of smaller

rivers and the important role that they play in diluting pollution. Modelled ammonia

and phosphates were found to be the pollutants that rivers were most sensitive to

because their main source in urban rivers is domestic wastewater that was significantly

altered during the imposed mobility restrictions. A model evaluation showed that we

can accurately validate individual model components (i.e., water demand generator)

and emphasised need for continuous water quality measurements. Ultimatly, the work

provides a basis for further developments of water systems integration approaches to

project changes under never-before seen scenarios.

Keywords: integrated modelling, urban water cycle, water quality, water pollution, wastewater modelling, COVID-

19, water demand, end-use modelling
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INTRODUCTION

Throughout 2020, countries around the world have been taking
extensive anti-contagion measures to manage the impact of
the COVID-19 pandemic (Hsiang et al., 2020). Many measures
have led to reductions in mobility and economic activity with
an associated improvement in the natural environment (Arora
et al., 2020; Sharifi and Khavarian-Garmsir, 2020), particularly
in air (Xiang et al., 2020) and water quality (Braga et al., 2020;
Hallema et al., 2020). Changes around the behaviour of key urban
infrastructures have also been reported (Connolly et al., 2020),
such as an increase in residential (Mastropietro et al., 2020) but
a decrease in overall electricity demand along with a decrease
in water coolant demand at power stations (Roidt et al., 2020).
Reductions in mobility may also change where and how people
consume water, and thus change the treatment plant that receives
their wastewater. Depending on the level of changes in water
use locations, a large shift in the “population presence” of a city
may consequently have knock-on impacts on the wider urban
water cycle.

This study focuses specifically on the urban water cycle
of London, UK, a city that has significant freshwater supply
abstractions, which take place largely on the River Thames
(typically around 1.5 gigalitres per day, Gl/d) and satisfy 80%
of water demand (Thames Water, 2017). According to the
“Lower Thames Operating Agreement” these abstractions may
draw the river down to a flow of 0.8 Gl/d (Mortazavi-Naeini
et al., 2019). Water is used within eight wastewater zones,
and then processed by wastewater treatment plants, depicted
in Figure 1a. The total population within these zones was 8.3
million during the 2011 census (Office for National Statistics,
2011) and they produce around 1Gl/d of effluent (Environment
Agency, 2019). This effluent is treated and released onto the River
Thames or its tributaries. As can be seen in the Figures 1b–g,
water quality sampling sites downstream of these treatment
plants (sites 4 and 7-9) have high concentrations of pollutants
such as ammonia, and low dissolved oxygen (according to the
national archive of water quality samples, WIMS; Environment
Agency, 2020). Untreated sewage spills that occur during storms
also play a significant role, both in the combined sewer
systems of the Beckton and Crossness wastewater zones and in
separate sewer networks when stormwaters infiltrate the foul
sewer system.

To project how demand pattern changes may impact the
whole urban water cycle, a modelling representation that
considers both water quantity and quality is needed (Meng et al.,
2016). This representation should also include river systems
because the quantity and quality of effluent receiving waters
play a critical role in diluting pollutants (Lau et al., 2002;
Vanrolleghem et al., 2005; Dobson and Mijic, 2020b). Figure 1
illustrates this for London as the impact of wastewater treatment
plants on water quality is lessened further downstream due to
dilution from tidal waters. The tools required to model the
entire urban water cycle are typically referred to as “integrated
models” and they can represent distinct sub-systems within a
coherent simulation framework (Belete et al., 2017). Although
integrated urban water cycle modelling tools that consider

both water quality and quantity do exist (e.g., Behzadian and
Kapelan, 2015; Dobson and Mijic, 2020b), none have a spatially
explicit representation of in-river flows, which, as seen in
Figure 1, play a significant role in London and many other
urban environments.

In central London (the Beckton wastewater zone in Figure 1)
the population typically increases by over 1 million each day
during working hours due to commuting (Office for National
Statistics, 2011). However, COVID-19 lockdown measures
reduced mobility by up to 80% (Hadjidemetriou et al., 2020),
with potentially significant impacts on the operational and
environmental performance of London’s water infrastrcture.
As Figure 1 highlights, increases or decreases in wastewater
treatment plant effluent are likely to impact in-river quality
differently, depending on where the changes take place. We thus
expect that the activities that will drive changes in the urban water
cycle during COVID-19 are the key water use activities carried
out by people, e.g., toilet flushing, showering, dish washing
(Almeida et al., 1999). Modelling water consumption that is
disaggregated at this appliance scale is referred to as “end-use
modelling” (Blokker et al., 2010), however, so far, no mega-
city scale application of such a framework has been performed
(Blokker et al., 2017).

To best assess the impact of the COVID-19 lockdown on
London’s rivers, we believe it is necessary to model household
water use, starting with water consuming activities, which
are then routed through a spatially explicit representation of
the urban water cycle and its rivers to identify changes in
pollutant concentrations. To do this, we present the novel
CityWat-SemiDistributed integrated urban water cycle model
of London that can simulate different population centres, their
wastewater treatment plants, and the resulting in-river pollutant
concentrations. This model is created and evaluated using mainly
public data and the modelling software itself is open source
(Dobson and Mijic, 2020a). In order to capture the impact of
a changing population presence within the city, we also present
an end-use water consumption model that builds on the state-of-
the-art by being applied at scales not seen in the literature before
(millions of people), and that is linked with openly available data
to derive population and commuting numbers. By combining the
integrated urban water cycle simulations with end-usemodelling,
we ultimately simulate impacts to in-river quality that result
from the COVID-19 lockdown in both the River Thames and in
smaller tributaries.

MATERIALS AND METHODS

CityWat-SemiDistributed (CWSD) is an integrated model
designed to model both flows and pollutant concentrations
throughout the urban water cycle. In this study, we use
it to test the impact of a COVID-19 lockdown on in-
river quality starting from household water consumption.
The model is an extended version of the existing CityWat
model (Dobson and Mijic, 2020b), which represented the key
processes in the urban water cycle: abstractions, supply storage,
freshwater treatment, distribution, consumption, land runoff,
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FIGURE 1 | (a) Map depicting London and the eight wastewater zones and treatment plants (WWTW) of the city, key water quality (WQ) sites along the lower River

Thames are indicated with red crosses. (b–g) Boxplots displaying distribution of the most commonly sampled pollutants’ concentrations at the key WQ sites. Samples

come from the WIMS database from 2000 to 2020 (Environment Agency, 2020), red bars indicate the median sample value, boxes the interquartile range (IQR) and

whiskers indicate the range of measurements that are ± IQR*1.5 within the upper and lower quartiles. Measurements that fall outside of the whiskers are not shown to

improve the readability of plots.

sewer networks, wastewater treatment, and effluent receiving
waters. To achieve this broad scope, analyses were aggregated to
the city scale (e.g., combining all treatment plants into a single

modelled treatment plant), showing comparable performance
against more sophisticated reservoir models and observed water
quality data.
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However, the lumped approach limited the original version
of CityWat for application in COVID-19 analysis as the model
would not have been able to distinguish the changes in commuter
patterns that took place during the lockdown. In section
Development of CityWat-SemiDistributed Integrated Model, we
present the changes that enable this and the resulting open-
source software CWSD. The second limitation of the lumped
CityWat model was a parsimonious method for simulating
water demand, considering only “per-capita consumption” with a
seasonal scaling factor. In section Stochastic Simulation of Water
Demand we present an end-use model to generate water demand
that builds on similar approaches (Blokker et al., 2010) and use it
to represent plausible changed behaviour patterns of a lockdown
scenario. In section Integrated Modelling Over London Scale
we describe the application of CWSD to modelling London’s
urban water cycle. In section Modelling Evaluation, we describe
the model evaluation that we perform that compares CWSD
modelled water quality with in-river quality samples, and the
evaluation of the end-use generator withmetering data from both
before and during the pandemic. We provide an illustration of a
generic CWSD system with end-use modelling in Figure 2.

Development of CityWat-SemiDistributed
Integrated Model
CWSD uses the physical representations presented in the
CityWat integrated modelling framework and builds on the
graph-based modelling philosophy exemplified by software such

FIGURE 2 | A generic illustration of the modelling domain for this study.

as CityDrain3 (Burger et al., 2016) to capture the spatial
heterogeneity required for this study. A graph-based approach
represents elements of interest as “nodes” that can be linked
by “arcs.” Nodes do not have to be individual infrastructure
works but can instead represent a strategic aggregation over an
area (for example, a wastewater catchment) or over many works
(for example, combining multiple river abstraction pumping
stations). Arcs represent the flow of water; and are typically pipes
or waterways. In CityDrain3 the graph formed by these nodes
and arcs is “directed,” i.e., water flows from one node to the
next in one direction, upstream to downstream. This can be
thought of as “push-based” modelling, where each node pushes
water to the next. Due to the importance of river abstractions
on the River Thames, CWSD uses nodes that can both “push”
and “pull” water along arcs. Push/pull modelling is common
in the field of integrated modelling, and is the basis of many
integration frameworks (e.g., OpenMI; Harpham et al., 2019).
In this sense, the CWSD modelling philosophy adopts multiple
model integration techniques and places them in a self-contained
graph-based framework for simulation.

To expand the CityWat model from a lumped to a semi-
distributed representation, we subdivided the area of interest into
wastewater zones (each zone is a geographical area served by the
same wastewater treatment plant, depicted in Figure 1) that can
either be combined or separate sewer systems. The representation
of surface runoff within each wastewater zone remained the same
as in the original CityWat model, where the rational method was
used to calculate the surface runoff and mass balance equations
were used to calculate the flow (Dobson and Mijic, 2020b).
In this study, to capture the spatial heterogeneities present in
urban areas and to derive the runoff coefficients associated with
each of the zones, we used a proprietary 2m land cover dataset
provided by the British Geological Survey. A wastewater zone’s
overall runoff coefficient was derived from first calculating the
total amounts of each land cover class within the different
zones and then applying the coefficient values presented in
American Society of Civil Engineers andWater Pollution Control
Federation (1986) to obtain the composite runoff coefficients.
Other key physical assumptions relevant in this study that are also
taken from the original CityWat model are instantaneous travel
time of flows, representing sewer capacity with an “effective”
drainage rate of 12 mm/h (based on Environment Agency
guidance; Environment Agency, 2018) and a constant percentage
reduction in pollutant concentration during treatment (described
in section Integrated Modelling Over London Scale).

Alongside moving from a lumped to a semi-distributed
representation, the most notable changes made to CityWat were
around the representation of water quality. In the original study,
water was considered to take one of three states: upstream
river water, treated effluent and untreated sewage, and so to
compare against measured water quality samples the model
assumed each of the three states of water to have a fixed
phosphorus concentration. In CWSD, due to the wide range of
pollutants that exist in residential wastewater (Almeida et al.,
1999), the concentration of a range of pollutants is tracked
along arcs. Total pollutant concentration assumes well mixed
conditions of river water, runoff, treated and untreated sewage.
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A sophisticated representation of biological, chemical, or fluid
dynamical processes that influence pollutant concentrations was
considered outside the scope of the study.

Integrated models of the environment are notoriously difficult
to evaluate (Belete et al., 2017), particularly because performance
of any specific sub-system is not necessarily indicative of
the model as a whole (Voinov and Shugart, 2013). We
believe that, until greater agreement has been reached around
this issue, most applications of integrated models should be
considered exploratory. With this in mind, a model evaluation is
performed using openly available data (i.e., the WIMS database;
Environment Agency, 2020) of pollutant concentrations. We do
this on the basis that these variables should be the hardest to
predict since they require high accuracy in both quantity and
quality of all contributing processes within the model and also
for the model boundaries. Instead of formal calibration, we
select the values of the many parameters in the model based on
data where possible and expert knowledge otherwise (described
in Supplementary Material 1A–D, as are all parameters used
in this study). The data used to do this are described in
section Modelling Evaluation. Although calibration would likely
provide higher “performance-metrics,” in a model so complex as
presented in this study, there is no guarantee that the metrics
would be improved for the “right reasons” (Kirchner, 2006).
Since the purpose of the model in this study is for analysis of
system changes under unprecedented conditions (i.e., COVID-
19 scenarios), we favour potentially lower performance metrics
but with defensible and transparent parameter values. We also

acknowledge that the lack of formal model calibration limits the
interpretation of results to inform operational decisions.

Stochastic Simulation of Water Demand
Simulating stochastic ensembles of water demand at scale can
broadly be split into two required calculations, determining
presence of the population in the area in question and then
determining how much water they are consuming for different
activities at a given time. We highlight the key steps in Figure 3.

A Population Presence Model for the UK
The key driver of household water consumption in an area is
the total population. Census data are commonly used to inform
household consumption in the context of wastewater (Blokker
et al., 2010; Atinkpahoun et al., 2018). In addition, the UK census
data is freely available anywhere in the UK (Office for National
Statistics, 2011), and conducive toward reproducible research
through the Office for National Statistics’ API (Smith, 2017).
Thus, census data is used to inform total household population,
total number and size of households, and total population flows
to/from an area due to commuting. Its high resolution enables
accurate derivation of these values at a wastewater zone scale. The
flow of commuters between different wastewater zones according
to this census is displayed in Figure 3.

Although census data provides a reliable breakdown of the
population in areas, it is a static view of the population (except
for commuting numbers). The end-use modelling techniques
described in the following section rely on within-day movements

FIGURE 3 | A flow chart demonstrating the key stages in the end-use modelling. The map depicts commuter flows between the eight wastewater zones in London.

Flows with fewer than 5,000 people/day are not shown. Only commuting between zones is depicted for visibility, however commuting into/out of London is captured

by the model. Arrow width is proportional to number of people per day, with the largest flow being 500,000 people/day. Arrows are coloured to highlight direction of

flow.
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of the population, specifically determining when people are at
home, away from home, asleep or at work (Blokker et al.,
2010). To model behaviour in the baseline case (i.e., outside
of COVID-19 scenarios) we use the “United Kingdom Time
Use Survey 2014-2015” (Gershuny and Sullivan, 2017). For
this survey, 11,000 randomly sampled people around the UK
recorded their activities every 10min for up to a week. While
there are hundreds of different types of activity, we categorise
them into four basic “activity states” to ensure each has a large
sample size of associated timings. Following Blokker et al. (2010)
these states are: sleep, home, away, work. Information about
respondents such as region within the UK, employment status,
household ownership, age, relationship status, education levels,
and income are also included in the survey. Although many of
these factors play a role in water use activity (Hussien et al., 2016),
the relationship has not been quantified in a manner that would
enable straightforward inclusion in our end-use model, thus we
only account for employment status and region within the UK.
The data also is further categorised based on “weekends” and
“weekdays” for modelling purposes, since the time use patterns
between the two are significantly different.

Pre-processing of census data provides population, worker
and commuting numbers, while the time use survey provides
respondent information in the region of interest. For each person
in the wastewater zone, we sample a day from the time use survey.
If the person is a worker (determined by the number of workers
in the census survey) then we sample the day from an employed
person in the survey, otherwise we sample a non-employed
person. This will provide activity states at 10-min resolution for
each person in the wastewater zone. Based on the commuting
information in the census data, we split the workers into three
groups: those who will be working and living in the wastewater
zone, those who will be living in and working out of the zone and
those who will only be working in the zone. For some cases, for
example in central London where millions of people work, it is
not computationally feasible to create presence information for
each individual person; in these cases, we take as large a sample
as possible and scale the information accordingly.

End-Use Modelling
End-use modelling describes a person or household’s use of
various appliances with statistical distributions and then uses
Monte-Carlo simulation to derive a stochastic time-series of
water demand. We use the appliances and activities presented
in Blokker et al. (2010): baths, bathroom taps (washing and
teeth brushing), dishwashers, kitchen taps (hand washing, dish
washing, consumption), showering, washingmachines, and toilet
flushing. The key parameters to be estimated, typically via survey,
are the frequency, intensity and duration of water consumption
events. In this study, we use the parameters presented in Blokker
et al. (2010), unless estimates that are tailored to the UK
are available. These parameters and our sources for them are
described in Supplementary Material 1C,D.

For each person-day, the number of events is generated, then,
for each event, the intensity and duration are generated. These
events are then distributed throughout the day and the location
where water is consumed are based on the person’s presence

and activity-state, sleep/home/away/work (i.e., from section A
Population Presence Model for the UK). Following Blokker et al.
(2010), we assign a 1.5% probability of a given event occurring
during the “sleep” activity-state, a 0% probability of occurring
during the “away” activity-state and the remaining occurrences
to occur during the “home” activity-state. If the person is a
worker and working on a given day, the probability of using a
toilet or bathroom tap at work is the same as at home (scaled
in proportion to the number of hours at work/home). Finally,
during the first morning period at home, there is an increased
chance of using showers or bathroom taps such that there is a 50%
probability that these occurrences take place during this period.

Our key motivation for using end-use modelling was its
ability to link with the pollutant content of household effluent.
There are a range of studies that document this information
for specific water consuming activities (Almeida et al., 1999;
Eriksson et al., 2002; Friedler, 2004; Li et al., 2009; Todt et al.,
2015). These studies provided pollutant concentration estimates
for chemical oxygen demand (COD), ammonia (NH3), nitrite
(NO2), nitrate (NO3), phosphate (PO4), total phosphorus (P),
and suspended solids (TSS), which are thus the pollutants we
simulate in this work. The derivation of a pollutograph for
total household effluent in CWSD is the proportional mixing
of appliance pollutant concentration and appliance total flow,
adding a novel application of the end-use modelling from a
whole-water system perspective.

Integrated Modelling Over London Scale
The representation of London’s urban water cycle used in CWSD
is depicted in Figure 4. It captures all the significant inflows
and abstractions from the River Thames and its tributaries
using publicly available information ranging from 2004 to 2018.
A detailed list of parameter values and sources can be found
in Supplementary Material 1A,B. The spatial resolution for
the model is river catchments (for inflow nodes), wastewater
zones (for precipitation, demand, runoff, sewer networks, and
wastewater treatment), and points (for river junctions and
supply abstractions). The temporal resolution for the model is
hourly to better capture time sensitive processes such as water
consumption and runoff.

The two key data types used for the hourly forcing were river
inflows and precipitation, with an overlap period of 2004-04-08
to 2018-09-30. Daily flow data was sourced from the National
River Flow Archive (NRFA) (https://nrfa.ceh.ac.uk/, last accessed
2020-11-18) and hourly flow data for the Lee inflow and Thames
inflow was obtained from the Environment Agency at 15-min
resolution and processed to hourly. Incremental, Hogsmill and
Wandle inflows each had suitable gauging stations from the
NRFA to provide daily flows. These daily flows were downscaled
to hourly by scaling from the Lee or Thames hourly flow data.

A weather radar product was used to create hourly
precipitation forcing. The data is a radar composite from the
operational C-band network of the UK Met Office (Met Office,
2003). The original resolution of the radar product is 1 km at 5-
min intervals. The product has been post-processed and quality
controlled by incorporating rain gauge data (Harrison et al.,
2012). In the radar Quantitative Precipitation Estimation (QPE),
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FIGURE 4 | Schematic depicting nodes of the London model. Green nodes are separate wastewater zones, blue nodes are model inflows, gray is the water supply

abstractions, orange nodes are junctions, cyan nodes are minimum flow requirements and purple is the two combined wastewater zones. WWTP stands for

wastewater treatment plant. The dashed arrow in the Separate Wastewater Zone box (top left) represents infiltration into the foul sewer network. Water quality

sampling sites are indicated in bold red and can be matched with the sites in Figure 1.

a range of estimation errors still exist, related to ground clutter,
beam blocking, bright band, and conversion between reflectivity
and rain rate. However, for the study area, the radar QPE has
shown to give a good estimation of annual precipitation (Fairman
et al., 2015, Figure 5) and a more realistic diurnal pattern than
other observation datasets (Fosser et al., 2020). To obtain the
time series representing the areal rainfall observation in each
wastewater zone, we spatially averaged the radar measurement
covering the zone and then aggregated data to hourly. When
more than 50% of data shows missing or abnormal in an
averaging or aggregation, we performed a linear interpolation
between adjacent timesteps.

While pollutant concentration is produced as an output of
the end-use modelling, a method was required to determine
concentrations for inflow nodes and runoff generation, for which
we used the WIMS database (Environment Agency, 2020). This
database is a collection of Environment Agency water quality
samples between 2000 and 2020. In Figure 5, we summarise

the distribution of sample results for the pollutants used in our
study across all samples in the database (i.e., that cover all of
England), further sub-divided for each type of water that is
being sampled (referred to as “sample material”) within each
panel. The sample materials we depict here are: crude sewage,
treated effluent, river water, storm sewer overflow discharge,
and surface drainage. To create hourly forcing we performed
linear interpolation between sample values at sampling sites near
the river gauges that we used for streamflow. The frequency of
samples for inflow points ranged between weekly and monthly,
however the sampling periods did not generally cover the entire
simulation period (2004-2018). We have extrapolated outside
the sampled periods using the mean concentration for each
pollutant at a given site. Although rivers are relatively well
sampled in the database (with on average 850,000 measurements
per pollutant nationwide), surface drainage is not (with only
7,000 measurements). Due to this scarcity of samples, we set
surface drainage pollutant concentrations to the median values
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FIGURE 5 | The pollution content of every sample in the WIMS database,

sorted by sample material (i.e., each column) for the pollutants considered in

this study (each pollutant is a row). Green bars indicate the median value,

boxes the interquartile range (IQR) and whiskers indicate the range of

measurements that are ± IQR*1.5 within the upper and lower quartiles.

Measurements that fall outside of the whiskers are not shown to improve the

readability of plots. The average number of samples across the presented

pollutants is indicated for each sample material by “n”.

displayed in the fourth column of Figure 5. Because we envisage
this summary of pollutant concentrations by sample material
may be useful, we provide a table withmore detailed statistics and
a greater number of pollutant types in Supplemental Material 2.

As observed in previous studies (Almeida et al., 1999), in-
sewer biological and chemical processes mean that the pollutant

concentrations in household wastewater are significantly
different from the sewage that reaches wastewater treatment
plants. For example, the range of concentration in nitrate
from the end-use generator is between 3 and 5 mg/l, while the
concentrations in crude sewage seen in Figure 5 are closer to
0.6 mg/l (these values are similar to those reported in Almeida
et al., 1999). To avoid further increasing the model complexity,
we apply a linear correction factor on pollutant concentrations
in sewers to account for these processes. We also use the
concentration change between crude sewage and treated effluent
in Figure 5 to inform the percentage reduction of each pollutant
that takes place during the treatment process.

The ultimate purpose of the integrated modelling work in this
study was to model changes in the urban water cycle that may
occur under COVID-19, facilitated by the population presence
and end-use modelling of water consumption. No data yet exists
on changes in London’s population due to COVID-19, nor what
long lasting changes the pandemic may have had on it. Instead,
we create three “hypothetical” scenarios to capture different types
of impact:

• Work from home (WH). In this scenario, the number of
people who follow “employed” time use patterns is reduced
by 90%. Those people instead follow “non-employed” time use
patterns and no longer commute to their work destinations.

• Lockdown (LD). Same as work from home, but all activity-
states of “away from home” are set to “at home.”

• Population decrease (PD). The population of each zone is
reduced by 15%, reflecting the potential movement out of
London notionally reported in Wilson (2020). We model
population changes at this citywide scale due to a lack of
up-to-date information.

Modelling Evaluation
Evaluation of Integrated Modelling
As described in section Development of CityWat-
SemiDistributed Integrated Model, we calculate performance
metrics by comparing simulated pollutant concentrations against
water quality data. The WIMS database contains both in-river
samples and crude sewage samples at some of the WWTPs.
Because the precise time at which samples are taken is recorded
in WIMS, but the CWSD is run at an hourly timestep, we round
WIMS sample time to the nearest hour to compare samples
with model predictions. Following literature that compares
simulated water quality against relatively sparse pollutant
samples (Jackson-Blake et al., 2017), we evaluate the model using
percentage bias, Nash-Sutcliffe efficiency and Spearman rank.
We also provide plots that show simulation data against WIMS
samples to highlight the complexity of validating integrated
models of the urban water cycle.

River flow data from the WIMS archive is available for
2020, however it has a dramatically reduced sampling frequency;
around a tenth of the 2000-2019 average rate for the same period.
Disentangling so few samples from hydrological variability would
not be possible for an informative comparison. Thus, we instead
simulate these scenarios for the period of overlapping data (i.e.,
2004-2018). This longer simulation period will also reduce the
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impact of hydrological and climate variability on results, ensuring
that they are attributable to COVID-19 scenario choice only.
We base our discussion on simulations of mean relative change
in flows and pollutant concentrations for model arcs under
each scenario.

Evaluation of End-Use Modelling
Because the end-use model presented in this study is a separate
contribution, we provide an application to evaluate it. This
application uses hourly metered household data from both before
and during the COVID-19 pandemic. We test the end-use model
in 11 separate supply distribution zones in a combination of
rural villages and towns in England, assuming that a model
evaluation in these areas can be representative across the UK.
The population of each zone ranges from 200 to 9,000. The
metre data consists of >400 million automated hourly readings.
A basic pre-processing step is performed to remove readings
that are not reflective of the household consumption patterns
that this study aims to capture (i.e., zero variability in readings,
zero consumption over record, measurements that are >10x
a household’s median consumption). We also remove non-
domestic properties since the end-use model is intended for
household water consumption only. Because this metre data is
proprietry, we cannot share further information about it.

We run the end-use model using both normal settings and the
“work from home” scenario described. From the model outputs
we compare the mean per-capita diurnal consumption profile for
each zone against metre data. We compare against the diurnal
profile because the end-use model is stochastic, and so it would
not be logical to compare against individual metre readings. We
measure the performance using NSE values.

RESULTS

Modelling Evaluation
In this section we provide a relevant selection of simulation
results against available data. Integrated modelling evaluation
results are presented in full and examined in detail in
Appendix 1, where we compare the model simulations of water
quality over the historic period with in-river water quality
samples. Demand modelling evaluation results are presented
in full in Appendix 2, where we compare end-use modelling
generated demand profiles with metered data both before and
during the COVID-19 pandemic.

Figure 6 demonstrates the mean percentage bias between
CWSD simulated and WIMS sampled water quality data at
wastewater effluent sampling sites and in-river sampling sites.
We present percentage bias here because we examine the mean

FIGURE 6 | Percentage bias metric between simulated and sampled water quality values for treated effluent arcs (left side), in-river arcs for tributaries to the River

Thames (central) and in-river arcs for the River Thames (right side). Cells that have been left blank have no recorded water quality samples. Values with a percent bias

greater than ± 100% have been set to 100 to improve the visual interpretation of the plot. Locations for arcs can be matched to Figures 1, 4.
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change in pollutant concentrations between the baseline and
COVID-19 scenarios in section Analysis of London’s Water
System Under COVID-19, however NSE and SR are presented
in Table A1, Appendix 1. In general Figure 6 shows better
predictions in the tributaries and more upstream locations
in the River Thames, while the two most downstream sites
(two rightmost columns) are the hardest locations to predict.
Suspended solids (top row) is overpredicted in tributaries and
underpredicted in all sites in the River Thames except the most
upstream. Phosphates, nitrites, and nitrates are overpredicted in
treated effluent but slightly underpredicted in rivers. Ammonia
is generally overpredicted at treatment plants, except for
Longreach and Crossness where it is underpredicted (the WIMS
samples for effluent at these plants has significantly higher
ammonia concentrations than others). Meanwhile, phosphorus
is underpredicted at all treatment plants except Deephams and
Hogsmill (again, different plants produce significantly different
concentrations of phosphorus in the WIMS sample database but
not in CWSD).

In Appendix 1, Figure A1 we plot a selection of simulated
data and compare against in-river water quality samples to
highlight difficulties in integrated modelling. Figure A1A shows
phosphate concentrations in a tributary, highlighting that,
although projections look qualitatively accurate, performance
metrics do not reflect this due to the high intra-day variability
in concentrations. Figure A1B plots suspended solids
concentrations at a water treatment plant, demonstrating
that the variability of samples is outside what is achievable by the
model, indicating that the model is missing some key process(es),
presumably in urban runoff or treatment plant representation.
Chemical oxygen demand in a tributary, Figure A1C, shows
how sampled “peaks” can be delayed from the simulated peaks,
thus highlighting the impact of assuming instantaneous water
travel-time in the model. Phosphate concentration at a treatment
plant, Figure A1D, shows a consistent bias in simulations that
is likely caused by parameter choices, however it is not clear
whether parameters for phosphate influent levels or in treatment
plant processes (or a combination) are responsible for the bias.

To characterise the performance of the demand modelling
results, we present a plot (Figure 7) that shows the simulated
hourly diurnal consumption profile (solid lines) in comparison
to the metered consumption profile (dashed lines) for both
weekdays (cyan) and weekends (magenta) for a metered area.
This metered area was selected for display because it was themost
populous of the available zones (with around 10,000 people). The
modelling results show good agreement in general, with a NSE of
0.94 for weekdays and 0.89 for weekends. We see a “too-sharp”
morning peak on weekdays, and a “too-low” morning peak on
weekends – these deficiencies are common to all zones. As we
demonstrate in Table A2, the method performs effectively for all
metered areas and also during the COVID-19 lockdown.

Analysis of London’s Water System Under
COVID-19
Changes in Population and Water Consumption
We show the wastewater zone scale changes to daily population
that result from a 90% decrease in commuting (i.e., the

population shift in both the lockdown and work from home
scenarios) in Figure 8A. The central London wastewater zone
(Beckton) experiences a 23% decrease in average weekday
population and 10% decrease in average weekend population.
This is a result of nearly 1 million commuters no longer travelling
to and working in the area. In all other zones the reduction in
commuting increases the population by between 4 and 10% for
weekdays and 1–3% for weekends.

Figure 8B shows changes in household water consumption
that are being driven by two key mechanisms: changing
population and time-use dynamics. The changing population
impact is apparent in the Beckton zone, with its reduced
wastewater production on weekdays. However, the reduction
in wastewater is smaller than the reduction in population
because the only significant water consumption activity at work
is toilet flushing. For example, in the Beckton wastewater
zone 12% of daily water consumption comes from workplace
toilet flushing. Because 50% of the workplace population in
Beckton are commuting from outside of the zone, a 90%
decrease in office working will reduce total consumption by
only 5%. Meanwhile, the time-use dynamics mechanisms are
evident in a weekend-weekday comparison; observing that most
zones have a larger increase in population on weekdays than
weekends, but an opposite pattern with respect to wastewater
flows. This occurs because people typically spend more time
away from home on weekends than weekdays under normal
conditions, leading to a larger relative in increase time spent
at home on weekends due to lockdown. This greater amount
of time spent at home translates into more time to perform
water consuming activities and thus a larger relative impact
of lockdown on weekends than weekdays that outweighs the
population change pattern.

To provide a more detailed insight, we plot the change in
diurnal water consumption profiles under lockdown, working
from home and the population decrease scenarios in Figure 9.
In Figures 9A,B we show the changes in the central London
wastewater zone (Beckton) because it is the most populous
zone containing London’s central business districts. Due to the
reduction in work-place toilet flushing from fewer commuters,
the work from home scenario experiences a significant decrease
in consumption during working hours of weekdays compared to
baseline. The profile looks significantly different in the lockdown
scenario because there are minimal work or other house-leaving
activities to introduce variability in water consumption, resulting
in the relatively constant consumption throughout the day. As
expected, the population decrease scenario translates the profile
to a reduced level of water use. To contrast against central
London, we plot a more suburban wastewater zone (Hogsmill)
in Figures 9C,D. This zone follows similar trends except for the
work from home scenario in Figure 9C, where there is a slight
increase during working hours rather than the large decrease that
is seen in Beckton.

Changes in Water Quality Throughout Integrated

Water System
We have investigated changes at five points throughout the
urban water cycle, including household waste, treated effluent,
untreated sewage spills, and in-river concentrations.
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In Figure 10 we plot the percentage change between
pollutants and flow for each wastewater zone’s household waste
for each scenario. The most significant differences are in the
Beckton wastewater zone. This can largely be attributed to the
significant decrease in effluent that is made up by toilet flushing
from the “missing” commuter population (i.e., the 20% daily
population reduction seen in Figure 8). As noted in the previous
section, this reduction in flushing does not significantly decrease
the total effluent. However, because flushing is the primary
source of ammonia and solids, we see a significant decrease
in these concentrations. We also see an increase in nitrate
and nitrite concentrations, which is because flushing has low
concentrations of these pollutants and as flushing decreases it
no longer dilutes the other household activities. Other zones
have far smaller changes because their daily population changes
due to commuting are proportionally smaller. In general, there
is a slight increase in flow during lockdown not seen during
the work from home scenario – this is because people spend
significantly more time at home and have a greater chance to
perform water consuming activities. The population decrease
scenario expectedly decreases flows in each zone, albeit not
uniformly because commuter patterns remain unchanged in this
scenario. Increases in nitrite concentration in zones other than
Beckton under the population decrease scenario are seen because
the primary source of nitrite is from kitchen taps, which are more
strongly tied to the number of households than total population.
Thus, population decrease reduces other water consumption
activities more quickly than kitchen tap usage.

To understand how these changes in effluent and pollutant
concentration propagate through the water cycle, we show
changes to treated effluent from wastewater treatment works in
Supplementary Figure 1 in Supplementary Material 3. We do
not present this in the main text because the patterns shown
in Supplementary Figure 1 are similar to Figure 10, with only
small changes resulting from surface runoff that is eventually
treated and differences in how effectively different pollutants can
be treated. The magnitude of differences for flows in Figure 10

are smaller than Supplementary Figure 1 due to surface runoff.
The magnitude of differences for pollutants in Figure 10 are
generally the same as in Supplementary Figure 1, except for the
Beckton wastewater zone, which treats a greater proportion of
rainfall than the other zones.

When treatment plants and their stormwater storage or
combined sewer systems are at capacity, they are forced to spill
untreated sewage directly into rivers. The changes during the
COVID-19 scenarios are presented in Supplementary Figure 2

in Supplementary Material 3. We present this in the
supplementary material because, besides those described below,
there are minimal differences between different wastewater
zones. We find minimal changes in the flow of these spills
because these events are primarily driven by high precipitation
and so population changes have little impact. However,
household wastewater is still a primary source of some pollutants
in these spills and so changes in household water consumption
will impact pollutant concentrations. In the Beckton wastewater
zone we find decreasing concentrations of suspended solids,
phosphorus, phosphate, and ammonia for all scenarios due to the

decreased population.Meanwhile, the other wastewater zones see
decreases in concentration for the population decrease scenario
and increases for the work from home and lockdown scenarios,
again reflecting the changes in population. Nitrates, nitrites, and
COD do not significantly change for any zones/scenarios because
these pollutants are not significantly lower in surface runoff than
they are in household waste.

Finally, in Figure 11 we show the changes in river quality,
since ensuring a high level of environmental performance is
one of the key motivations for integrated water cycle modelling.
Changes, in general, are minimal, reflecting the significant role
of the natural environment in regulating ecosystem services
through the dilution capacity of rivers. Ammonia and phosphate
are the variables most sensitive to the different scenarios, with
nitrite to a lesser extent. This is because the concentrations
of these pollutants are typically very low in natural rivers,
with wastewater effluent being the main source of pollution.
We can observe this in Figure 5, noting that these variables
experience the largest difference between concentration in
“treated effluent” and in “river water.” In Figure 11 we also see
that the smaller tributaries to the River Thames (River Lee and
River Wandle) are the most sensitive to the lockdown scenario,
due to having less water to dilute the additional pollutants, with
potentially significant implications for quality of environment for
local residents.

DISCUSSION

This study aimed to provide three key contributions; the first
was expanding an existing integrated urban water cycle model
to provide a more detailed spatial perspective. Figures 10,
11 and Supplementary Figures 1, 2 demonstrate how such a
model can trace pollutants through the water cycle. The spatial
perspective provides a range of benefits, for example quantifying
the vulnerability of smaller rivers to changes and highlighting
the importance of dilution for in-river pollution management
(Figure 11). The in-river modelling capabilities highlighted how
pollutants that increased most in the discharges from households
(nitrites and nitrates in Figure 10) were not necessarily those
that increased the most in rivers (ammonia and phosphate in
Figure 11). This is due to the relatively high concentrations of
nitrates/nitrites and low concentrations of ammonia/phosphate
that occur naturally in rivers. These results could be particularly
relevant for environmental regulators, water companies and
NGOs, who could use the information to design targeted
mitigation measures to deal with either local pollution or specific
critical pollutants.

The second contribution was to create an end-use household
consumption model that could easily be applied at large scales to
any location in the UK by linking with census data and a national
time use survey. Table A2 and Figure 7 demonstrated that the
presented method worked effectively both before and during the
COVID-19 period. Figure 8 indicated how, despite the dramatic
changes in population that resulted from a lockdown scenario,
changes in actual household consumption for London were not
as substantial as might be anticipated and were driven not just
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by spatial redistribution of population but also by changes in
time-use dynamics imposed by lockdown. This finding was only
possible with an end-use model that separates appliance usage
from households and workplaces. We believe this shows how an
over-focus on statistical and data-driven approaches present in
the demand forecasting literature (e.g., Donkor et al., 2014) may

FIGURE 7 | The hourly per capita diurnal water consumption profile for the

most populous metered area in the survey. (Solid lines) Average water

consumption for a given hour from the generator on weekdays (cyan) and

weekends (magenta). (Dashed lines) Average water consumption for a given

hour from the metre survey on weekdays (cyan) and weekends (magenta).

risk leading planners astray by missing the fundamental drivers
of water demand. Future work may seek to inform COVID-19
scenarios by state-of-the-art in population-presence modelling,
such as using mobile network traffic data (Khodabandelou
et al., 2016), or to account for seasonal climatic sensitivities
by explicit representations of outdoor spaces (Fox et al., 2009).
Meanwhile, further developments in modelling non-household
water demand (e.g., from industry) would be required for a more
“complete” representation of urban water demand (Melville-
Shreeve et al., 2021).

The ultimate goal of this study was to understand how water
quality in London’s urban water cycle may be changing due
to mobility restrictions under emergency circumstances, such
as COVID-19. Figure 9 shows how a lockdown scenario may
cause sustained demand throughout the day and result in higher
overall demand due to more time to perform water consuming
activities. Figure 10 and Supplementary Figure 1 show that this
will change the concentration of pollutants in places where
commuters reside and where they work. These changes are
not necessarily obvious without end-use modelling, for example
Figure 10 shows that the decrease in toilet flushing will decrease
ammonia and suspended solids concentrations but increase
nitrate and nitrate concentrations up to 10%. The overall impact
on in-river quality (Figure 11) shows a small but significant rise
in ammonia and phosphate in the lockdown scenario on the Lee
and Wandle (tributaries of the River Thames). Meanwhile, the
population decrease scenario, which may be closer to what is
happening based on anecdotal information, resulted in almost

FIGURE 8 | Population change during lockdown (A) and household wastewater flow change (B) on weekdays and weekends. Changes are the relative difference

between the baseline scenario and lockdown scenario. Zero change is marked by the dashed red line.
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FIGURE 9 | Change in daily consumption profile in the Beckton wastewater zone (A,B), and Hogsmill wastewater zone (C,D), for both weekdays (A,C) and

weekends (B,D). Blue is baseline, orange is lockdown (LD), green is the population decrease (PD) scenario, red is work from home (WH).

entirely positive impacts on in-river quality. These results are
in line with other COVID-19 impact studies that generally
report positive impacts on water quality (Braga et al., 2020;
Hallema et al., 2020). A move towards a greater percentage
of people working from home, which may be a longer-term
outcome of the crisis, appears to have the least impact on
London’s rivers of all three investigated scenarios. Although
this seems broadly positive, the authors caution that a possible
resulting migration away from cities is likely to stress water
infrastructures and potentially rivers by swelling the population
of areas that are unprepared to cope with greater amounts of
household consumption.

It is clear that the performance metrics presented in Figure 6

and Appendix 1 could have been improved through calibration

of parameters. For example, the model underestimates the COD
reduction that occurs at Deephams wastewater treatment plant
(Figure A1C), while it overestimates the phosphates produced
in the Longreach wastewater catchment (Figure A1D). However,
we believe that changing these parameters without a basis
for doing so runs the risk of creating seemingly accurate
predictions that do not reflect reality (Kirchner, 2006). For
example, any parametric correction that improves predictions
seen in Figure A1B is likely to be artificial, and instead should
be addressed by a more sophisticated representation of the
land runoff and wastewater treatment processes. The model’s
application for detailed impact assessment or design is limited
by sparcity of data available for evaluation, which is a common
issue in integrated water cycle modelling (Belete et al., 2017).
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FIGURE 10 | Map depicting percentage changes in household wastewater flow and pollutant concentration (these are the bars). LD stands for the lockdown

scenario, PD stands for the population decrease scenario and WH stands for the work from home scenario.

Thus, we have ensured results are interpreted at a high-level
and are focused on the relative differences between scenarios.
Having more accurate and spatially distributed data, in this case

on water demand and the river water quality, would contribute
to a stronger evaluation of the model simulations. This makes
the dramatic reduction in water quality sampling observed in the
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FIGURE 11 | Map depicting percentage changes in river flow and pollutant concentration (these are the bars). LD stands for the lockdown scenario, PD stands for the

population decrease scenario and WH stands for the work from home scenario.
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WIMS database (a 90 percent reduction at sampling sites around
England) all the more worrying; at times when the dynamics
of the urban water cycle are most likely to be changing, we are
collecting the fewest samples.

The future of integrated modelling of the urban water cycle
lies in identifying where and why predictions are poor, and then
finding ways to improve them and quantify their accuracy. Use of
detailed physical models may provide insight about sub-systems’
(e.g., wastewater network) behaviours, which can then be used
to improve the representation of processes in an integrated
model (Thrysøe et al., 2019). Accurate representations of human
processes (e.g., river abstractions) will require working with
stakeholders, including water companies, local authorities and
citizens, to improve understanding and create better solutions
for urban water management. Finally, as demonstrated by
parsimonious water quality models performing similarly to
more complex ones (Jackson-Blake et al., 2017), the question
remains what the optimal balance between themodel complexity,
computational efficiency and accuracy is to support integrated
water planning decisions.

CONCLUDING REMARKS

This study has demonstrated that integrated modelling of the
urban water cycle in a spatially explicit manner is possible
and necessary to provide evidence on the implications of
unprecedented societal disruptions such as COVID-19. We find
that the tributaries to the River Thames are more vulnerable than
the Thames itself to potential changes that may have occurred
under the COVID-19 anti-contagion measures, highlighting the
important role that rivers play in diluting effluent. While more
work is needed to ensure the accuracy of CWSD so that results
can be used to inform operational decisions, it is clear that
integrated modelling has great potential to profoundly change
the way we plan and manage the urban water cycle. Such a
tool may facilitate more seamless management of pollutants to
better coordinate between water companies and environmental
regulators, enabling them to “optimise for river quality”
and determine the “hotspots” where placement monitoring
equipment might provide the best value for information.
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