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Featured Application: The work provides important data and information relating to future en-

ergy storage options and in particular the role CAES might play in load balancing and the inte-

gration of renewable energy technologies into electricity grids. 

Abstract: The increasing integration of large-scale electricity generation from renewable energy 

sources in the grid requires support through cheap, reliable, and accessible bulk energy storage 

technologies, delivering large amounts of electricity both quickly and over extended periods. Com-

pressed air energy storage (CAES) represents such a storage option, with three commercial facilities 

using salt caverns for storage operational in Germany, the US, and Canada, with CAES now being 

actively considered in many countries. Massively bedded halite deposits exist in the UK and already 

host, or are considered for, solution-mined underground gas storage (UGS) caverns. We have as-

sessed those with proven UGS potential for CAES purposes, using a tool developed during the 

EPSRC-funded IMAGES project, equations for which were validated using operational data from 

the Huntorf CAES plant. From a calculated total theoretical ‘static’ (one-fill) storage capacity ex-

ceeding that of UK electricity demand of ≈300 TWh in 2018, filtering of results suggests a minimum 

of several tens of TWh exergy storage in salt caverns, which when co-located with renewable energy 

sources, or connected to the grid for off-peak electricity, offers significant storage contributions to 

support the UK electricity grid and decarbonisation efforts. 
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1. Introduction 

Current energy systems, relying primarily on fossil fuels (coal, oil, natural gas), pro-

duce carbon and greenhouse gases (C&GHG), contributing to the problem of global cli-

mate change. There is therefore, an increasing need to reduce C&GHG emissions. From 

initial targets of 80% reductions by 2050, in June 2019, the UK Government set a revised 

target of net zero emissions by 2050 [1], which was followed by the launch of the EU’s 

‘European Green Deal’ in December 2019 [2]. These aims will require significant effort 

across many industrial sectors that represent large emission sources, including electrical 

power generation. 

Worldwide, transitioning from fossil fuel to cleaner, but intermittent, unpredictable, 

and inherently more variable mixed renewable energy sources (wind-power and solar 
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photovoltaic [PV] plants) for electricity generation is enabling GHG emission reductions. 

However, if naturally variable renewable electricity sources comprise high percentages 

(>80%) of the generated supply, the daily and seasonal variations in generation and ca-

pacity places greater challenges on power networks to meet transmission and distribution 

demands [3]. Alongside seasonal variation in electricity demand, issues then arise over 

security of supply, as power systems require balancing at various scales, ranging from 

second and minute reserves, to hourly, daily, weekly, and inter-seasonal (monthly) stor-

age to meet and offset variability [3,4]. Therefore, patterns of demand not following such 

variations in electricity generation from renewable sources require fast-ramping, back-up 

generation, supported by reliable forecasting and, importantly, increased bulk, grid-scale 

storage capacity [3,4]. 

Electrical energy storage (EES) technologies are recognised as underpinning technol-

ogies to meeting these challenges, but they vary greatly in capacity, role, and costs. Some 

technologies provide short-term, small-scale energy storage options (e.g., batteries), 

whereas others represent load-levelling and longer-term utility scale and grid support 

through chemical and mechanical bulk energy storage technologies. The two largest and 

only current commercial, grid-scale, mechanical bulk energy storage technologies capable 

of providing fast ramp rates, good part load, and long duration are pumped hydroelectric 

storage (PHS) and compressed air energy storage (CAES) [5]. They are less economic or 

suitable as inter-seasonal storage options to balance longer term, seasonal fluctuations, or 

long-lasting wind shortages due to low volumetric energy storage densities (≈0.7 and 2.40 

kWh/m3, respectively; see below) [6]. 

Despite extensive investigation and research into CAES technology from the 1960s 

[7,8], worldwide, commercially operational grid-scale CAES capacity is provided by just 

three salt cavern-hosted facilities: the conventional (diabatic) Huntorf, Germany (1978, 

321-MW) [9], and McIntosh, USA (1991, 110-MW) CAES plants [7,8,10], and in November 

2019, the small (1.75MW/7MWh+) plant at Goderich, Canada, which became the world’s 

first commercial adiabatic CAES plant [11]. Sustained rapid growth in wind power and 

making it dispatchable has renewed interest in CAES [5,12]. Despite significant research 

and some extended tests [13,14], no porous rock CAES plants exist, which is due mainly 

to economic and geological factors that, prior to development as a realistic storage option 

at scale, must be overcome [3,12]. Nevertheless, offshore porous rock storage is advocated 

as having inter-seasonal potential for the UK [15]. 

Particularly pertinent, following the UK Government’s October 2020 announced in-

tention of becoming the world leader in green energy involving mainly increased offshore 

wind farm generation [16], we explore the prospects and possible capacity of salt caverns 

for UK CAES exergy storage in selected onshore and offshore massively bedded halite 

deposits (Figure 1). These offer large energy storage volumes to underpin affordable and 

energy-secured decarbonisation and the development of low-carbon energy system de-

sign, policy, and regulations. The method proposed here will also be applicable to other 

countries with storage potential identified in salt caverns, particularly in Eurasia, North 

and South America, and Sub-Saharan Africa [17]. 

2. Mechanical, Bulk Electrical Energy Storage (EES), and the Potential of CAES 

PHS is the most mature, proven bulk energy storage technology, whereby energy is 

stored in the form of the gravitational potential energy of water pumped from a lower to 

a higher elevation reservoir. Pumps are typically run by low-cost surplus, off-peak elec-

trical power, and during periods of high/peak electrical demand, release of the stored wa-

ter through turbines generates electric power. Used by electric power systems for load 

balancing, it reliably provides a large-scale and fast-responding storage option, with a 

current worldwide grid-connected capacity of ≈188 GW and representing ≈96% of the total 

global energy storage capability [18]. Significant potential for hydro-storage capacity may 

still exist in many other areas around the world [19]; however, ultimate development and 

capacity for PHS in most developed countries, including the UK, is considered limited 



Appl. Sci. 2021, 11, 4728 3 of 23 
 

 

and constrained by social, environmental, availability, and geographical considerations 

[5,20,21]. 

CAES, with a modest surface footprint and greater siting flexibility relative to PHS, 

represents a low-cost technology that is capable of a power output of over 100 MW. CAES 

is based on large quantities of electrical energy stored as high-pressure, compressed air in 

an underground storage ‘reservoir’ (currently salt caverns). During peak demand, air is 

withdrawn and used in the generation of electricity, and as with PHS, the release of power 

can be very quick. Worldwide, CAES capacity is currently around 431 MW [18], and CAES 

is viewed increasingly as offering bulk storage potential and a solution to levelling inter-

mittent renewables generation (wind-power and solar photovoltaic [PV] plants), and ca-

pable of maintaining system balance (S1, Tables S1–S6) [3,5]. CAES technology has ad-

vantages over PHS, including a lower visible impact on the landscape and a greater scope 

for building CAES facilities nearer the centres of wind-power production, especially in 

parts of Europe and regions of the USA. CAES facilities in salt caverns already success-

fully provide minutes to hours reserve at Huntorf (Germany) and balancing out grid loads 

over a weekly cycle at McIntosh in the USA [4,9]. However, significant barriers to imple-

menting large-scale CAES plants lie in identifying appropriate geological storage options 

and thus geographical locations, low round-trip efficiencies of CAES and the low volu-

metric energy density of compressed air (2.4 kWh/m3) [6,22,23]. 

Energy in compressed air caverns is stored in the form of physical (mechanical) po-

tential energy, whereas energy in compressed gases is chemical storage (chemical energy 

bonds). Consequently, the volumetric energy density of air is several orders of magnitude 

lower than that of gases such as hydrogen (≈170 kWh/m3) or natural gas (≈1100 kWh/m3) 

[4].Accordingly, to make CAES economically viable requires very large volumes of air, 

which can only be achieved through high pressures and large volume storages. Geological 

storages at depth offer such storage conditions, with typical gas storage salt caverns, in 

particular, offering rapid cycling and high flow rates to provide ideal storage options. 

However, the lower volumetric energy density of air means that CAES plants are less 

suitable for long-term applications and storage because greater storage volume (increased 

cavern numbers) is required, increasing costs compared to gases with higher value. 

Whilst geometrical volumes of compressed air caverns are comparable to those of 

conventional natural gas storage caverns, CAES operational pressure ranges (and thus 

storage volumes) will be considerably lower than for gas storage. This is because of the 

much higher cyclic pressure frequency rate together the with current technological devel-

opment of compressors, heat storages, and turbines, meaning the operational pressures 

are also lower, being well below 100 bar [4]. Thus, commercial, central, grid-scale CAES 

plants will require deep underground (geological) storages such as those already used for 

natural gas, hydrogen, and the rare examples of already operational CAES plants. 

Conventional (diabatic) CAES technology is based upon traditional gas-turbine 

plants requiring fossil fuel combustion and thus associated emissions during electricity 

generation, making it less attractive when compared with other EES technologies [24]. 

Nevertheless, the fitting of recuperators and advances in CAES technologies, particularly 

if advanced adiabatic or isothermal CAES technologies requiring no external source of 

energy to heat the withdrawn air eventually prove feasible, together with linking to re-

newables generation (including offshore wind), all offer the future prospect of improved 

cycle efficiencies, with the reduction and possibly elimination of emissions. 

3. CAES-Geological Storage Options, Developments, and Restrictions 

Bulk geological storage options and the technologies behind current and future elec-

trical energy storages for compressed air are derived largely from tried and tested storage 

technologies developed for the underground storage of large volumes of high-pressure 

natural gas [4]. Most common geological options are porous rock formations (depleted 

gas fields and aquifers), or man-made (solution-mined) salt caverns. Where such options 
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are not available conventionally mined, non-salt rock caverns and lined rock caverns rep-

resent alternatives, but they are significantly more expensive. These same options apply 

to potential CAES development (S1 and Tables S1–S6). 

As alluded to above, CAES has been considered for many decades [7,8] but to date, 

only three commercially operational CAES plants exist, at Huntorf [9], McIntosh [10], and 

most recently at Goderich [11]. Between 2012 and 2016, a small 2 MW isothermal CAES 

demonstration plant using a reconditioned former liquid hydrocarbon storage salt cavern 

and linked to wind generation, operated at Gaines, Texas, although it is not believed to be 

currently operating [25,26]. Salt caverns provide important high flexibility with respect to 

turnover frequency, as the open cavity enables very high flow rates permitting high injec-

tion/withdrawal rates required for rapid cycle storages. They also offer ideal conditions 

for compressed air storages because unlike porous reservoirs, the rock salt is inert to oxy-

gen [4]. Thus solution-mined salt caverns are a likely first choice for CAES in the UK, and 

for CAES proposals linked with renewables, they are the overwhelming majority (S1, Ta-

ble S1). 

Many regions of the world lack suitable salt deposits, and so, the suitability of porous 

rock storage has long been and remains under investigation [12–14]. However, serious 

doubts exist over the likely development of porous rock storage (principally aquifers), 

with no CAES plants having operated commercially and only a few small test facilities 

having been constructed, with variable results (S1, Tables S2 and S3). The King Island 

project in California demonstrated the technical feasibility of using an abandoned natural 

gas reservoir for a 300 MW, 10 h CAES facility, with the reservoir capable of accommo-

dating the flow rates and pressures necessary for the operation of the facility. Originally 

planned for opening around 2020, its progress appears stalled due to the high cost of a 

CAES facility relative to alternative energy storage technologies [27]. All test facilities en-

countered problems with one of more of the following: wells and economics, pressure 

anomalies, variations in reservoir quality and performance, formation of the ‘air bubble’ 

in the storage reservoir, and reaction between the oxygen of the injected air and minerals 

in the reservoir rock leading to oxygen depletion and/or potential for bacterial/micro-or-

ganism growth and porosity reduction. Proposed aquifer storage potential for the UK 

would be offshore [15], thereby increasing costs, which currently thus seems less likely 

than salt cavern storage. 

Depleted field storages appear even more unlikely with a potential hazard posed by 

residual hydrocarbons in the depleted gas formation. Introducing compressed air pre-

sents the risk of ignition and explosion, both underground and during discharge [28].  

Additionally, and although more expensive options, gas storages have and still op-

erate in abandoned mines and unlined or lined, conventionally mined rock storages. Sim-

ilar constructions could host CAES in regions lacking cheaper geological alternatives [7,8] 

and have been considered (S1, Tables S4–S6). Various CAES test facilities have operated 

briefly in Japan and Korea, and long-standing plans for CAES in a former limestone mine 

at Norton, Ohio were finally shelved in 2013 [29]. Small tests for adiabatic CAES are cur-

rently ongoing in an unlined Swiss tunnel [30] and a lined old mine working in Austria 

[31]. Whilst under consideration in, for example, USA, Mongolia, and Australia, such stor-

ages may be considered unlikely in the UK. 

Non-geological CAES schemes offering storages of small volume. Though not con-

sidered here they include aboveground, or shallowly buried steel vessels or pipes [32,33], 

energy bags secured to the seabed [34], wind turbines linked with energy storage in sup-

porting legs [35], or those in which power is converted directly from the rotor by means 

of gas/air compression within the rotor blades [36]. 

4. Materials, Exergy Storage Tool, and Methodology 

This section outlines briefly the UK bedded halites, UGS sites together with the de-

velopment of the model and the derivation of estimates for exergy storage (refer Figure 

2), further details of which are provided in S1–S3. 
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4.1. Massively Bedded UK Halite Deposits Available 

Important massively bedded halite deposits are developed in the UK and have been 

associated with, or identified as potential hosts for, large solution-mined natural gas stor-

age caverns (Figure 1; S2, Table S1). The halite deposits considered extensive and thick 

enough for cavern construction occur in four main basins (with ages) [37]: 

 The Northwich Halite Member of Cheshire Basin, onshore north-central England 

(Triassic) 

 The Preesall Halite Member of the offshore East Irish Sea (EIS) (Triassic) 

 The Dorset Halite Member of Wessex Basin, on- and extending offshore southern 

England (Triassic) 

 The Fordon Evaporite Formation, on- and extending offshore Eastern England (Up-

per Permian, Zechstein [Z2]). 

These deposits offer important alternative energy storage capacity, and this study 

has assessed their potential for large-scale exergy storage through CAES. Differing from 

energy that is always conserved, exergy which takes its basis from the second law of ther-

modynamics, measures the loss of energy quality in every energy transformation process. 

Exergy tends to be destroyed during any conversion or storage processes, and therefore, 

exergy storage capacity quantifies the maximum useful work of the stored air that could 

be used in subsequent power generation. Exergy analysis is employed in applications 

with electricity output and power generation processes, and an exergy analysis tool was 

developed to estimate the exergy losses in energy conversions associated with a salt cav-

ern-based CAES system. This permitted an estimate of the exergy storage capacity of the 

compressed air stored in a salt cavern for generating electricity during the discharging 

period [38]. Compared to conventional static thermodynamic exergy analysis, our devel-

oped tool also considers time-dependent factors that affect the overall electrical efficiency 

of a CAES system, such as dynamic internal air responses in the cavern and the coupled 

thermal effects of surrounding rocks [S3]. 

The Triassic and Permian bedded halite deposits in Northern Ireland have not been 

included here, as they are poorly defined and largely identified for UGS purposes [37]. 

Equally, the available Preesall Halite in NW England has also been identified for UGS and 

is not included here [37,39]. The Zechstein halite beds extend offshore from eastern Eng-

land into the Southern North Sea, where due to halokinesis, they may attain great thick-

nesses. For various reasons, they have not been included in this study: they occur often 

far offshore and show significant changes in thickness over short distances, with some salt 

structures rising to shallow depths, even approaching close to sea bed, and are often in 

association with existing producing gasfields [40]. However, they should not be ruled out 

as CAES hosts, perhaps linked to the growing number of offshore windfarms. If existing 

hydrocarbon infrastructure (platforms, pipeline and cable routes, etc.) could be re-pur-

posed, development costs, which are high for proposed gas storage caverns (A. Stacey, 

pers comm.), might be reduced significantly. 
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Figure 1. General outcrop map of the main halite basins studied onshore England and offshore 

East Irish Sea. Note area indicated in the East Irish Sea is that of the Triassic Preesall Halite at 

depths investigated (500–1500 m). Refer also S2, Table S1 for details on UGS facilities. 

4.2. Exergy Storage Terminology—The Gas Storage Experience 

The technology behind current and future storages for electrical energy based on 

compressed air, H2, or SNG storages is derived largely from tried and tested storage tech-

nologies developed for the storage of natural gas [4]. A terminology has emerged to define 

operations and refer to the volumes of gas in an underground gas storage facility, which 

we adopt here when defining the exergy stored and explain below. 

Underground gas storages generally operate by compressing the storage gas during 

injection and decompressing the gas again during withdrawal. The total gas storage ca-

pacity or volume is the maximum volume of natural gas that can be stored at the storage 

facility. This is governed by several physical factors such as the reservoir volume, engi-

neering, and operational procedures including minimum and maximum pressure ranges 

and injection rates, which are determined from rock mechanical studies. The total storage 

volume comprises two elements: 

 ‘Working gas’ volume, which represents the available gas that can be used between 

the maximum and the minimum operating storage pressures 

 ‘Cushion gas’ volume, representing that below minimum operating pressure that is 

not available and which must remain permanently in the storage to provide the re-

quired minimum pressure to maintain the geomechanical stability of the storage. In 
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the case of porous rock storage, it also provides some of the drive, but it is irretrieva-

ble, being effectively lost in the porosity. 

The working gas volume represents the ‘static’, one-fill gas capacity and does not 

reflect multiple filling cycles. Thus, it is representative of a seasonal storage, similar to 

most traditional aquifer and depleted field storages. Of course, gas storages may be cycled 

many times during a year, which gives rise to what is described as a ‘dynamic working 

gas volume’ [39], which is greater than the static one-fill working gas volume. 

Thus, exergy storage estimates are here referred to as the ‘working exergy’ (that avail-

able for work) and the ‘cushion exergy’ (that portion that must remain in the salt cav-

ern/storage). The exergy tool was set up to calculate the static ‘working exergy’ (available) 

volume (see below). After introducing the static one fill ‘working exergy’ storage, we de-

scribe how, through a series of filters, attempts are made to derive realistic static ‘working 

exergy’ storage estimates from the total theoretical storage calculated (Figures 2 and 3a,b). 

These are based on cavern sizes and percentages of the total number of caverns, including 

that based upon the number of gas storage caverns in any particular basin (Figures 4–8). 

 

Figure 2. Workflow for the estimation of exergy storage provided by solution-mined salt caverns in the main halite-bearing 

basins of the UK. 
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Figure 3. Plots of theoretical ‘static’ (one-fill) exergy storage estimates for the three thermal models for all potentially 

available caverns over the two depth ranges for all caverns with the basins studied. Parts (a,b) show graphs for combined 

totals from each basin for the two depth ranges, together with the estimated stored exergy to work for each thermal model. 

Parts (c,d) show graphs for the estimated stored exergy to work for each thermal model based upon percentages related 

to UGS numbers of the combined totals from each basin for the two depth ranges. Parts (e,f) show graphs breaking storage 

down by basin for the three thermal models, including stored exergy to work estimate for the CHT model also shown, 

with outlines data ranges being those pertinent to CHT model storage data presented in Figure 4. Parts (g,h) show graphs 

for estimates based upon a percentage related to the number of operation and/or planned UGS caverns in the basins. 
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Figure 4. Plots of ‘static’ (one-fill) exergy storage estimates for the preferred CHT model, over the two depth ranges and 

cavern sizes (100 m+ and 100–150 m height) considered for CAES. Graphs for all potentially available caverns, 1% of 

available caverns and estimates based upon a percentage related to the number of UGS caverns in the basin. Parts (a,c) 

show data for the 500–1300 m depth range and parts (b,d) those data for the 500–1500 m depth range. Key common to all: 

blue = stored exergy, brown = stored exergy to work. 
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Figure 5. Plots of dynamic exergy storage and exergy to work estimates for the preferred CHT model, over the depth range 500–1300 m and cavern heights 100 m+ considered for CAES. 

Parts (a–c) show graphs for differing injection/withdrawal rates (108/108 kg/s and 108/417 kg/s) or fill and pressure reduction rates (108 kg/s/1.5 MPa/h) for all potentially available 

caverns, 1% of available caverns and estimates based upon the number of UGS caverns in the basins. Additionally shown, by basin, the percentage of UK electricity demand for 92% of 

stored exergy to work. Key common to all, see Figure 3. 
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Figure 6. Plots of dynamic exergy storage and exergy to work estimates for the preferred CHT model over the depth range 500–1500 m and cavern heights 100 m+ considered for CAES. 

Parts (a–c) show graphs for differing injection/withdrawal rates (108/108 kg/s and 108/417 kg/s) or fill and pressure reduction rates (108 kg/s/1.5 MPa/h) for all potentially available 

caverns, 1% of available caverns, and estimates based upon the number of UGS caverns in the basins. Additionally shown, by basin, the percentage of UK electricity demand for 92% of 

stored exergy to work. Key common to all, see Figure 3. 
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Figure 7. Plots of dynamic exergy storage and exergy to work estimates for the preferred CHT model, over the depth range 500–1300 m and cavern heights 100–150 m considered for 

CAES. Parts (a–c) show graphs for differing injection/withdrawal rates (108/108 kg/s and 108/417 kg/s) or fill and pressure reduction rates (108 kg/s/1.5 MPa/h) for all potentially available 

caverns, 1% of available caverns and estimates based upon the number of UGS caverns in the basins. Additionally shown, by basin, the percentage of UK electricity demand for 92% of 

stored exergy to work. Key common to all, see Figure 3. 
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Figure 8. Plots of dynamic exergy storage and exergy to work estimates for the preferred CHT model, over the depth range 500–1500 m and cavern heights 100–150 m considered for 

CAES. Parts (a–c) show graphs for differing injection/withdrawal rates (108/108 kg/s and 108/417 kg/s) or fill and pressure reduction rates (108 kg/s/1.5 MPa/h) for all potentially available 

caverns, 1% of available caverns and estimates based upon the number of UGS caverns in the basins. Additionally shown, by basin, the percentage of UK electricity demand for 92% of 

stored exergy to work. Key common to all, see Figure 3. 
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However, as with gas storage caverns, the static ‘working exergy’ storage capacity is 

increased by multiple cavern-filling cycles. Therefore, also described and calculated are 

‘dynamic working exergy storage’ capacity estimates, which are based upon multiple cav-

ern cycles per year. The yearly cycle numbers are derived from different injection and 

withdrawal rates, which are informed by both CAES and UGS experience (S2, S3). 

4.3. Exergy Storage Tool 

The exergy storage system is represented by a thermal modelling tool developed dur-

ing the EPSRC-funded IMAGES project [38] and augmented during this study (S3) to cal-

culate stored exergy for individual caverns of known depths and size/volume, in two op-

erational modes: constant volume, variable pressure (isochoric), and constant pressure, 

variable volume (isobaric) modes. The tool, equations for which were validated using op-

erational data from the Huntorf CAES facility [38], considers three wall conditions to ap-

proximate and model the unsteady heat transfer (flux) between the injected air and cavern 

walls and models. Two cavern wall conditions represent idealistic and somewhat unreal-

istic, end-member models: 

 Adiabatic boundary conditions in which heat flux into the surrounding rock mass is 

zero 

 Isothermal boundary conditions in which heat flux is infinite with perfect conduction 

into and through the surrounding rock mass 

In practice, realistic CAES cavern operation lies somewhere between the two end-

member cases, and the convective heat transfer (CHT) wall condition for a practical (dia-

batic) cavern operational scenario was developed and is thought to more accurately rep-

resent actual storage conditions: during the cavern charging period, thermal energy of the 

air stored in the cavern is lost to the immediate surrounding rock mass, whilst the air 

temperature still increases due to the internal compression [38]. The two-end member sce-

narios produce slightly greater (isothermal) and smaller (adiabatic) exergy values, brack-

eting the CHT model (see Figure 3 and S2, Tables S3 and S4). Consequently, we have fur-

ther refined the modelling tool for CHT conditions to implement their equations and pre-

dict the exergy stored when charging an uncompensated isochoric (constant volume, var-

iable pressure) cavern or set of caverns. Results of this scenario are presented and dis-

cussed here. 

Input parameters to the exergy modelling tool are summarised in S2, Table S2. Cav-

ern surface areas and the calculation of heat transfer from the cavern void into the walls 

are necessary for CAES, estimates of which were derived relative to each cavern mid-point 

depth. They were calculated using the geothermal gradient for each specific basin, with 

an average annual surface temperature of 9.5 °C and pressure of 1 bar (14.5 psi). The tool 

imports the depths, volumes, temperatures, and min/max storage pressures calculated for 

each cavern and models iteratively, as well as the cavern-fill (exergy storage) from the 

starting point of the minimum to maximum permissible storage pressures. Results for the 

three differing cavern wall heat transfer models for each cavern over the two cavern depth 

ranges are output to a spreadsheet as the ‘working exergy’ storage in megawatt hours 

(MWh), together with the maximum pressure (pascals) and stored air mass (kg). 

However, energy losses occur during generation, most notably through heat ex-

changers and in the turbines. From an energy and exergy analysis for 10 salt caverns of 100 

m plus height in the Cheshire Basin, it was calculated that a full charge of all 10 caverns could 

store a net exergy of 25.32 GWh, of which ≈92% (23.19 GWh) could be converted to work via 

the turbines [41]. Therefore, alongside stored exergy estimates in Figures 3–8, we also present 

estimates of the stored exergy to work available, data behind which are provided in S2, 

Tables S3–S8. 
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4.4. Exergy Storage Assessment—Methodology 

Figure 2 summarises the exergy storage assessment process. From borehole log data 

and map information in the public domain and held by the British Geological Survey, the 

tops, bases, and thicknesses of the halite deposits and major faults were mapped within 

each basin. These data were input to ArcGIS, which was used to obtain potential cavern 

locations, depths, and basic cavern parameters such as heights, diameters, available vol-

umes, spacing and casing shoe depths based upon criteria applied to the design, develop-

ment, and construction of gas storage caverns in the same strata [42]. The halite beds were 

evaluated over the depth ranges under consideration for CAES operations, with casing 

shoe depths (and thus pressures) in general between 500 and 1300 m [23] as well as up to 

1500 m depth as at the proposed CAES plant at Larne, Northern Ireland [43]. Then, these 

basic cavern data were input to a modelling tool and used to estimate the exergy storage 

potential of prospective UK onshore and offshore East Irish Sea areas, using pressure and 

temperature ranges derived from gas storage investigations in these areas. Basic theoreti-

cal storage estimates are derived (Figure 3) that are only that and which, for various rea-

sons, are clearly unrealistic totals. Most obviously, not all cavern locations will ultimately 

be available or suitable for cavern creation due to geological constraints, salt quality across 

the basin, together with economically and operationally viable cavern sizes. Therefore, a 

series of filters, based upon likely cavern height ranges, sizes, and differing storage oper-

ations, have been applied to derive more realistic CHT storage estimates for each basin. 

These can be compared to the annual UK electricity demand of 300 TWh [44].  

In an attempt to obtain realistic assessments of the potential provided by the bedded 

halite resource, the total exergy storage estimates from each basin were filtered in a variety 

of ways: 

 Taking 1% of the estimated exergy storage for the ‘available’ UK caverns 

 Calculating the cavern storage estimates based on a percentage reflecting the number 

of operational or permitted UGS caverns in the UK (148) relative to the total number 

of possible caverns 

 Filtering the caverns to include only those of greater than 100 m height 

 Filtering the caverns to include only those of 100–150 m in height 

 For the two filtered cavern height datasets, applying filters taking 1% of caverns and 

a percentage of the storage, using UGS cavern numbers relative to the total number 

of possible caverns in individual basins. 

The figure of 1% is not based on industrial experience or previous studies. However, 

it provides a first pass understanding of the potential cavern numbers and storage capac-

ities over the differing depth ranges, against which estimates set against the constructed 

or planned UGS cavern numbers in the two most developed basins can be evaluated (S2, 

Table S1): Cheshire Basin (73 caverns = 3.5–4%, for 500–1300 and 500–1500 m depths, re-

spectively), Eastern England (37 caverns = 2–4%, respectively). Therefore, the figure of 1% 

is lower than these percentages and thus appears a reasonable gauge against which exergy 

storage estimates might be assessed initially (Figures 3 and 4). However, Figure 3 reveals 

very high storage estimates for the Wessex Basin, which is a potentially large region, but 

one in which the halite beds are less well characterised; halite beds were unknown in the 

area until oil and gas exploration began in the 1970s [37]. Consequently, further refine-

ment of the estimates was attempted, reflecting more the degree of exploration and the 

proven potential and capabilities of the halite beds in each of the main halite basins. The 

greater numbers of storage caverns in the Cheshire Basin (73) and Eastern England (37) 

mean that these basins represent the most mature areas in terms of exploration and devel-

opment of the halite beds. Thus, they potentially provide the more accurate and greater 

storage estimates when compared to using only the planned or permitted 24 and 14 cavern 

numbers for the lesser exploited EISB [45] and Wessex [46] basins, respectively. The latter 

two basins currently represent higher-risk target storage horizons, where in the case of 



Appl. Sci. 2021, 11, 4728 16 of 23 
 

 

the EIS, remoteness and its offshore location also increase CAPEX and OPEX costs of stor-

age projects [45]. 

Additional efforts to derive realistic exergy storage estimates were also undertaken 

through filtering the storage outputs based upon cavern heights, with two sets of caverns 

assessed based on the experience of the maximum heights of gas storage caverns in the 

same salt beds, or those of proposed storage caverns in the Wessex Basin and the EIS. 

Firstly, caverns of 100 m and greater were selected, arising from the general sizes of UGS 

caverns developed or proposed in the same halite beds (refer S2, Table S1). Caverns 

smaller than ≈90 m in height are less economic to operate for gas storage purposes and are 

likely even more so for CAES due to the lower volumetric energy density (≈2.4 kWh/m3) 

of air in comparison to natural gas (1100 kWh/m3) [23]. Importantly, those caverns in 

which diameters are much larger than cavern heights of a few tens of metres could be 

geomechanically less stable, with caverns thus requiring smaller diameters and thereby 

likely to also result in uneconomically small cavern volumes [47]. Secondly, very large 

(tall) caverns carry stability issues and operational limits for rapid cycle storage, and 

therefore, cavern heights were limited to 100–150 m. This is in part based upon the nature 

of halite beds in the Wessex Basin, where geophysical logs reveal that the insoluble con-

tent can comprise significant percentages of the Dorset Halite Member (DHM) [37] and 

are likely to significantly impact cavern volumes, stability, and location. This will likely 

limit areas of development to those with suitably clean halite for cavern construction. 

However, salt exploration boreholes for the construction of 14 gas storage caverns have 

proved a saliferous sequence 470 m thick in areas of the basin, with the main halite unit 

(referred to as ‘S7’) up to 140 m thick with a low insoluble content of ≈16.5% and in which 

it was assessed that caverns of 100 m in height could be constructed for the purposes of 

gas storage [46]. Elsewhere, the Winterborne Kingston Borehole in the NE of the basin 

proved halite beds to be 190 m thick [37,48]. Thus, constraining cavern heights to between 

100 and 150 m was thought to be realistic for the UK in general and the Wessex Basin in 

particular. As previously, a percentage of potentially available caverns and volumes, 

based upon filtering for 1% and the percentage of UGS caverns relative to the UGS cavern 

numbers, was also extracted for the two cavern height ranges. 

5. UK Salt Cavern Exergy Storage Capacity Estimates—Results and Commentary 

We now summarise and present the exergy storage estimates and storage capacities 

(Figures 3–6) for salt caverns in four of the main UK halite-bearing sedimentary basins: 

onshore Cheshire, Wessex, eastern England, and the offshore East Irish Sea (Figure 1; S2, 

Tables S3–S8). Figure 3a,b illustrate the total theoretical UK ‘static’ (one-fill) exergy stor-

age and work from stored exergy for the three models and two depth ranges considered. 

For the preferred CHT model conditions, the stored exergy to work available in caverns 

for the 500–1300 m depth range (274 MWh) would almost meet the annual UK electricity 

requirement of ≈300 TWh (Figure 3a), whilst for the depth range 500–1500 m, the stored 

exergy to work available from all three models would prove sufficient to meet UK elec-

tricity needs (Figure 3b). Taking just 1% of the potential caverns provides a ‘static’ exergy 

storage for the CHT scenario of between ≈3 and 4.7 TWh in the 500–1300 and 500–1500 m 

cavern depth ranges, respectively (Figure 3a,b, S2, Table S3). Cycled once a month, this 

could generate between 36 and 56.5 TWh of storage, or up to one-fifth of the UK electricity 

demand, illustrating the importance of this technology in providing a significant contri-

bution to the UK’s energy storage capacity and electricity supply. It should be noted that 

cavern numbers in eastern England are influenced strongly by depth, with much of the 

available halite and thus cavern volume being below 1300 m depth. 

Taking a percentage of the ‘static’ exergy storage estimates derived from the numbers 

of operating or permitted UGS caverns (148) relative to the number of potential storage 

caverns (32,185 and 44,849), for the CHT scenario, exergy storage ranges from ≈1.37 TWh 

(500–1300 m depth range) to 1.53 TWh (500–1500 m) for the UK as a whole (Figure 3c,d, 



Appl. Sci. 2021, 11, 4728 17 of 23 
 

 

S2, Table S3). Figure 3e,f shows the influence of the less explored and characterised Wes-

sex Basin halite beds on storage estimates, being significantly greater than other basins, 

suggesting perhaps 239–367 TWh of storage available and far greater than in the Cheshire 

Basin (8–9.3 TWh) or eastern England (2.6–39.7 TWh). Figure 3g,h show the effects on 

‘static’ storage of applying a filter based upon the number of operational or planned UGS 

caverns in a basin, with the Wessex Basin storage reducing markedly to 0.24–0.37 TWh, 

similar to the Cheshire Basin (0.32 TWh) and eastern England (0.1–0.4 TWh). 

To refine the estimates, the data were filtered to extract those caverns with heights of 

100 m and greater and those caverns of 100–150 m in height, as described above. For cav-

erns of 100 m and greater (Figure 4a,b, S2, Table S4), CHT ‘static’ exergy to work storage 

estimates for the basins range from between 6.6 (500–1300m) and 7.7 (500–1500 m) TWh 

in Cheshire to ≈210 to 348 TWh in the Wessex Basin, the latter skewing the estimates. Cy-

cled once a month, this could generate between ≈79 and 95 TWh of storage in Cheshire 

and 12–300 TWh in eastern England. For caverns of 100–150 m in height, the results range 

from 2.6 and 3.8 TWh in the Cheshire Basin, to between 18.3 and 45.5 TWh in the Wessex 

Basin, the latter again being highest, although estimates appear more realistic than simply 

taking caverns of 100 m and greater, which takes much of the thick DHM interval as avail-

able. For reasons discussed above, cavern construction may not be feasible over much of 

the upper DHM across the basin. Cycled once a month, this could generate between ≈79 

and 95 TWh of storage in Cheshire and 12–300 TWh in eastern England. 

When the ‘static’ stored exergy to work estimates for each basin are assessed in rela-

tion to the numbers of operational or permitted gas storage cavern numbers in the basins 

over the two depth ranges (Figure 4c,d, S2, Table S4), then the potential exergy storage 

offered is highest in the Cheshire Basin (up to 0.30 TWh) and eastern England (0.25 to 0.32 

TWh) areas, with much less estimated for the EIS (<0.1) and Wessex Basin (0.1 to 0.12 

TWh). Cycled once a month this could generate between ≈3.6 TWh of storage in Cheshire 

and 3–3.84 TWh in eastern England. 

Gas storage caverns are cycled more than once a year, and CAES caverns more than 

gas storage caverns, effectively increasing the ‘static’ working gas storage capacity and 

giving rise to a larger ‘dynamic’ working gas volume [39], or ‘dynamic exergy storage’, as 

considered here. At this stage, it is impossible to determine precise cavern depths, sizes, 

and temperatures and thus undertake detailed geomechanical and thermodynamic mod-

elling for all potential cavern locations, volumes, storage pressures, operating scenarios, 

and cycle times. Therefore, we outline the processes behind an attempt to calculate the 

general ‘dynamic exergy storage’ potential for both the 100 m and greater, and the 100–

150 m cavern sets. This was undertaken by estimating the number of cycles per year, 

which is based upon flow rates calculated from cavern fill and withdrawal rates in UGS 

and CAES operations and taking the average values for the outputs of maximum cavern 

pressure, exergy stored and air mass in caverns for CHT conditions from the exergy mod-

elling tool (see S3 and S2, Table S5). 

Thus, cavern emptying or withdrawal times were calculated for three scenarios based 

upon an injection phase (cavern charging), involving a conservative mass injection rate of 

108 kg/s, as reported from the Huntorf CAES facility [9] and three differing withdrawal 

rates (generation or cavern discharge phase): 108 kg/s (equivalent to injection rate), 417 

kg/s (from Huntorf [9]), and a general maximum pressure rate reduction of 15 bar/h (1.5 

MPa/h) for gas storage operations [9,49]. For the latter, an approximate equivalent air 

mass withdrawal rate in kg/s was calculated to assess how realistic the rate might be for 

any particular scenario. For the higher flow rates, it may be that caverns would require 

more than one withdrawal well to achieve the air mass withdrawal rates. Then, the calcu-

lated injection and withdrawal rates were used to derive an estimate of the number of 

cycles per year and thus determine the ‘dynamic’ exergy capacity available for the differ-

ent model categories (Figures 5–8, S2, Tables S6–S8). 

Figures 5–8 illustrate the ‘dynamic’ exergy storage (and stored exergy to work) in-

creases of the 100 m plus and 100–150 m cavern height subsets over the ‘static’ storage 
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estimates presented in Figures 3 and 4. Dynamic exergy storage estimates based upon the 

Huntorf operational parameters (Figures 5a–8a, S2, Table S6) are lower than those using 

faster withdrawal rates, which increase the number of storage cycles possible (Figures 

5b,c–8b,c, S2, Tables S7 and S8). The ‘dynamic’ exergy storage results illustrate more mark-

edly the potentially significant contribution of exergy storage through CAES in salt cav-

erns to the UK’s energy storage capacity and electricity supply. This is highlighted by 

taking the Cheshire Basin as an example. Here, exergy storage estimates from the opera-

tional cycle based on 108 kg/s fill rates and 108 kg/s withdrawal rates suggest that caverns 

of 100 m and greater or 100–150 m in height over the two depth ranges have the potential 

to provide between ≈139–156 TWh (Figures 5a and 6a) and 63–80 TWh (Figures 7a and 8a) 

stored exergy to work respectively, meeting between ≈46–52% and 21–27% of the UK elec-

tricity demand respectively. For the operational cycle based on 108 kg/s fill rates and max-

imum withdrawal rates of 1.5 MPa/hr, stored exergy to work estimates range between 

≈264–296 TWh (Figures 5c and 6c) and 119–151 TWh (Figures 7c and 8c) respectively, 

meeting between ≈88–98% and 40–50% of the UK electricity demand, respectively. Taking 

the estimates based on UGS cavern numbers for the two depth ranges and cavern sizes, 

stored exergy to work estimates could, using the most cycled operational mode (Figures 

5c and 8c), provide between 13.3 and 13.7 TWh, respectively, meeting ≈4.5% of the UK 

electricity demand. 

The other halite basins provide similarly important additional exergy storage and 

exergy to work support, with for example, just 1% of all caverns of 100 m and greater in 

the 500–1500 m depth range in the basins providing a further ≈34–65 TWh of work and 

meeting ≈12–22% of the UK electricity requirements, depending on the mode of operation 

and cycle numbers (Figure 6a–c, S2, Tables S6–S8). Whilst 1% of caverns 100–150 m height 

in the same depth range might provide a further ≈9.53–18.1 TWh of work, meeting ≈3.2–

6.0% of the UK electricity requirements (Figure 8a–c, S2, Tables S6–S8). Relative to UGS 

cavern numbers in the basins, the figures for 100 m plus caverns in the depth range 500–

1500 m might provide an additional ≈12.1–23.2 TWh of work, meeting ≈4–7.7% of the UK 

electricity requirements (Figure 6a–c, S2, Tables S6–S8), whilst 100–150 m height caverns 

might provide ≈7.5–14.2 TWh of work, meeting ≈1.5–4.7% of UK electricity requirements 

(Figure 8a–c, S2, Tables S6–S8). These data illustrate the potential importance of CAES and 

salt cavern storage to UK electricity demand and supply. 

6. General Discussion 

This study has attempted an estimate of the exergy storage (and stored exergy to 

work) potential of major bedded halite deposits of the UK onshore and offshore East Irish 

Sea areas. Storage would be using salt caverns constructed in the massively bedded halites 

and storage estimates are based on three thermodynamic models for the temperature and 

pressure variations within CAES caverns developed by ref [38]. Clearly, a number of sig-

nificant assumptions and generalisations have been necessary when assessing entire sed-

imentary basins. However, current salt cavern hosted gas storage facilities prove that the 

UK halite beds studied are capable of hosting large, stable caverns for high-pressure gas 

storage. ‘Static’ theoretical storage volume is enough to meet the UK electricity demand 

of 300 TWh, although this is unrealistic. Various filters applied to the cavern storage data 

together with cycle numbers based upon gas storage operational parameters provide 

more realistic dynamic exergy storage and stored exergy to work estimates of at least 36 

MWh, illustrating that salt caverns onshore and in the EIS could deliver significant EES 

and grid-scale support.  

Estimates for future UK electrical energy storage capacity needs for a net-zero system 

in 2050 range from about 1 TWh in total [50] to the latest National Grid Future Energy 

Scenario (NGFES) estimates of about 200 GWh [51]. In both cases, the majority of capacity 

requirement will be for large-scale, long-duration energy storage, with CAES in all three 

NGFES net-zero scenarios contributing about 20–40 GWh. Currently, PHS accounts for 

the majority of the UK energy storage capacity, which has 2.8 GW power capacity and 
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27.6 GWh storage capacity. In 2019, the total energy discharged by PHS in the UK was 1.7 

TWh, which is only about 1/70 of the total gas power generation. Due to the potential site-

specific negative environmental and ecological impacts of PHS and the limited availability 

of favourable sites, further expansion of PHS capacity in the UK will be difficult. Lithium-

ion battery storage and hydrogen are two promising technologies that may fulfil this re-

quired capacity. Lithium-ion batteries have attracted attention and undergone significant 

development in the last 5 years. However, the cost structure (high CAPEX of energy in 

$/kWh) renders it suitable only for mainly daily cycling applications, instead of energy 

storage operations at timescales greater than 10 h, even with a significantly reduced cost 

in future (e.g., $150/kWh) [52]. The design space for large-scale, long-duration electrical 

energy storage is plausibly set to be up to $20–40/kWh for balancing a grid with high-

penetration (>90%) variable renewable energy generation [53,54]. Alternatively, hydrogen 

energy storage is at the other end of the storage spectrum, being particularly suitable for 

long-duration energy storage. Compared to technologies such as PHS, batteries, and 

CAES, hydrogen is still in the development phase of prototype or demonstration in order 

to validate its technical performance. Its cost reduction may require massive infrastructure 

construction (e.g., centralised electrolysis) that enables convenient transmission and dis-

tribution of hydrogen [54,55] and further research on currently less mature technologies 

such as high-temperature solid oxide or molten carbonate fuel cells that may enable low-

cost scalable hydrogen production [56]. Either of these will add to the uncertainty in time-

scale and system-scale of the technology in decarbonising the power system. Although a 

diverse range of large-scale long-duration energy storage technologies are needed to 

deeply decarbonise electrical systems, technologies with relative high technology ma-

turity and resource availability will help mitigate the risk and ensure an early and steady 

decarbonisation progress in the next decade, which may also help reduce the cost required 

for meeting the net-zero goal [57]. 

Amongst all the EES technologies, CAES is a relatively mature technology with large-

scale conventional (diabatic) CAES having been commercially operational since 1978 at 

Huntorf, in systems of over 100 MW capacity and employing salt cavern storages. In this 

time, pilot ACAES plants have been considered, with a small (2 MW) pilot plant having 

operated between 2012 and 2016 in Texas [25,26], and the commissioning in 2019 of the 

world’s first ACAES plant in Canada [11], also using salt caverns. Demonstration plants 

on the scale of 1–10 MW have been under appraisal (S1, Tables S1–S6) in Europe [30] and 

China, where there has also been a successful integration test of the world’s first 100 MW 

CAES expander [58]. In comparison with other EES technologies, CAES has very low en-

ergy-storage costs ($3–6/kWh) [59], which makes it a cost-effective solution for long-du-

ration grid-scale energy storage. The cost of CAES is described as low compared to all 

other energy storage technologies, which is evidenced by [59,60]. This includes the cost of 

hydrogen energy storage, amongst other energy storage technologies. The works are con-

sidered by the authors to be suitable resources for comparing the costs and other im-

portant performance methods of energy storage technologies as opposed to providing too 

much detail in this manuscript. Therefore, there exists the real possibility for the deploy-

ment of CAES to offer flexibility at a scale currently provided by fossil fuels in the system 

balance on various timescales from short duration (minute to hourly) to long duration 

(days/weeks). In contrast to the alternative large-scale storage technology, PHS, recent 

studies, and our analysis indicate that substantial exergy storage potential exists for CAES 

in the UK area. It is suggested that saline porous rocks (aquifers) in sedimentary basins of 

the UKCS area could provide inter-seasonal electricity storage amounting to approxi-

mately 160% of the UK’s electricity consumption for January and February of 2017 [15]. 

However, this storage is offshore and distant to demand centres onshore. Additionally, 

whilst there has long been interest in the potential for CAES in porous rock formations 

[13,14], serious doubts exist over the likely development of porous rock CAES, with no 

plants having operated commercially and only a few, mostly small, test facilities having 

been constructed: a small 25 MW R&D CAES demonstration facility operated between 
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1987 and 1991 at Sesta, Italy [61], while an aquifer field test facility was built at Pittsfield, 

Illinois, USA and ran from 1982 through to mid-1984 [14,62]. Following eight years of in-

vestigations and research (2003–2011) funded by the US DOE at the Dallas Centre, Iowa 

USA, the Iowa Energy Storage Project, which aimed to develop a utility-scale, bulk energy 

storage facility linked to renewable wind energy, was shelved [12]. All of the above porous 

rock projects encountered problems with one of more of the following: pressure anoma-

lies, variations in reservoir quality and performance, ‘air bubble’ formation in the reser-

voir, reaction between the oxygen of the injected air and minerals in the reservoir rock 

leading to oxygen depletion and/or potential for bacterial/micro-organism growth and 

porosity reduction. Aquifer storage for the UK, which would be remote offshore, thereby 

increasing costs, thus seems less likely than salt cavern storage, at least in the short term. 

By contrast, our results illustrate the main halite-bearing strata of the UK onshore 

and East Irish Sea areas offer very significant CAES exergy storage possibilities and ca-

pacity, which being closer to demand could play a major role in grid support, load-level-

ling, and helping to meet the UK’s annual electricity demand, which is currently at a level 

of ≈300 TWh [44]. Such resources in combination with renewable energy generation, par-

ticularly solar and wind, could replace the current flexible power generation at a national 

scale. Open-source data [63] illustrate that although the UK has achieved substantial car-

bon emission reductions in its power sector in the last decades by reducing the coal-based 

generation by almost 95%, from about 100 TWh in 2009 to 6 TWh in 2019, gas power is 

still an essential source in offering flexibility to maintain the second-by-second balance 

between the power supply (including intermittent renewable power) and varying de-

mand. In 2019, gas power provided 114 TWh electricity that is 42% of all the electricity 

generated. To decarbonise the gas power and provide the flexibility sacrificed, energy 

storage will play a significant role and the use of salt cavern-hosted CAES could underpin 

decarbonisation of the UK power system by offering large-scale flexibility over multiple 

timescales. 

7. Conclusions 

A study of the main halite-bearing strata of the UK onshore and East Irish Sea areas 

in which UGS caverns have been constructed or planned has been undertaken to assess 

their potential for the construction of salt caverns for CAES purposes and their exergy 

storage potential. Storage depths investigated are between 500 and 1500 m. Revisions to 

an earlier exergy modelling tool, equations for which were validated by operational data 

from the Huntorf CAES plant, have led to a series of exergy storage capacity estimates for 

three differing heat models. Both the ‘static’ one-fill exergy storage capacity and a series 

of ‘dynamic’ exergy storage capacities based on various fill and empty rates are derived. 

From a theoretical storage of over 300 TWh, more realistic storage estimates of many tens 

of TWh are achieved by way of filtering the estimates based on cavern dimensions and 

different storage cycles considering UGS projects and operational modes. Significant ex-

ergy storage capacity exists for CAES in salt caverns, which could provide important sup-

port to the UK electricity grid, requiring 300 TWh per year. As the contribution of inter-

mittent renewables generation to the grid rises, it is suggested that salt cavern storages 

constructed onshore, rather than porous rock storages located offshore, are likely to be the 

main CAES storage technology available in the UK at least in the short term. 
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