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Abstract 27 

The development of robust forecasts of human-induced seismicity is highly desirable to 28 

mitigate the effects of disturbing or damaging earthquakes. We assess the performance of a 29 

well-established statistical model, the Epidemic-Type Aftershock Sequence (ETAS) model, 30 

with a catalog of ~93,000 microearthquakes observed at the Preston New Road (UK) 31 

unconventional shale gas site during and after hydraulic fracturing of the PNR-1z and PNR-2 32 

wells. Because ETAS was developed for slower loading rate tectonic seismicity, in order to 33 

account for seismicity caused by pressurized fluid we also generate three modified ETAS with 34 

background rates proportional to injection rates. We find that (1) the standard ETAS captures 35 

low seismicity between and after injections but is outperformed by the modified model during 36 

high seismicity periods, and (2) the injection-rate driven ETAS substantially improves when 37 

the forecast is calibrated on sleeve-specific pumping data. We finally forecast out-of-sample 38 

the PNR-2 seismicity using the average response to injection observed at PNR-1z, achieving 39 

better predictive skills than the in-sample standard ETAS. The insights from this study 40 

contribute towards producing informative seismicity forecasts for real-time decision making 41 

and risk mitigation techniques during unconventional shale gas development. 42 

 43 

Introduction 44 

Seismicity induced by fluid injections is a growing concern (Schultz et al., 2020, and references 45 

therein). Many countries are witnessing an increased development of subsurface geo-energy 46 

reservoirs, including unconventional shale gas development, enhanced geothermal energy 47 

systems, fluid injection in salt mine fields, wastewater injection, and underground storage of 48 

liquid carbon (Ellsworth, 2013). These activities promote seismicity in previously low seismic 49 

hazard regions or further increase high seismic rates. In recent years, induced seismicity with 50 

moderate magnitudes (M5-5.7) in regions such as the central United States, South Korea and 51 
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southwestern China has led to significant damages and losses (Keranen et al., 2013; Ellsworth 52 

et al., 2019; Lee et al., 2019; Lei et al., 2020). While several hypotheses about the interplay of 53 

deterministic physical mechanisms controlling the seismic response to subsurface fluid 54 

injection are currently under investigation (Atkinson et al., 2020), probabilistic methods 55 

provide a framework for current epistemic and aleatory uncertainties. Indeed, statistical models 56 

of injection-induced seismicity have shown some skill in capturing the complex range of 57 

seismic responses to fluid injections (e.g., Shapiro et al., 2007; 2010; Kiraly-Proag et al., 2016; 58 

Verdon and Budge, 2018). In particular, a popular statistical method, the Epidemic-Type 59 

Aftershock Sequence (ETAS) model (Ogata, 1988), originally developed to reproduce the 60 

short-term clustering of tectonic earthquakes, was tested under different fluid-induced 61 

seismicity scenarios including natural circulation of fluids at depth (Hainzl and Ogata, 2005) 62 

as well as human-related activities, such as natural gas extraction (Bourne and Oates, 2017), 63 

Enhanced Geothermal Systems (EGS - e.g. Bachmann et al., 2011; Mena et al., 2013; Asanuma 64 

et al., 2014), hydraulic fracturing for unconventional shale gas development (HF - e.g. Lei et 65 

al., 2017; 2019; Jia et al., 2020), and wastewater disposal (Llenos and Michael, 2013). These 66 

studies concluded that fluid-driven seismicity has distinctive spatiotemporal characteristics, 67 

some of which are different from the ‘regular’ tectonic seismicity dominated by earthquake-68 

to-earthquake triggering mechanisms. While the standard ETAS features a stationary 69 

background rate due to slower tectonic loadings, Bachmann et al. (2011) introduced an ETAS 70 

model with a background rate linearly proportional to the injection rate and found that this 71 

model performed best in forecasting the seismicity induced in Basel (Switzerland) due to the 72 

stimulation of a deep geothermal energy reservoir. 73 

In its limited number of applications to HF environments, the ETAS model was mostly used to 74 

explore the behavior of HF-induced seismicity and to show that time-varying background rates 75 

positively correlate with injection operations (Lei et al., 2019; Jia et al., 2020). Lei et al. (2017) 76 
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showed that an ETAS model featuring a non-stationary background rate better reproduces the 77 

observed features of seismicity when an external forcing is applied (e.g., fluid flow or aseismic 78 

slip in cases of induced and natural seismicity, respectively), but their primary scope was not 79 

to assess ETAS performance in a formal forecasting experiment. 80 

In this study, we probe the suitability of the ETAS model as a statistical tool for near real-time 81 

forecasts of the seismic rates during and after HF operations. We expand on previous 82 

applications of the ETAS model to HF by quantitatively assessing the predictive skills of a 83 

suite of temporal ETAS models that (1) are calibrated and tested on a much richer 84 

microseismicity dataset, (2) seek to reproduce seismic rates from a wider magnitude range 85 

(from M~3 down to M=-1.5), (3) explore how the forecast performance changes under different 86 

modelling assumptions (standard vs. modified model formulations) and parameterizations (in-87 

sample vs. out-of-sample forecasts), and (4) test the influence of expressing the non-stationary 88 

background rates by using either averaged or sleeve-specific fluid pumping parameters. 89 

We take advantage of a rich microseismicity dataset recorded at Preston New Road, Lancashire 90 

(UK), during unconventional shale gas development by Cuadrilla Ltd in two wells, PNR-1z in 91 

2018 (Clarke et al., 2019) and PNR-2 in 2019. First, we implement the ETAS model in its 92 

original tectonic formulation and assess whether (1) it captures the temporal evolution of the 93 

microseismicity, and (2) parameters optimized using the available data improve model 94 

performance. Second, we implement a modified ETAS model featuring a background 95 

seismicity rate proportional to the injection rate following Bachmann et al. (2011) but here 96 

applied in the context of HF. This presents a particular challenge as HF operations feature short 97 

injection episodes along different sleeves, while EGS injections are continuous with gradually 98 

changing flow rates at a single injection point. Within the modified ETAS class, we (1) assess 99 

model performance against the standard ETAS model, and (2) quantify the influence of using 100 

an average (bulk) constant of proportionality between seismicity and injection rates calculated 101 
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over the entire period of operations at each well versus constants specifically calibrated on 102 

individual injection periods. For both ETAS classes we also perform an out-of-sample 103 

experiment where we calibrate the ETAS model on PNR-1z data and then use it to 104 

independently forecast microseismicity during PNR-2. We rank the forecasts by means of 105 

likelihood scores, a well-established metric (e.g., used within the Collaboratory for the Study 106 

of Earthquake Predictability, CSEP, Michael and Werner, 2018). The comparative 107 

performance evaluation illustrates the predictive skills of injection-rate driven ETAS models 108 

and how these may inform real-time decision-making by operators and regulators during HF 109 

operations. 110 

 111 

Operations and seismicity at Preston New Road, UK 112 

Hydraulic fracturing operations at the PNR-1z well occurred between 15 October and 17 113 

December 2018. The well ran for 700 m horizontally through the natural gas-bearing 114 

Carboniferous formation of the Lower Bowland Shale at a depth of ~2.3 km (Clarke et al., 115 

2018). A total of 17 sleeves were hydraulically fractured (Figure 1a) with mini fracs at 18 116 

additional sleeves, consisting of a few tens of m3 of fluid pumped. Overall, a total of ~4600 m3 117 

of slick water fluid was injected (Figure 2a) with an average volume per sleeve of 234 m3 (and 118 

a maximum VMAX = 431 m3). Hydraulic fracturing was paused between 3 November and 4 119 

December 2018 as flow-back from the well took place. The microseismicity at PNR-1z was 120 

recorded by a downhole array in the adjacent PNR-2 well consisting of 12 three-component 121 

geophones that detected over 38,000 events. Although local 3D reflection seismic surveys 122 

acquired before the start of operations revealed the presence of pre-existing seismic 123 

discontinuities, these were located far from the well and did not present any clear correlation 124 

with the initial microseismicity (Clarke et al., 2019). As injection proceeded, hydraulic 125 

fractures started intersecting another pre-existing (but not previously identified) subvertical 126 
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NE-striking seismogenic feature, located NE of the well. The largest magnitude event that 127 

occurred on 11 December 2018 (ML = 1.5) activated a section of such structure. However, as 128 

reported by Kettlety et al. (2020a), it is not clear whether this was a single contiguous fault or 129 

a dense zone of fractures. 130 

Here, we use the available earthquake catalog that includes origin times and moment 131 

magnitudes (Mw) as determined by Schlumberger Ltd., the geophysical processing contractor. 132 

The limited dynamic range of the downhole geophones leads to problems in magnitude 133 

estimation for Mw ≥ 0.0 events due to clipping. To avoid a potential bias, we matched these 134 

with events in the catalog obtained from broadband surface stations operated by the British 135 

Geological Survey (BGS) that reported 172 events with local magnitudes (ML). We then 136 

replaced the moment magnitudes for all Mw ≥ 0.0 events in the downhole catalog with the 137 

corresponding local magnitude estimate, following Clarke et al. (2019) for the same dataset. 138 

This ad hoc solution to the problem of PNR-1z magnitude conversions remains the subject of 139 

ongoing research (Baptie et al., 2020). Clarke et al. (2019) argued that assuming ML = Mw for 140 

all Mw ≥ 0.0 events does not produce anomalies in the frequency-magnitude distribution, 141 

suggesting that this simple approach is reasonable.  142 

Figure 2a shows a histogram of the hourly number of events during operations along with the 143 

cumulative volume of injected fluid. The observed seismicity at PNR-1z shows multiple peaks 144 

that visually correlate well with the pumping periods and then decay rapidly with time after 145 

injection stops. We find evidence of considerable variations in seismic responses despite 146 

comparable injection rates across sleeves (e.g., Figure 2c-d). For instance, at sleeve #2 147 

(injection stage S02) event rates increase as soon as injection starts and remain relatively stable 148 

(Figure 2c), while at sleeve #40 (injection stage S17) there is a delayed onset of seismicity 149 

followed by substantially higher rates (Figure 2d). 150 
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The horizontal PNR-2 well runs roughly parallel to PNR-1z offset by approximately 200 m 151 

and was drilled through the upper part of the Lower Bowland Shale formation at a depth of 152 

~2.1 km. Operations started on 15 August 2019 but were suspended on 26 August following a 153 

ML = 2.9 earthquake that was felt up to a few kilometers from the epicenter (Cremen and 154 

Werner, 2020). Aftershocks of this event illuminated a SE-striking fault, a clearly different 155 

feature than the one activated during hydraulic stimulation at PNR-1z. Furthermore, the latter 156 

did not show any seismicity during operations at PNR-2; it is likely that a barrier blocking any 157 

interaction between the two zones was created by lateral lithological variabilities as well as by 158 

the notable vertical and lateral separation between the two wells (Kettlety et al., 2020b). 159 

PNR-2 seismicity was recorded by a downhole array of 12 geophones in the adjacent PNR-1z 160 

well, and the final catalog, extending up to 2 October 2019, consists of over 55,000 161 

microseismic events (Figure 1b) with magnitudes reported as Mw. We added a correction of 162 

0.15 magnitude units to the downhole moment magnitudes following Baptie et al. (2020). 163 

Furthermore, the PNR-2 catalog suffers from brief but critical data gaps that result in a loss of 164 

otherwise recorded seismic events, including the largest event in the sequence (ML = 2.9) and 165 

presumably its early aftershocks. We filled these gaps with events recorded by the combined 166 

surface network of the BGS and the operator (Baptie and Luckett, 2019).  167 

The early earthquake productivity at PNR-2 appears an order of magnitude larger than that 168 

observed during the initial injection stages at PNR-1z, even under similar injected volumes 169 

(Figure 2b). The complexity of the seismic response to injection is similar to PNR-1z (Figure 170 

2e). As at PNR-1z, we observe a general positive co-dependency between seismicity and fluid 171 

injection at PNR-2. 172 

 173 

Methods 174 

The standard ETAS model 175 
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The Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988) is a statistical model 176 

of the time-magnitude characteristics of triggered tectonic seismicity. The model treats 177 

seismicity as a self-exciting stochastic point process, in which each earthquake produces 178 

offspring with magnitudes independently sampled from the Gutenberg-Richter distribution 179 

(that is, parent earthquakes can trigger larger events with some probability). The seismic rate 180 

λ(t) at time 𝑡 is given by a time-independent background rate (𝜇) plus a function accounting 181 

for the history (𝐻!) of triggering contributions from all previous events at time 𝑡" and with 182 

magnitude 𝑀" prior to 𝑡:  183 

 184 

𝜆(𝑡	|	𝐻!) = 𝜇 + / 𝐾𝑒#(%!&%"#$) ∙ 𝑐(&)(𝑡 − 𝑡" + 𝑐)&((𝑝 − 1)
":!!+!

, (1) 185 

 186 

where the sum includes empirically observed relations that (1) describe the short-term 187 

aftershock productivity of events above a minimum triggering threshold (M,-.) with 188 

parameters K and 𝛼, (2) determine an Omori-Utsu temporal decay of the triggered rate with 189 

exponent p and a constant c (Utsu, 1961). We estimate the parameters (µ, K, a, c, p), by 190 

maximizing the log-likelihood function (Zhuang et al., 2012) on a seismic catalog with N 191 

events and over a period from T0 to T1: 192 

𝑙𝑜𝑔 𝐿(𝜇, 𝐾, 𝛼, 𝑐, 𝑝) =/𝑙𝑜𝑔 𝜆	(𝑡" 	|	𝐻!) − > 𝜆(𝑡)	𝑑𝑡

/%

/&

0

"1)

. (2) 193 

Forecasts of the ETAS model require simulations because the rate is conditional on the history 194 

(e.g., Zhuang and Touati, 2015; Seif et al., 2017). 195 

We create three versions of the standard ETAS model (the “ETAS1” class). In ETAS1-196 

optimized we estimate ETAS parameters from the target catalog (either PNR-1z or PNR-2) and 197 

thus perform an in-sample (best-case) forecast evaluation. In ETAS1-unoptimized we use the 198 
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parameters estimated from PNR-1z data to forecast the PNR-2 seismicity out-of-sample. 199 

ETAS1-global serves as an alternative benchmark model with the most recently estimated 200 

ETAS parameters from global subduction zones (except for the background rate) by Zhang et 201 

al. (2020). We select parameters from interplate settings because these might represent the 202 

tectonic counterpart that most closely matches the forcing and boundary conditions of in-situ 203 

fluid-induced seismicity environments, that is, high stressing rates and relatively short-lived 204 

aftershock sequences. 205 

 206 

The modified ETAS model for injection-induced seismicity 207 

In the second forecast class (“ETAS2”), we modify the ETAS model to account for events 208 

forced by an external driver. We couple the background rate to the time-dependent fluid 209 

injection rate I2(t):  210 

𝜆3(𝑡	|	𝐻!) = 𝜇(𝐼4) + / 𝐾𝑒#(%!&%"#$) ∙ 𝑐(&)(𝑡 − 𝑡" + 𝑐)&((𝑝 − 1)
":!!+!

, (3) 211 

with 𝜆3 a “modified” seismic rate and the background rate µ(I2) now assumed to be linearly 212 

related to the injection rate via a constant of proportionality c5 (Bachmann et al., 2011): 213 

𝜇(𝐼4) = 𝑐6	𝐼4(𝑡). (4) 214 

To estimate c5, we maximize: 215 

𝑙𝑜𝑔 𝐿H𝑐6 , 𝐾, 𝛼, 𝑐, 𝑝I =/𝑙𝑜𝑔 𝜆3(𝑡" 	|	𝐻!) − > 𝜆3(𝑡)	𝑑𝑡

/%

/&

0

"1)

. (5) 216 

Within the ETAS2 class, we develop three forecast versions. In ETAS2-bulk we estimate and 217 

use only a single value of c5 for each well, fit over the entire period of operations. ETAS2-218 

specific implements specific values of c5 for each sleeve, calibrated within the individual 219 

injection periods; in this model, we fix the triggering parameters (𝐾, 𝑐, 𝑝, 𝛼) to the respective 220 
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values previously obtained for ETAS2-bulk assuming that the contribution of event-to-event 221 

interactions does not change in different injection periods, when the external forcing is likely 222 

to be the dominant mechanism of earthquake production. Finally, ETAS2-unoptimized uses the 223 

ETAS parameters estimated on the PNR-1z catalog (including its bulk proportionality 224 

constant) to forecast out-of-sample the expected seismic response at PNR-2. 225 

Simulating ETAS2 models requires a different method for background events during injection 226 

periods. We apply the thinning algorithm (e.g. Zhuang and Touati, 2015): (i) estimate a mean 227 

expected number of forced events (𝑁6LLL) by multiplying c5 by the injection rate integrated over 228 

the duration of either the injection period or the forecast window (whichever is shorter); (ii) 229 

draw a random variable (𝑁6) from a Poisson distribution with mean equal to 𝑁6LLL; (iii) distribute 230 

the 𝑁6 events in time according to a piece-wise linear, non-homogeneous Poisson process with 231 

rate 𝜇(𝐼4) driven by the injection rate (smoothed using 1-minute moving windows); (iv) 232 

simulate all aftershock generations triggered by the directly forced events by means of the 233 

standard procedure.  234 

 235 

For consistency, all six ETAS versions are updated hourly (or when an injection period starts, 236 

whichever comes sooner), and estimated by 1,000 stochastic ETAS simulations with fixed 237 

M789= 6.5 (the most likely regional maximum expected tectonic magnitude; Woessner et al., 238 

2015). It is worth noting that incomplete datasets can bias the estimation of the ETAS 239 

parameters and potentially lead to seismic rate underpredictions (Seif et al., 2017). For the 240 

PNR-1z microseismicity catalog, we estimate a magnitude of completeness (Mc) between -1.2 241 

and -1.5 (Figure S1a), while our Mc estimate for PNR-2 is below -1.5 (Figure S1b). However, 242 

M ≥ -1.2 events represent only ~7% of earthquakes recorded at PNR-1z. Furthermore, here we 243 

are interested in producing earthquake models that can forecast events also during periods of 244 

intense injection-induced seismicity, which instead consist primarily of very small magnitude 245 
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earthquakes. Therefore, to find a pragmatic compromise and to increase the number of events 246 

to around 20% of the entire PNR-1z dataset, we conduct our analyses using the lower bound 247 

of the estimated PNR-1z catalog completeness range (Mc = -1.5). For comparability, we use 248 

the same magnitude threshold for PNR-2. Accordingly, all our ETAS models seek to forecast 249 

the number of M ≥ -1.5 events at the two wells. 250 

 251 

In the electronic supplement, we report a summary of the tested ETAS versions (Table S1) and 252 

the values of the ETAS parameters (Table S2), including the bulk and sleeve-specific values 253 

of c5 (Tables S3 and S4 for PNR-1z and PNR-2, respectively). 254 

 255 

Evaluation of model performance 256 

Because each forecast consists of a probability distribution of earthquake numbers over the 257 

forecast period, we evaluate and rank forecast models using a probabilistic score, namely the 258 

log-likelihood values. The score quantifies the likelihood of the observed number if the models 259 

were the data-generator, specifically the logarithm of the probability 𝑃𝑟(𝜔|𝑚𝑜𝑑𝑒𝑙) of observing 260 

𝜔 earthquakes given the ETAS forecasts (Zechar, 2010): 261 

 262 

𝐿𝐿(ω|𝑚𝑜𝑑𝑒𝑙) = logH𝑃𝑟(𝜔|𝑚𝑜𝑑𝑒𝑙)I. (6) 263 

 264 

To compensate for the limited number of simulations, which is likely to under-sample the range 265 

of possible simulated ETAS rates, we approximate the simulation histogram of each forecast 266 

window with a Negative Binomial Distribution (NBD; Harte, 2015) (Figures S2 and S3). We 267 

choose the two-parameter NBD because it characterizes earthquake clustering and process 268 

overdispersion much better than the Poisson distribution (Kagan, 2010). We calculate the 269 
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likelihood scores from the fitted NBD. Greater log-likelihood scores indicate greater predictive 270 

skill.  271 

 272 

Results 273 

Forecast timeseries 274 

In Figures 3a and 4a, we present the incremental hourly timeseries of the three in-sample ETAS 275 

forecasts for PNR-1z and PNR-2. We select illustrative subperiods characterized by (1) weak 276 

and strong seismic responses to injection, and (2) seismicity without injection. The panels 277 

compare the observed number of M ≥ -1.5 events per hour with the mean and 95% predictive 278 

interval of the ETAS model. Firstly, we find that the ETAS1 class projects the onset of 279 

increased rates with a 1-hour delay compared to observations. This is not an unexpected effect 280 

due to the scarcity of M ≥ -1.5 parent earthquakes prior to each injection period and the fact 281 

that ETAS1 does not account for external seismicity forcing. Secondly, the standard ETAS1-282 

optimized severely underestimates the observed rates by an order of magnitude during the 283 

higher seismicity periods, whether the seismic response to injection is weak or strong. The 284 

reason for this underprediction is the fact that ETAS1-optimized lacks information about 285 

impending active fluid injections. In contrast, other forecast time windows characterized by 286 

underpredictions, such as those immediately following the stop of injections, may suffer from 287 

the possible temporary incompleteness of the catalog. Although the estimated ETAS 288 

parameters may compensate for this effect, the time-varying incompleteness results in some 289 

target periods with fewer small events that would have otherwise increased the chances of 290 

triggering additional events. Therefore, the early post-injection model performance might 291 

improve with a more complete catalog. However, in post-injection conditions (i.e., a few hours 292 

after the end of pumping), when any earthquake clustering is likely driven by event-to-event 293 

triggering, ETAS1-optimized generally reproduces well the hourly seismicity within the 294 
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model’s 95% ranges at PNR-1z (Figure 3a) and PNR-2 (Figure 4a). Interestingly, during 295 

periods of no injection and low seismicity at PNR-1z, the 95% forecast range often 296 

encompasses the critical value of zero events, reflecting the intrinsic stochasticity of the ETAS 297 

model. 298 

The ETAS2 class, featuring an injection-rate-driven background rate, substantially reduces the 299 

discrepancies with the observed rates. ETAS2-bulk, which captures the average seismic 300 

response to injection, both under- and over-predicts during injection periods. This mixed 301 

performance is a result of the single proportionality constant for each dataset that does not 302 

sufficiently capture the complex relationships between injection rate and seismicity. ETAS2-303 

specific, which describes the seismicity response with sleeve-specific injection data, presents 304 

the best match during the periods of high seismicity rate due to pressurized fluid forcing. Here, 305 

the visual comparison is very encouraging, but hinges on in-sample, sleeve-specific 306 

proportionality constants between seismic rates and injection rates.  307 

We next analyze the performance of all ETAS models, including the out-of-sample versions, 308 

over the entire testing periods at PNR-1z (Figure 3b-d) and at PNR-2 (Figure 4b-d). Using a 309 

simple acceptance/rejection criterion, we consider a forecast accepted (green symbols) if the 310 

observations fall within the 95% model range, otherwise we mark it as rejected (red symbols). 311 

An ideal forecast, which predicts the observations perfectly, aligns along the diagonal lines of 312 

Figures 3b-d and 4b-d. While the observations fall into the 95% forecast range of the ETAS1 313 

models about 80% of the time, these matches correspond to periods of low seismicity: accepted 314 

forecasts occur only when less than 40 events are observed at PNR-1z (Figure 3b,c) and less 315 

than 150 events are observed at PNR-2 (Figure 4b,c). We also note that (1) at both PNR-1z and 316 

PNR-2 ETAS1-global overpredicts less frequently than models parameterized on well-specific 317 

seismicity when the seismicity rate is extremely low (Figure 3b,c and Figure 4b,c) but 318 

underpredicts more during high-rate windows, and (2) in PNR-2 the differences between 319 
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ETAS1-optimized and ETAS1-unoptimized are negligible (Figure 4b), a result of the similar 320 

parameters estimated from the two wells (Table S2). 321 

The performance of the ETAS2 class (Figures 3d and 4d) differs from ETAS1 mostly during 322 

injection periods, and the improvement is appreciable. ETAS2-specific performs strikingly 323 

well, as the only model to forecast very productive periods with more than 300 events at PNR-324 

1z (Figure 3d) and more than 1,000 events at PNR-2 (Figure 4d). Finally, the out-of-sample 325 

ETAS2-unoptimized model, which uses the bulk seismic response to injection at PNR-1z to 326 

forecast seismicity at PNR-2, persistently underpredicts injection-induced high rates (Figure 327 

4d), but its underprediction is less severe than that of the ETAS1 class. 328 

 329 

Likelihood scores 330 

The cumulative log-likelihood scores of the models over the entire duration of the PNR 331 

catalogs show that the injection-rate driven ETAS2 realizations considerably outperform 332 

models belonging to the standard ETAS1 class (Figure 5). In particular, ETAS2-specific has 333 

the highest likelihood scores at both wells and thus ranks as the best performing model, 334 

followed by ETAS2-bulk as second-best. The latter performs unevenly in the two wells, with 335 

better predictive skill in PNR-1z (Figure 5a) than in PNR-2 (Figure 5b) during the first few 336 

days of operations. Encouragingly, the out-of-sample ETAS2-unoptimized model scores better 337 

than all ETAS1 models and performs similarly to ETAS2-bulk during the first week of 338 

treatment of PNR-2. In other words, a model calibrated on PNR-1z data could have provided 339 

informative forecasts for PNR-2.  340 

ETAS1-global performs worse than the injection-rate driven ETAS2 class but compares well 341 

with the other ETAS1 models and even with the ETAS2-unoptimized and ETAS2-bulk models 342 

in the early stages of PNR-2 (inset of Figure 5b); this is a priori surprising for a model calibrated 343 

on moderate to large subduction zone earthquakes.  344 
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 345 

Conclusions 346 

The PNR microseismic datasets present a unique opportunity to develop and evaluate statistical 347 

forecasting models of hydraulic fracturing induced seismicity. Notwithstanding the variability 348 

and uncertainties linking pumping data to the induced seismicity response at both PNR wells, 349 

we observe a generally positive co-dependency between seismicity and injection rates that 350 

supports the incorporation of operational parameters into the standard tectonic ETAS model. 351 

In comparing the performance of the standard and injection-rate driven ETAS forecasts, we 352 

find that the seismicity decay after the operations, or between stages, is satisfactorily captured 353 

by the standard ETAS. We interpret this result as follows. During operations we witness the 354 

complex interplay of rapid pore pressure effects and earthquake clustering, expressing a variety 355 

of possible mechanisms (e.g., elastostatic stress transfer, poroelastic effects, aseismic creep) 356 

(Schultz et al., 2020), while external forcing ceases in inter- and post-injection periods and 357 

seismicity shows a more typical tectonic behavior.   358 

However, the log-likelihood scores of the ETAS models demonstrate that a non-stationary 359 

background rate tied to the injection rate is necessary to avoid severe underpredictions during 360 

injection periods, when the seismic productivity is high. Thus, even a simplistic linear 361 

relationship between injection rate and induced seismicity leads to informative ETAS forecasts 362 

in HF environments. From the model comparison, we conclude that (1) bulk constants of 363 

proportionality do not accurately describe the variable seismic response to fluid injection, and 364 

(2) a sleeve-specific modulation of the seismic response to injection is the most critical element 365 

for producing reliable forecasts. 366 

In our study, the best-performing ETAS model is an in-sample forecast that represents a best-367 

case scenario. This performance may be difficult to attain out-of-sample. However, the sleeve-368 

specific constants of proportionality could be estimated and fine-tuned in near real-time 369 
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conditions from the initial seismic response at the sleeve, similarly to real-time attempts to 370 

estimate parameters of other models (e.g., Clarke et al., 2019). Given the temporal variability 371 

of the seismic response to constant injection and the time-varying catalog completeness 372 

thresholds, the parameters will doubtlessly be more uncertain, and this additional uncertainty 373 

should be propagated into the forecasts. In this regard, the operator would have to assume that 374 

(i) the injection rate at each sleeve is known in advance and (ii) the evolving sleeve-specific 375 

seismic response is continuously acquired and adequately detected to support frequent model 376 

calibrations. 377 

To mimic real-time conditions (i.e., before data are available for parameter estimation), we also 378 

evaluate forecasts from three out-of-sample models. Although their performance is worse than 379 

the in-sample models, we also see encouraging results. The models present low log-likelihood 380 

scores in the longer term (i.e., more than 3-5 days after the start of operations), but they perform 381 

comparably to some in-sample models during the first few days of operations. This is true even 382 

for the ETAS model calibrated on data from global subduction zones. This is promising for 383 

operational conditions: operators could provide forecasts during the very early stages of 384 

operations using parameters that are either generic or previously calibrated on adjacent wells. 385 

As well-specific and stage-specific data become available, forecasts can be improved with re-386 

estimated parameters and the operational injection data, similarly to an ETAS approach 387 

proposed for other time-varying fluid-driven processes such as natural seismic swarms (Llenos 388 

& Michael, 2019). To further assess the robustness of the model parameterization and 389 

performance, future tests should involve datasets with a coherent magnitude scale and a less 390 

time-variant magnitude completeness level. 391 

In light of the results from the PNR experiments, we conclude that injection-rate driven ETAS 392 

models produce informative time-dependent probabilistic seismic rate forecasts. The 393 

seismicity forecasts, when convolved with models of ground motion, exposure and 394 
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vulnerability, can support time-dependent probabilistic seismic hazard and risk assessment. 395 

These forecast models may provide useful information for operators, regulators, residents and 396 

other stakeholders in HF environments.  397 

 398 

Data and resources 399 

The PNR-1z and PNR-2 microseismicity catalogs as well as the fluid injection rate data used 400 

in this study can be acquired through access to the UK Oil and Gas Authority website at 401 

https://www.ogauthority.co.uk/exploration-production/onshore/onshore-reports-and-data/.   402 

The supplemental material attached to this manuscript illustrates examples of histograms from 403 

the ETAS simulations performed for PNR-1z and PNR-2; it also provides a summary of the 404 

developed ETAS models along with their parameterizations.  405 

 406 

Acknowledgements 407 

The authors thank the editor and two anonymous reviewers for their constructive comments. 408 

We would also like to thank the UK Oil and Gas Authority (OGA) for providing the datasets. 409 

SM was supported by a Great Western Four+ Doctoral Training Partnership (GW4+ DTP) 410 

studentship from the Natural Environment Research Council (NERC) (NE/L002434/1) and by 411 

a studentship from the British Geological Survey University Funding Initiative (BUFI) (S350). 412 

MJW and BB were supported by NERC (NE/R017956/1, “EQUIPT4RISK”). MJW and MS 413 

were supported by the European Union H2020 program (No 821115, “RISE”). BB was also 414 

supported by the NERC grant NE/R01809X/1. This work was also supported by the Bristol 415 

University Microseismic ProjectS (“BUMPS”) and by the Southern California Earthquake 416 

Center (SCEC) (Contribution No. 10149). SCEC is funded by the National Science foundation 417 

Cooperative Agreement EAR-1600087 & US Geological Survey Cooperative Agreement 418 

G17AC00047.   419 



Manuscript accepted for publication in Seismological Research Letters 

 18 

 420 

References 421 

Atkinson, G. M., D. W. Eton, and N. Igonin (2020). Developments in understanding seismicity 422 

triggered by hydraulic fracturing, Nat. Rev. Earth Environ., 1, 264-277. 423 

https://doi.org/10.1038/s43017-020-0049-7.  424 

Asanuma, H., T. Eto, M. Adachi, K. Saeki, K. Aoyama, H. Ozeki, and M. Häring (2014). 425 

Seismostatistical Characterization of Earthquakes from Geothermal Reservoirs. 426 

Proceedings of the Thirty-Ninth Workshop on Geothermal Reservoir engineering Stanford 427 

University, Stanford, California, February 2014, SGP-TR-202. 428 

Baptie, B. and R. Luckett (2019). Seismicity Induced by Hydraulic Fracturing Operations at 429 

Preston New Road, Lancashire, 2018. Proceedings of the Society of Earthquake and Civil 430 

Engineering Dynamics Conference, September 2019, Greenwich, London. 431 

Baptie, B., R. Luckett, A. Butcher, and M. J. Werner (2020). Robust relationships for 432 

magnitude conversion of PNR seismicity catalogues. British Geological Survey Open 433 

Report OR/20/042, British Geological Survey for Oil and Gas Authority, London, United 434 

Kingdom, 32 pp. 435 

Bachmann, C., S. Wiemer, J. Woessner, and S. Hainzl (2011). Statistical analysis of the 436 

induced Basel 2006 earthquake sequence: Introducing a probability-based monitoring 437 

approach for Enhanced Geothermal Systems, Geophys. J. Int., 186, 793-807. 438 

Bourne, S., and S. Oates (2017). Development of statistical geomechanical models for 439 

forecasting seismicity induced by gas production from the Groningen field, Netherlands 440 

Journal of geosciences, 96(5), S175-S182. http://doi.org.10.1017/njg.2017.35.  441 

Clarke, H., P. Turner, R. M. Bustin, N. Riley, and B. Besly (2018). Shale Gas Resources of the 442 

Bowland Basin, NW England: A Holistic Study, Petrol. Geosci., 24(3), 287-322, 443 

https://doi.org/10.1144/petgeo2017-066.  444 

Clarke, H., J. P. Verdon, T. Kettlety, A. F. Baird, and J. M. Kendall (2019). Real‐Time Imaging, 445 

Forecasting, and Management of Human‐Induced Seismicity at Preston New Road, 446 

Lancashire, England, Seismol. Res. Lett., 90(5), 1902-1915. 447 



Manuscript accepted for publication in Seismological Research Letters 

 19 

Cao, A. M., and S. S. Gao (2002). Temporal variation of seismic b‐values beneath northeastern 448 

Japan island arc, Geophys. Res. Lett., 29(9), 1334. https://doi.org/10.1029/2001GL013775.  449 

Cremen, G. and M. J. Werner (2020). A Novel Approach to Assessing Nuisance Risk from 450 

Seismicity Induced by UK Shale Gas Development, with Implications for Future Policy 451 

Design, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-95.  452 

Cuadrilla Resources Inc. (2019). Hydraulic Fracture Plan PNR 2. Cuadrilla Resources Inc. 453 

Report CORP-HSE-RPT-003. 454 

Ellsworth, W. L. (2013). Injection-induced earthquakes, Science, 341(6142), 1225942. 455 

https://doi.org/10.1126/science.1225942  456 

Ellsworth, W. L., D. Giardini, J. Townend, S. Ge, and T. Shimamoto (2019). Triggering of the 457 

Pohang, Korea, Earthquake (Mw 5.5) by Enhanced Geothermal System Stimulation, 458 

Seismol. Res. Lett., 90(5), 1844-1858. 459 

Hainzl, S., and Y. Ogata (2005). Detecting fluid signals in seismicity data through statistical 460 

earthquake modeling, J. Geophys. Res. Solid Earth, 110(B5). 461 

Harte, D. (2015). Log-likelihood of earthquake models: evaluation of models and forecasts, 462 

Geophys. J. Int., 201, 711-723, https://doi.org/10.1093/gji/ggu442.  463 

Jia, K., S. Zhou, J. Zhuang, C. Jiang, Y. Guo, Z. Gao, S. Gao, Y. Ogata, and X. Song (2020). 464 

Nonstationary Background Seismicity Rate and Evolution of Stress Changes in the 465 

Changning Salt Mining and Shale-Gas Hydraulic Fracturing Region, Sichuan Basin, China, 466 

Seismol. Res. Lett. 91, 2170–2181, https://doi.org/10.1785/0220200092.  467 

Kagan, Y. Y. (2010). Statistical distribution of earthquake numbers: consequence of branching 468 

process, Geophys. J. Int., 180, 1313-1328, https://doi.org/10.1111/j.1365-469 

246X.2009.04487.x.   470 

Keranen, K. M., H. M. Savage, G. A. Abers, and E. S. Cochran (2013). Potentially induced 471 

earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 472 

earthquake sequence, Geology, https://doi.org/10.1130/G34045.1.  473 

Kettlety, T., J. P. Verdon, M. J. Werner, and J. M. Kendall (2020a). Stress transfer from 474 

opening hydraulic fractures controls the distribution of induced seismicity, J. Geophys. Res. 475 

Solid Earth, 125, e2019JB018794, https://doi.org/10.1029/2019JB018794.  476 



Manuscript accepted for publication in Seismological Research Letters 

 20 

Kettlety, T., J. P. Verdon, A. Butcher, M. Hampson, and L. Craddock (2020b). High-resolution 477 

imaging of the ML 2.9 August 2019 earthquake in Lancashire, United Kingdom, induced 478 

by hydraulic fracturing during Preston New Road PNR-2 operations, Seismol. Res. Lett., 479 

92(1), 151-169, https://doi.org/10.1785/0220200187.  480 

Kiraly-Proag, E., J. D. Zechar, V. Gischig, S. Wiemer, D. Karvounis, and J. Doetsch (2016). 481 

Validating induced seismicity forecast models—Induced Seismicity Test Bench, J. 482 

Geophys. Res. Solid Earth, 121, 6009–6029, https://doi.org/10.1002/2016JB013236.  483 

Lee, K., W. L. Ellsworth, D. Giardini, J. Townend, S. Ge, T. Shimamoto, I. Yeo, T. Kang, J. 484 

Rhie, D. Sheen, C. Chang, J. Woo, and C. Langenbruch (2019). Managing injection-induced 485 

seismic risks, Science, 364 (6442), 730–32. 486 

Lei, X., D. Huang, J. Su, G. Jiang, X. Wang, H. Wang, X. Guo, and H. Fu (2017). Fault 487 

reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shake-gas 488 

hydraulic fracturing in Sichuan Basin, China, Sci. Rep., 7 (7971). 489 

https://doi.org/10.1038/s41598-017-08557-y.  490 

Lei, X., Z. Wang, and J. Su (2019). The December 2018 ML 5.7 and January 2019 ML 5.3 491 

earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing, Seismol. Res. 492 

Lett. 90(3), 1099–1110. https://doi.org/10.1785/0220190029.   493 

Llenos, A. L., and A. J. Michael (2013). Modeling earthquake rate change in Oklahoma and 494 

Arkansas: possible signatures of induced seismicity, Bull. Seismol. Soc. Am., 103(5), 2850-495 

2861. https://doi.org/10.1785/0120130017.  496 

Llenos, A. L., and A. J. Michael (2019), Ensembles of ETAS models provide optimal 497 

operational earthquake forecasting during swarms: Insights from the 2015 San Ramon, 498 

California swarm, Bull. Seismol. Soc. Am., 109, 2145-2158. 499 

https://doi.org/10.1785/0120190020. 500 

Mena, B., S. Wiemer and C. Bachmann (2013). Building robust models to forecast the induced 501 

seismicity related to geothermal reservoir enhancement, Bull. Seismol. Soc. Am., 103(1), 502 

383-392. https://doi.org/10.1785/0120120102.  503 

Michael, A. J., and M. J. Werner (2018). Preface to the Focus Section on the Collaboratory for 504 

the Study of Earthquake Predictability (CSEP): New Results and Future Directions, Seismol. 505 

Res. Lett., 89(4), 1226-1228. https://doi.org/10.1785/0220180161.  506 



Manuscript accepted for publication in Seismological Research Letters 

 21 

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point 507 

processes, J. Am. Stat. Assoc., 83(401), 9–27. 2861–2864.  508 

Seif, S., A. Mignan, J. D. Zechar, M. J. Werner, and S. Wiemer (2017). Estimating ETAS: The 509 

effects of truncation, missing data, and model assumptions, J. Geophys. Res. Solid Earth 510 

121, 449–469. https://doi.org/10.1002/2016JB012809.   511 

Shapiro, S. A., C. Dinske, and J. Kummerow (2007). Probability of a given-magnitude 512 

earthquake induced by a fluid injection, Geophys. Res. Lett., 34, L22, 314, 513 

https://doi.org/10.1029/2007GL031615.  514 

Schultz, R., R. J. Skoumal, M. R. Brudzinski, D. Eaton, B. Baptie, and W. Ellsworth (2020). 515 

Hydraulic fracturing‐induced seismicity, Rev. Geophys., 58, e2019RG000695. 516 

https://doi.org/10.1029/2019RG000695.  517 

Utsu, T. (1961). A statistical study on the occurrence of aftershocks, Geophys. Mag., 30, 521-518 

605.  519 

Verdon, J., and J. Budge (2018). Examining the Capability of Statistical Models to Mitigate 520 

Induced Seismicity during Hydraulic Fracturing of Shale Gas Reservoirs, Bull. Seismol. 521 

Soc. Am., 108(2), 690-701. https://doi.org/10.1785/0120170207  522 

Woessner, J., L. Danciu, D. Giardini, H. Crowley, F. Cotton, G. Grünthal, G. Valensise, R. 523 

Arvidsson, R. Basili, M. Betül Demircioglu, S. Hiemer, C. Meletti, R. Musson, A. Rovida, 524 

K. Sesetyan, M. Stucchi, and the Seismic Hazard Harmonization in Europe (SHARE) 525 

Consortium (2015). The 2013 European Seismic hazard model: key components and results, 526 

Bull. Earth. Eng. https://doi.org/10.1007/s10518-015-9795-1.  527 

 Zechar, J.D. (2010). Evaluating earthquake predictions and earthquake forecasts: a guide for 528 

students and new researchers, Community Online Resource for Statistical Seismicity 529 

Analysis, https://doi.org/10.5078/corssa-77337879.  530 

Zhang, L., M. J. Werner, and K. Goda (2020). Variability of ETAS parameters in global 531 

subduction zones and applications to mainshock-aftershock hazard assessment, Bull. 532 

Seismol. Soc. Am., 110(1), 191-212. https://doi.org/10.1785/0120190121.  533 



Manuscript accepted for publication in Seismological Research Letters 

 22 

Zhuang, J., Y. Ogata, and D. Vere-Jones (2002). Stochastic declustering of space-time 534 

earthquake occurrences, J. Am. Stat. Assoc., 97(458), 369–380. 535 

https://doi.org/10.1198/016214502760046925.  536 

Zhuang, J., D. Harte, M. J. Werner, S. Hainzl, and S. Zhou (2012). Basic models of seismicity: 537 

temporal models, Community Online Resource for Statistical Seismicity Analysis. 538 

https://doi.org/10.5078/corssa-79905851.   539 

Zhuang, J., and S. Touati (2015). Stochastic simulation of earthquake catalogs, Community 540 

Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-541 

43806322.  542 

 543 

Addresses of authors  544 

Simone Mancini (simone@bgs.ac.uk), British Geological Survey, The Lyell Center, Research 545 
Avenue South, EH14 4AP, Edinburgh, UK 546 

Maximilian Jonas Werner (max.werner@bristol.ac.uk), School of Earth Sciences, University 547 
of Bristol, BS8 1RL Bristol, UK 548 

Margarita Segou (msegou@bgs.ac.uk), British Geological Survey, The Lyell Center, Research 549 
Avenue South, EH14 4AP, Edinburgh, UK 550 

Brian Baptie (bbap@bgs.ac.uk), British Geological Survey, The Lyell Center, Research 551 
Avenue South, EH14 4AP, Edinburgh, UK  552 

 553 

List of Figure Captions 554 

Figure 1. Map view of earthquakes recorded during hydraulic fracturing at the Preston New 555 
Road unconventional shale gas site. Events are color-coded by the associated injection stage 556 
and their size scales with magnitude. (a) Seismicity between 15 October and 17 December 557 
2018 during and after injection at the PNR-1z well. (b) Seismicity between 15 August and 2 558 
October 2019 during and after injection at the PNR-2 well; grey dots indicate the epicenters of 559 
events occurred during operations at PNR-1z. The black lines represent the surface projection 560 
of the two wellpaths. Diamonds illustrate the position of the main sleeves worked during the 561 
operations at the two wells and are colored by the corresponding injection stages. 562 
 563 
Figure 2. Seismicity response to hydraulic fracturing at the Preston New Road site. (a-b) 564 
Histograms of the number of M ≥ -1.5 events per hour (black bars) as a function of time during 565 
operations along with the cumulative volume of injected fluid (light blue line) at PNR-1z and 566 
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PNR-2, respectively. For illustration purposes, we inserted a time gap during the pause of 567 
operations at PNR-1z, which is indicated by the grey area. (c-e) Examples of seismic 568 
productivity and earthquake magnitudes vs. time (red circles) in response to the injection 569 
history (light blue line) at selected sleeves. 570 
 571 
Figure 3. Observed vs. forecasted number of M ≥ -1.5 events at PNR-1z. (a) Illustration of 572 
incremental 1-hour forecast timeseries vs. observations at PNR-1z injection sleeves 573 
characterized by weak and strong seismicity response as well as during the pause of operations. 574 
ETAS2-bulk model predictions are shown only during injection periods indicated by the “Inj.” 575 
label (otherwise its forecasts are identical to ETAS1-optimized and ETAS2-specific). Black 576 
circles indicate the number of observed events in each forecast window. Other symbols 577 
represent the mean expected number from the simulations. Bars denote 95% ETAS model 578 
simulation ranges. For illustration purposes, during periods of suspended/paused injection data 579 
are plotted at 12-hour intervals. (b-d) Observed vs. expected number of events per forecast 580 
period over all injection stages. Each symbol indicates one forecast window, which is accepted 581 
if the 95% model range (black vertical bars) intersect the diagonal black line. Red symbols 582 
denote rejected forecasts (data outside model range); green symbols denote accepted forecasts. 583 
   584 
 585 
Figure 4. Observed vs. forecasted number of M ≥ -1.5 events at PNR-2. (a) Illustration of 586 
incremental 1-hour forecast timeseries vs. observations at PNR-2 injection sleeves 587 
characterized by weak and strong seismicity response as well as during the pause of operations. 588 
ETAS2-bulk model predictions are shown only during injection periods indicated by the “Inj.” 589 
label (otherwise its forecasts are identical to ETAS1-optimized and ETAS2-specific). Black 590 
circles indicate the number of observed events in each forecast window. Other symbols 591 
represent the mean expected number from the simulations. Bars denote 95% ETAS model 592 
simulation ranges. For illustration purposes, during periods of suspended/paused injection data 593 
are plotted at 2-hour intervals. (b-d) Observed vs. expected number of events per forecast 594 
period over all injection stages. Each symbol indicates one forecast window, which is accepted 595 
if the 95% model range (black vertical bars) intersect the diagonal black line. Red symbols 596 
denote rejected forecasts (data outside model range); green symbols denote accepted forecasts. 597 
 598 
Figure 5. Cumulative log-likelihood timeseries. ETAS models tested on (a) PNR-1z and (b) 599 
PNR-2. 600 
 601 
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Figures with captions 602 

 603 

Figure 1.  Map view of earthquakes recorded during hydraulic fracturing at the Preston New 604 
Road unconventional shale gas site. Events are color-coded by the associated injection stage 605 
and their size scales with magnitude. (a) Seismicity between 15 October and 17 December 606 
2018 during and after injection at the PNR-1z well. (b) Seismicity between 15 August and 2 607 
October 2019 during and after injection at the PNR-2 well; grey dots indicate the epicenters of 608 
events occurred during operations at PNR-1z. The black lines represent the surface projection 609 
of the two wellpaths. Diamonds illustrate the position of the main sleeves worked during the 610 
operations at the two wells and are colored by the corresponding injection stages. 611 
 612 

 613 
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 614 
Figure 2. Seismicity response to hydraulic fracturing at the Preston New Road site. (a-b) 615 
Histograms of the number of M ≥ -1.5 events per hour (black bars) as a function of time during 616 
operations along with the cumulative volume of injected fluid (light blue line) at PNR-1z and 617 
PNR-2, respectively. For illustration purposes, we inserted a time gap during the pause of 618 
operations at PNR-1z, which is indicated by the grey area. (c-e) Examples of seismic 619 
productivity and earthquake magnitudes vs. time (red circles) in response to the injection 620 
history (light blue line) at selected sleeves. 621 
 622 
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 633 

Figure 3. Observed vs. forecasted number of M ≥ -1.5 events at PNR-1z. (a) Illustration of 634 
incremental 1-hour forecast timeseries vs. observations at PNR-1z injection sleeves 635 
characterized by weak and strong seismicity response as well as during the pause of operations. 636 
ETAS2-bulk model predictions are shown only during injection periods indicated by the “Inj.” 637 
label (otherwise its forecasts are identical to ETAS1-optimized and ETAS2-specific). Black 638 
circles indicate the number of observed events in each forecast window. Other symbols 639 
represent the mean expected number from the simulations. Bars denote 95% ETAS model 640 
simulation ranges. For illustration purposes, during periods of suspended/paused injection data 641 
are plotted at 12-hour intervals. (b-d) Observed vs. expected number of events per forecast 642 
period over all injection stages. Each symbol indicates one forecast window, which is accepted 643 
if the 95% model range (black vertical bars) intersect the diagonal black line. Red symbols 644 
denote rejected forecasts (data outside model range); green symbols denote accepted forecasts. 645 
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 646 

Figure 4. Observed vs. forecasted number of M ≥ -1.5 events at PNR-2. (a) Illustration of 647 
incremental 1-hour forecast timeseries vs. observations at PNR-2 injection sleeves 648 
characterized by weak and strong seismicity response as well as during the pause of operations. 649 
ETAS2-bulk model predictions are shown only during injection periods indicated by the “Inj.” 650 
label (otherwise its forecasts are identical to ETAS1-optimized and ETAS2-specific). Black 651 
circles indicate the number of observed events in each forecast window. Other symbols 652 
represent the mean expected number from the simulations. Bars denote 95% ETAS model 653 
simulation ranges. For illustration purposes, during periods of suspended/paused injection data 654 
are plotted at 2-hour intervals. (b-d) Observed vs. expected number of events per forecast 655 
period over all injection stages. Each symbol indicates one forecast window, which is accepted 656 
if the 95% model range (black vertical bars) intersect the diagonal black line. Red symbols 657 
denote rejected forecasts (data outside model range); green symbols denote accepted forecasts. 658 
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 659 

Figure 5. Cumulative log-likelihood timeseries. ETAS models tested on (a) PNR-1z and (b) 660 
PNR-2. 661 
 662 


