

Article (refereed) - postprint

This is the peer reviewed version of the following article:

Aura, Christopher Mulanda; Musa, Safina; Nyamweya, Chrisphine S.; Ogari, Zachary; Njiru, James M.; Hamilton, Stuart E.; May, Linda. 2021. **A GIS-based approach for delineating suitable areas for cage fish culture in a lake**. *Lakes & Reservoirs*, 26 (2). e12357,1440-1770, which has been published in final form at <u>https://doi.org/10.1111/lre.12357</u>

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

© 2020 John Wiley & Sons Ltd

This version is available at http://nora.nerc.ac.uk/id/eprint/530395/

Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at https://nora.nerc.ac.uk/policies.html#access.

This document is the authors' final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at https://onlinelibrary.wiley.com/

Contact UKCEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and UKCEH trademarks and logos ('the Trademarks') are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1 A GIS-based approach to delineating the areas of a lake that are suitable for

2 cage fish culture

3 Christopher Mulanda Aura^{1*}, Safina Musa², Chrisphine S. Nyamweya¹, Zachary Ogari¹, James M.

4 Njiru³, Stuart E. Hamilton⁴, Linda May⁵

⁵ ¹Kenya Marine and Fisheries Research Institute P.O. Box 1881-40100, Kisumu, Kenya.

- 6 ²Kenya Marine and Fisheries Research Institute, P.O. Box 3259-40200, Kegati, Kisii, Kenya.
- ⁷ ³Kenya Marine and Fisheries Research Institute, P.O. Box 81651-80100, Mombasa, Kenya.
- ⁴Salisbury University, 1101 Camden Ave, Salisbury, MD 21801, USA.
- 9 ⁵UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
- *Corresponding author: Email: <u>auramulanda@yahoo.com</u> or <u>aura.mulanda@gmail.com</u> Tel.:
 +254711233774.
- 12

13 Abstract

14 We present a GIS-based approach to the delineation of areas that have different levels of suitability 15 for use as tilapia cage culture sites the Kenyan part of Lake Victoria, Africa. The study area was 16 4,100 km². The method uses high-resolution bathymetric data, newly collected water quality data 17 from all major fishing grounds and cage culture sites, and existing spatial information from 18 previous studies. The parameters considered are water depth, water temperature, levels of 19 dissolved oxygen, chlorophyll-a concentrations, distances to the lake shoreline and proximity to 20 other constraints on cage culture development. The results indicated that the area most suitable for fish cages comprised about 362 km², or approximately 9% of the total area; the remaining 91% 21 (i.e. 3.737 km²) was found to be unsuitable for tilapia cage culture. We conclude that the successful 22 23 implementation of this approach would need stakeholder involvement in the validation and approval of potential sites, and in the incorporation of lake zoning into spatial planning policy and the regulations that support sustainable use while minimising resource use conflicts. The results of this study have broader applicability to the whole of Lake Victoria, other African Great Lakes, and any lakes in the world where tilapia cage culture already occurs or may occur in the future.

28

Keywords: Lacustrine; cage culture; wild fisheries; spatial planning; management; sustainability.
30

31 **1 INTRODUCTION**

Lake Victoria lies within the borders of Kenya, Uganda, and Tanzania, with each country controlling 6%, 45% and 49% of its surface, respectively. The whole lake covers an area of 59,947 km² and has an average depth of 40 m, a maximum depth of 80 m, and a shoreline of 7,142 km (Hamilton, 2018). It hosts one of the largest freshwater fisheries in the world, providing a significant source of protein in East Africa and exporting fish to the European Union, United States, China and Japan (Sitoki et al., 2010; FAO, 2016).

38 The area around Lake Victoria is also characterised by a rapidly growing population 39 (United Nations Population Division, 1995; CIESIN, 2017). This increased from 4.6 million 40 people in 1932 to 42.4 million people in 2010, and is expected to rise to about 76.5 million people 41 by 2030 (Bremner et al., 2013). This rapid growth in population has been associated with higher 42 levels of poverty, with lake shore residents becoming the poorest and most food insecure of any 43 communities within the Lake Victoria Basin (LVB) (Abila, 2003). This problem has been 44 exacerbated by recurrent droughts, crop failures, and environmental degradation, all of which have 45 reduced levels of food production (Abila, 2003).

46 Although the LVB is rich in natural resources such as minerals, forests, wetlands and 47 wildlife, the fishery is the primary source of income and food security for tens of millions of people 48 that live around its shoreline (Ochumba & Kibaara, 1989; Lung'ayia et al., 2001; Verschuren et 49 al., 2002; Hecky et al., 2010; Sitoki et al., 2010; Kundu et al., 2017; Sitoki et al., 2012). In 2014, 50 the value of this fishery was estimated to be about USD 650 million per year (Weston, 2015). 51 However, its productivity is now being affected by a decline in the natural fish stocks of the lake, 52 probably as a result of overfishing and illegal or unregulated fishing activities (Njiru et al., 2018b). 53 So, while the demand for fish protein has increased due to population growth (Aura et al., 2019), 54 there are now too many fishers chasing too few fish for capture fisheries, alone, to support the 55 local economy (Njiru et al., 2018a).

The African Union Policy Framework and Reform Strategy for Fisheries and Aquaculture 56 57 calls for lakes and reservoirs to be used to their full potential to generate wealth, deliver social 58 benefits and contribute to food security through market-led sustainable development strategies 59 (FAO, 2016). With wild stocks dwindling, commercial interests are now focusing on the possible 60 development of a lacustrine aquaculture industry to help to supplement capture production in lakes 61 such as Lake Victoria, Lake Tanganyika, Lake Kariba, and Lake Kivu (Beveridge & Phillips, 62 1993; Berg et al., 1996; Aura et al., 2018a). Initial results suggest that this could be a viable 63 economic venture (Aura et al., 2018a) and aid agencies within Kenya are now supporting cage 64 culture activities that are targeted explicitly at Lake Victoria (MSINGI, 2018).

Cage aquaculture has the potential to increase fish yield in Lake Victoria without damaging
wild stocks (Lwama, 1991; Kashindye et al., 2015); it can also overcome some of the conventional
constraints associated with more traditional systems, such as pond culture (Aura et al., 2018a).
While it is standard practice in the marine waters of developed countries and the emerging

69 economies of South East Asia (Garcia de Souza et al., 2013), it is a relatively nascent industry on 70 Lake Victoria and across the wider African Great Lakes (AGLs). Using cage aquaculture to meet 71 future demands for fish protein from a rapidly growing population will require the rapid expansion 72 of this industry. To do this effectively, sustainable management and utilisation of lake resources 73 will be essential.

74 Within the Kenyan part of Lake Victoria, there are currently about 60 cage culture firms operating 4357 (mostly floating) fish cages (Hamilton et al., 2020) most of which are rearing Nile 75 76 tilapia (Aura et al., 2018a). Many of these cages are located within 200 m of the shoreline, which 77 provides fish farmers with ease of access and potential for close supervision, and shelters these 78 installations from potentially damaging winds and currents (Njiru et al., 2018b). However, if cages 79 are sited in shallow areas that act as nursery and breeding grounds for wild fish, they can pose a 80 threat to natural fish populations. While some of these regions are demarcated as breeding zones 81 and are, thus, protected from fishing (Njiru et al., 2018b), they are not protected from cage farm 82 developments. Cage fish farming can also result in conflicts with other uses of the water resource, 83 such as fishing, recreation, transport, water abstractions, cultural practices and hydro-power 84 generation (Aura et al., 2018a).

The rapid expansion of cage culture by the private sector in the Kenyan part of Lake Victoria currently lacks a robust and enforceable regulatory framework. Although the East African Community have published guidelines on the development, operation and licensing of cage aquaculture, these have yet to be incorporated into the management of cage fish farming in Kenyan waters. The guidelines provide useful step-by-step processes for establishing cage farms, including obtaining an establishment and operating license, selecting the site, and adhering to basic fish farm 91 management practices and requirements (LVFO, 2018). However, they do not provide a robust 92 procedure for minimising any conflicts in resource use.

93 Any regulatory framework for the sustainable development of cage culture systems needs 94 to be able to protect the environment, support (or at least not harm) the wild fishery and maximise 95 fish yields. This requires a detailed assessment of any proposed site in terms of its potential 96 suitability for development (EL-Sayed, 2006; Aura et al., 2016). Indeed, an ability to make a 97 robust, evidence based, decision on site suitability is likely to be key to the successful and 98 sustainable development of cage culture systems across Kenya (Venturoti et al., 2016; Aura et al., 99 2018a).

100 Several studies have developed site suitability mapping for a range of aquatic farming 101 activities using methods such as multi-criteria evaluation (e.g., Malczewski, 1999; Buitrago et al., 102 2005; Radiarta et al., 2008; Aura et al., 2016, 2017) and habitat suitability indices (e.g., Cho et al., 103 2012). However, most of these have focused on marine systems, with very few having been 104 developed in relation to artisanal fisheries and inland aquaculture systems - especially in 105 developing nations such as Africa (Aguilar-Manjarrez & Nath, 1998). So, there is little existing 106 information on which to base a method for zoning freshwater lakes to support multiple uses that 107 can be understood easily by local fishers. This study aimed to fill that gap in knowledge by 108 developing standardised criteria for mapping the Kenyan part of Lake Victoria in terms its 109 potential suitability for cage fish culture. Suitability was based on water quality, the protection of 110 fish breeding zones and the avoidance of constraints on development, such as water hyacinth 111 hotspots.

112 The current rise in cage culture investments and the haphazard installation of cages, could 113 spell doom for the lake ecosystem unless development is controlled more effectively. This study

takes a first step towards providing the evidence base that is needed to support sustainable
development in the Kenyan part of Lake Victoria by addressing the following research questions:
i. Where is development constrained by physical factors that affect cage culture

117 development?

118 ii. What is the level of suitability of the remaining areas for cage installations?

119 iii. How large is the area that could be designated for other lake based activities to reduce120 potential conflicts with other uses of the resource?

121 **1.1 Study Area**

122 The Kenyan part of Lake Victoria, which this study is focused on, comprises an area of 4,100 km² 123 that has an average depth of between 6 m and 8 m, and a maximum depth of 70 m (Odada et al., 124 2004). In this part of the lake, cage culture has been identified as a new socioeconomic frontier 125 that has good prospects for generating income while helping to conserve declining wild fish stocks. 126 Using satellite and drone technologies, this part of the lake was found to contain 4,357 fish cages, 127 covering 62,132 m², in 2019 (Hamilton et al., 2020). The local preference is for cages with 128 dimensions of 2 m x 2 m x 2 m, a stoking rate of 2000 fingerlings per cage and a one cage per 129 farmer concept. This cage size is preferred due to ease of assembling, feeding, monitoring and 130 managing the systems. Larger cages are expensive to make, and difficult to secure and launch on 131 the site.

In 2015, the capture fishery landed 118,145 tons of fish with an estimated value of about USD 94.4 million (Aura et al., 2020). In recent years, the rapidly increasing cage culture industry in this area has already been producing about 2,522 tons of fish per cycle with an estimated value of USD 8.83 million (Aura et al., 2018a). This suggests that cage culture is now an emerging and viable economic investment that could support the development of a "Blue Economy" in Kenya. While an increase in adoption of cage culture would provide local communities with prospects of better income and greater food security, the sustainable use of this new technology within the lake remains uncertain.

140

141 2 MATERIALS AND METHODS

Figure 1 shows a schematic representation of the process used for delineating areas that are potentially suitable for cage fish culture within the Kenyan part of Lake Victoria. In outline, the process involved combining information on the physical constraints on cage development with the water quality preferences of caged tilapia to produce a cage farm suitability map. Existing cage fish farms were then assessed to determine the number that were located within each zone.

In general, the field calculator function in QGIS was used to estimate the area (in km²) of each region of interest. Microsoft Excel 2016 was for data entry and cleaning, and SPSS version 21 (SPSS Inc., Chicago, IL, USA) and R version 3.5.0 (R Core team, 2014) were used for statistical analyses. The field data collected were compared using the Kruskal-Wallis one-way ANOVA to examine the spatial variations between the data from the control stations and the data collected around the fish cages. The significance level was set at an alpha of 0.05.

2.1 Maps of physical constraints on cage farm locations

The potential development of cage fish farms is affected by a number of physical constraints on their location and development. These include fish breeding grounds, water hyacinth and floating island hotspots, water depth and areas that are too close to the shore. Areas with water hyacinth and moving islands, for example, are unsuitable because they have been found to destroy cage culture installations (Aura et al., 2018a). Although water hyacinth keeps moving around, depending on the direction and strength of winds and water currents, there are specific 'hotspot' 160 areas where it persists for long periods of time, minimising the space available for cage culture 161 installations during its period of occurrence (Opande et al., 2004; Ongore et al., 2018). 162 Furthermore, areas that are infested with heavy mats of the weed tend to have poor water quality, 163 which prevents the development of cages in these areas (Villamagna and Murphy, 2009). In 164 addition, the decomposition of the large amounts of organic matter that are produced by these mats 165 of water hyacinth leads to an increase in biological oxygen demand and a decrease in dissolved 166 oxygen (DO) levels (Balirwa et al., 2009; Taabu-Munyaho et al., 2016) which threaten the survival 167 of the fish.

Digital maps of areas that are designated as fish breeding grounds were available from the study conducted by Aura et al. (2018b), and those designated as water hyacinth and moving island hotspots were available from that of Ongore et al. (2018). Maps of distance to shoreline were also created for the current study. Distance from the cage culture location to the shoreline is important because it affects access to the cage culture sites for the supply of goods and services (e.g. feed, equipment, fuel) and to the route to market for any fish produced (Ross et al., 2011). In addition, cages need to be placed where they can be monitored in terms of their welfare and security.

175 Water depth also affects the potential location of fish cages because it determines the extent 176 to which wind velocity and fetch help to increase water circulation, this providing better DO 177 exchange and more efficient removal of wastes (Bascom, 1964; Beveridge, 2004; Perez et al., 178 2005). To provide maps of site specific depth information, a 100 m resolution bathymetric model 179 was created from more than 4 million data points that had been collected from recent hydrographic 180 surveys. Points that did not have Global Positioning System (GPS) locations were digitised 181 manually by fitting admiralty maps to the lake shoreline using their graticule (Beveridge, 2004). 182 Point data were converted to raster data using the process of simple kriging (Anyah and Semazzi,

2009), using a WGS 84 EPSG 4326 projection. All of the constraint data for cage culture
development were converted from polygon to raster format, where necessary, and transformed into
thematic images for analysis.

186 **2.2 Maps of water quality data**

187 Information on selected water quality parameters were collected from the sampling sites shown in 188 Figure 2 at quarterly intervals in the dry (July – October) and wet (March – June) seasons between 189 October 2016 to October 2018. The sites were chosen to provide comprehensive coverage of all 190 known fishing grounds (n = 29) and nearby cage culture sites, including near- and off-shore areas 191 in the vicinity. The sampling sites were classified according to their position the lake as littoral 192 near-shore [Lit], near cages [Nea], off-shore [Off], and fishing grounds [Fsg]. The choice of 193 sampling sites was informed by indigenous knowledge provided by resource users and information 194 from experienced cage farmers to ensure that they spanned the main factors that affect cage farm 195 locations and wild fisheries. All sampling sites were geo-referenced using a Garmin GPS.

At each sampling site, depth profiled (one measurement at the surface and another below 107 1.0 m) *in situ* measurements were taken in concurrence with the maximum depth of existing cages (i.e. < 2.0 m from the surface). Data on water temperature and DO concentration were recorded using a Yellow Springs Instruments (Model: YSI 650). Water transparency was measured using a standard Secchi disk, maximum depth was determined using a sonar depth finder with a floating transducer, and chlorophyll-*a* concentrations were determined using *ex-situ* methods of analysis adapted from Wetzel and Likens (1991) and APHA (2005).

The water quality data collected generated values for discrete locations across the study area. These were interpolated to provide water quality map layers for temperature, DO, Secchi depth transparency and chlorophyll*a* concentrations.

206 **2.3 Assessment of suitability**

The level of suitability of different areas of the lake for cage fish culture were assessed on the basis of the key biophysical conditions and constraints shown in Table 1. These were chosen in terms of their likely effect on the growth and survival of caged tilapia (Dias et al., 2012; Aura et al., 2016) and criteria provided by the stakeholder community (e.g. ease of access). Using the ranges in values shown in Table 2, each part of the Kenyan part of Lake Victoria was assigned to one of the following classes in terms of their suitability for the location of cage fish farms: 'Most suitable', Suitable', 'Less suitable' and 'Unsuitable'.

214 **2.4 Suitability mapping**

215 The development of the delineation process followed the methods described by Perez et al. (2005) 216 and Aura et al. (2016, 2017), with modifications to account for local conditions. Separate thematic 217 maps of constraints on development, distance from the shoreline, water depth, and various aspects 218 of water quality were created within a geographic information system (GIS). These were then 219 combined to generate suitability criteria. This involved using a simple Multi-Criteria Evaluation 220 (MCE) approach to aggregate the thematic maps into a map that showed the spatial distribution of different levels of suitability for the siting of fish cages. First, a binary value, $C_{(x,y)} = 0$ (constrained) 221 222 or $C_{(x,y)} = 1$ (potentially suitable), was assigned to each location based on whether or not the 223 location was constrained. Then a suitability function $(S_{(x, y)})$ was calculated for each remaining location (x,y) across the area of study. Finally, level of suitability scores were calculated for the 224 225 potentially suitable areas as the weighted geometric mean of all factors (Longdill et al., 2008), 226 modified by their factor suitability range (FSR) (Vincenzi et al., 2006), as shown in Equation 1.

227 $\mathbf{S}_{(\mathbf{x},\mathbf{y})} = \prod_{i=1}^{n} FSR_{(\mathbf{x},\mathbf{y},i)}$ (Equation 1)

where:

- 229
- *x*,*y* is the spatial location of each point
- 230
- x,y is the spatial location of each point
- $FSR_{(x, y)}$ is the factor suitability value at location x, y
- 231

• *i* = *is an index corresponding to each input parameter*

This process converted the original data into standardised cage culture suitability scores (Vincenzi et al., 2006) on a four point scale of most suitable (score 4), suitable (score 3), less suitable (score 2), unsuitable (score 1) and constrained (score 0). The GIS software Quantum GIS Desktop Version 2.18.11 (QGIS Development Team, 2009) and ESRITM ArcMap were used to generate thematic maps of suitability zones from these data (Batabyal & Chakraborty, 2015).

237

3 RESULTS

239 **3.1** Overview of biophysical parameters recorded at sampling sites

240 The biophysical data collected from the field sampling sites were used to create the water quality 241 maps. The ranges in values for each parameter recorded are described below; there were no 242 significant seasonal (p > 0.05) or water column variations within the data collected. Sampling sites that were close to the fish cages showed significant variations (p < 0.05) in chlorophyll-a 243 244 concentrations compared to those from the littoral, off-shore and fishing ground sites (Table 3). 245 The highest chlorophyll-*a* concentration occurred in Anyanga ($12.56 \pm 17 \,\mu g \, L^{-1}$), while the lowest was in the littoral zone at Ogal ($2.29 \pm 0.00 \ \mu g \ L^{-1}$). The highest water temperature (27.19 ± 1.22 246 247 °C) was recorded off-shore at Ogal, while the fishing grounds in Mulukoba and Anyanga had the 248 lowest temperatures, both 25.90 ± 0.01 °C. There was no significant variation (p > 0.05; F = 2.78) 249 among temperatures near the cage sites. Ogal and Anyanga recorded a gradual increase in 250 temperature from the littoral region towards the off-shore zones, whereas the opposite was 251 observed in both Nyadiwa and Naya. The highest levels of DO occurred in all of the fishing

grounds that were sampled. All DO levels were greater than 4.0 mg L⁻¹ except in the Nyandiwa 252 littoral zone which recorded 3.64 ± 0.56 mg L⁻¹. There were no significant variations (p > 0.05) in 253 254 DO levels between littoral sites, cage sites, and off-shores zones. The DO levels at the cage 255 sampling sites were significantly lower (p < 0.05; 5.64) than at the fishing ground sites, but were 256 not significantly different (p > 0.05) from the littoral sites. The highest Secchi depths occurred in 257 Ramba near the cages $(3.20 \pm 0.17 \text{ m})$ and in the off-shore zones $(3.00 \pm 0 \text{ m})$. The lowest water 258 transparency among the sampling sites was recorded at Ogal. There was no clear longitudinal trend 259 in Secchi depths and no significant variations across the sampling sites (p > 0.05; F = 0.38; α_1 = 0.05; $\alpha_2 = 0.025$). Generally, the water depth at the sampling sites was highest at Ramba, 260 261 particularly at the fishing ground site $(41.80 \pm 0 \text{ m})$. The lowest depths were at Naya and Ogal 262 (< 8.0 m). There was no clear trend in maximum depth with significant variations (p < 0.05; F = 263 38.57) among the sampled sites.

264 **3.2 Potential suitability of areas for cage culture**

Figure 4 shows the areas of the Kenyan part of Lake Victoria that are potentially suitable, or totally unsuitable, for fish cage culture. The less suitable sites occurred near the constraints on development, which included water hyacinth and moving island hotspots, fish breeding grounds, and along the entire nearshore area around Kisumu Bay (Figure 4). Sites that were classified as 'most suitable' and 'suitable' for cage culture were found to be located in the inner lake at water depths of between 4.0 m and 10.0 m, and along the lake shore areas north of Bukoma, Uyawi, Utajo, Sindo, and Rasira beaches.

The 'most suitable' areas for cage fish culture consisted of 191 km² or 4.7% of the study area, with 'suitable' areas covering a further 171.1 km² (4.2%). Thus, the total area of the lakescape that is potentially suitable for cage culture was found to be about 362.4 km², or 8.8%, of the study area. The area deemed to be 'unsuitable' for cage culture covered 3,737.50 km², or 91.16%, of the
study area. This comprised of 2,753 km² of less suitable areas and 984.5 km² of completely
unsuitable areas. Fairly inaccessible areas for cage fish farming due to the constraints on use
imposed by water hyacinth, demarcated fish breeding grounds and moving islands covered about
459 km².

280 **3.3** Sensitivity of individual levels of suitability to biophysical factors

The level of dominance of the biophysical determinants in terms of their impact on the outcome of the suitability mapping is shown in Table 4. Depth was the best indicator of the most suitable area (61.0% of the potential area), followed by temperature (52.0%), DO (51.6%), chlorophyll-*a* concentration (48.7%), distance to land (15.2%) and distance to constraint (14.5%). About 54% of existing fish cages were found to be located within the constrained (unsuitable) areas, with the majority being around Anyanga, Sika, Uwayi, Asat, Dunga, Chuowe, Homalime, Nyandiwa, Rasira, Sori, and Tangache beaches (Figure 3).

288

289 4 DISCUSSION

This study developed a lakescape approach for assessing areas that may be suitable for the development of cage fish culture in the Kenyan part of Lake Victoria. The total area that is potentially suitable for cage culture was found to be about 362 km² (9%). It is suggested that this information could be used to designate the part of the lake that could be used safely for cage culture if combined with the use of best management practices, such as compliance with recommended carrying capacities to minimise disease and fish kills. Without proper regulation, cage fish farming presents environmental and food safety challenges arising from feeds, chemicals, veterinary 297 medicines, waste products, fish escapes, and diseases that are all potential contaminants of the298 natural environment.

299 More than 54% of existing cage culture establishments are sited within 'less suitable' or 300 'constrained' areas (i.e. fish breeding grounds; water hyacinth and moving island hotspots). This 301 probably explains the incidental water hyacinth or moving islands invasion of some of these 302 installations, such as those reported from Dunga beach in Kisumu Bay (Ombwa, V., pers. comm.). 303 Most of this part of the lakescape (about 3,737 km²; 91%) could be prioritised for wild fisheries 304 and other lake use activities. These include water hyacinth control and alternative use, protection 305 of fish breeding grounds and the development of tourism potential associated with moving islands. 306 The biophysical parameters that influenced the suitability classification of the sites can also

307 affect the ecological status of the lake, including species composition and abundance of the aquatic 308 organisms. However, the pattern of change in physical and chemical parameters across the Kenyan 309 part of Lake Victoria is highly variable and, therefore, unpredictable across the delineated sites. 310 This may be due to the shallow mean depth and landscape context of the Kenyan part of the lake. 311 The lake is strongly influenced by extremely variable mixing characteristics that are driven by 312 seasonal/diurnal changes in wind patterdraticns and shear (Okely et al., 2010), runoff from 313 agricultural land, inputs of industrial effluent and the nature of its inflows, in addition to natural 314 processes.

Lack of significant variations in water temperature suggests an even effect on lake biogeochemical processes. In contrast, the relatively high chlorophyll *a* in Anyanga near the areas with cages compared to other sites, such as fishing grounds, indicated a marked increase in chlorophyll *a* concentrations at the cage culture sites. This can be attributed to the cumulative effect of eutrophication processes associated with cultured fish and food wastes (Garcia de Souza 320 et al., 2013). Low DO levels at the cage culture sampling sites were probably attributable to 321 increased DO consumption by the cultured fish and the decomposition of their organic waste 322 (Longgen et al., 2009). The aforementioned could have been the reason for higher DO levels in 323 fishing grounds than in the cage culture sampling sites and could be considered as one of the main 324 constraints on cage culture in the longer term. The high water transparency levels at Ramba are 325 associated with the relatively high mean depths at this site and its location around the Rusinga 326 Channel (outside Nyanza Gulf), which is open to the effects of wind induced mixing. This suggests 327 that, here, any potential influence of the cage culture on turbidity is negated by the effects of higher 328 levels of circulation and dilution.

329 Based on the delineation approach, the order of importance of the biophysical parameters 330 affecting cage culture potential were as follows: depth > temperature > DO > chlorophyll-a > 331 distance to land > distance to constraint (Table 4). This indicates that depth could be ranked as the 332 most important variable to consider variable in the determination of cage culture site suitability 333 compared to other factors such as distance from land. The nature of the bay (i.e. sheltered or open), 334 and proximity to land based activities are also likely to influence levels of water quality and mixing 335 at the sampling sites (Aura et al., 2018b). Significant effects of bathymetry are mediated, 336 principally, through water depth, wind velocity and fetch, all of which help to increase water 337 circulation for better DO exchange and create high water currents for the better removal of wastes 338 (Bascom, 1964; Beveridge, 2004; Perez et al., 2005). The existence of cages in the less suitable or 339 unsuitable areas of water depths (< 4.0 m) could be the reason for the fish kills that have been 340 reported at cage sites such as Anyanga and Nyenye Got in Siaya county (Njiru et al., 2018b).

This initial, desk based approach to the delineation of areas that are suitable for cage culture
has been shown to have the potential to support the suitable development of these systems whilst

343 minimising conflict with other uses of this water resource. However, future development requires 344 the incorporation of new data, for example transportation routes, water abstraction points and 345 carrying capacity, and validation of the outputs through stakeholder engagement activities.

346

347 **5 CONCLUSIONS AND RECOMMENDATIONS**

348 The current study proposes a potential method for the delineation of areas that are suitable for cage 349 fish culture. This is based on biophysical factors and spatial interpolations. The order of suitability, 350 based on biophysical parameter preferences, from most suitable to the less suitable was depth > 351 temperature > DO > chlorophyll a > distance to land > distance to constraint. Depth is the most 352 important factor, because locating cages in shallow waters is likely to exacerbate problems 353 associated with eutrophication, and with increased DO consumption by the cultured fish and the 354 decomposition of their organic waste. Low DO levels at cage culture sites is important because it 355 is likely to be a precursor to fish kills, which have an enormous impact on the local economy. As 356 a result of our study, we recommend the fast-tracking of regulations to control the location of new 357 cage culture establishments, the relocation of existing cages to 'suitable' and 'most suitable' areas, 358 and the implementation of best management practices to minimise resource use conflicts. The 359 proposed approach could be incorporated into future lacustrine spatial planning policies and 360 regulations once navigation routes and abstractions points have been mapped and included. Future 361 studies could consider inclusion of hydrography, wave height and carrying capacity data for further 362 refinement of the approach.

363

364 Acknowledgements

365	We express our gratitude to Lake Victoria Environmental Management Project Two (LVEMP II)
366	and Kenya Marine and Fisheries Research Institute (KMFRI) for funding the water quality survey.
367	Furthermore, KMFRI provided logistics for the study. Some of this work was supported by the
368	UKRI Natural Environment Research Council under the SUNRISE programme (NE/R000131/1),
369	an Official Development Assistance award.
370	
371	References
372	Abila, R. O. (2003). Fish trade and food security: are they reconcilable in Lake Victoria? Expert
373	Consultation on International Fish Trade and Food Security. FAO, Casablanca, Morocco.
374	Anyah, R. O., & Semazzi, F. (2009). Idealized simulation of hydrodynamic characteristics of Lake
375	Victoria that potentially modulate regional climate. International Journal of Climatology,
376	29, 971-981. doi.org/10.1002/joc.1795.
377	Aguilar-Manjarrez, J., & Nath, S. (1998). A Strategic Reassessment of Fish Farming Potential in
378	Africa. FAO CIFA Technical Paper 32. FAO, Rome, 178 p.
379	APHA (2005). American Public Health Association Standard Methods for the Examination of
380	Water and Wastewater (21st ed). Washington, D.C., APHA-AWWA-WEF, ISBN
381	0875530478.
382	Aura, M. C., Saitoh, S-I., Liu, Y., Hirawake, T., Baba, K., & Yoshida, T. (2016). Implications of
383	marine environment change on Japanese scallop (Mizuhopecten yessoensis) aquaculture
384	suitability: comparative study in Funka and Mutsu Bays, Japan. Aquaculture Research, 47,
385	2164-2182.
386	Aura, M. C., Musa, S., Osore, M. K., Kimani, E., Alati, V. M., Wambiji, N., Maina, G. W., &
387	Charo-Karisa, H. (2017). Quantification of climate change implications using oyster

- suitability sites occurrence model along the Kenya Coast. *Journal of Marine Systems*, 165,
 27-35.
- Aura, M. C., Musa, S., Yongo, E., Okechi, J., Njiru, J. M., Ogari, Z., Wanyama, R., CharoHarrison, H., Mbugua, H., Kidera, S., Ombwa, V., & Abwao, J. (2018a). Integration of
 mapping and socio-economic status of cage culture: Towards balancing lake-use and
 culture fisheries in Lake Victoria, Kenya. *Aquaculture Research*, 49, 532-545.
- Aura, M. C., Nyamweya, C. S., Njiru, J. M., Musa, S., Ogari, Z., & Wakwabi, E. (2018b).
 Exploring the demarcation requirements of fish breeding sites to balance the management
- and conservation needs of the lake ecosystem. Fisheries Management and Ecology, 26,
- 397 451-459. <u>doi/pdf/10.1111/fme.12311</u>.
- Aura, M. C., Nyamweya, C. S., Njiru, J. M., Odoli, C., Musa, S., Ogari, Z., Abila, R., Okeyo, R.,
 & Oketch, R. (2019). Using fish landing sites and markets information towards
 quantification of the blue economy to enhance fisheries management. *Fisheries Management and Ecology*, 26, 141-152. doi.org/10.1111/fme.12334.
- 402 Aura. M.C., Nyamweya, C.S., Owili, M., Gichuru, N., Kundu, R., Njiru, J.M., & Ntiba, M.J.
- 403 (2020). Checking the pulse of the major commercial fisheries of Lake Victoria Kenya,
- 404 for sustainable management. *Fisheries Management and Ecology*, 00, 1– 405 11. https://doi.org/10.1111/fme.12414.
- Batabyal, A. K., & Chakraborty, S. (2015). Hydrogeochemistry and Water Quality Index in the
 Assessment of Groundwater Quality for Drinking Uses. *Water Environment Research*, 87,
 607-617. doi.org/10.2175/106143015X14212658613956.

409	Balirwa, J. S., Wanda, F., Muyodi, F. J. (2009). Impacts of water hyacinth and water quality change
410	on beneficial uses of Lake Victoria, Uganda. 13th World Lake Conference, Wuhan, China,
411	1-5 November

- 412 Bascom, W. (1964). Waves and Beaches: The Dynamics of the Ocean Surface. Doubleday, Garden
 413 City, NY, USA.
- Berg, H., Troell, M., Folke, C., Michsen, P., & Troell, M. (1996). Managing aquaculture for
 sustainability in tropical Lake Kariba, Zimbabwe. *Ecological Economics*, 18, 141-159.
 doi.org/10.1016/0921-8009(96)00018-3.
- Beveridge, M. C. M., & Phillips, M. J. (1993). Environmental impact of tropical inland
 aquaculture. In: R. S. V. Pullin, H. Rosenthal and J. L. Maclean (eds) Environment and
 aquaculture in developing countries. ICLARM Conference Proceedings 31, 359 pp. (213236)
- 421 Beveridge, M. C. M. (2004). Cage Aquaculture (3rd ed). Blackwell Publishing, Oxford, UK,
 422 368pp.
- Bremner, J., Lopez-Carr, D., Zvoleff, A., & Pricope, N. (2013). Using New Methods and Data to
 Assess and Address Population, Fertility, and Environment links in the Lake Victoria
 Basin.
- Buitrago, J., Rada, M., Hernandez, H., & Buitrago, E. (2005). A single-use site selection technique,
 using GIS, for aquaculture planning: choosing locations for mangrove oyster raft culture
 in Margarita Island, Venezuela. *Environmental Management*, *35*, 544-556.
- 429 Cho, Y., Lee, W. C., Hong, S., Kim, H. C., & Kim, J. B. (2012). GIS-based Suitable Site Selection
- 430 using Habitat Suitability Index for Oyster Farms in Geoje-Hansan Bay, Korea. Ocean &
- 431 *Coastal Management*, *56*, 10-16.

- 432 CIESIN, 2017. Gridded Population of the World, Version 4 (GPWv4): Population Density
 433 Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 10. NASA
 434 Socioeconomic Data and Applications Center (SEDAC), Palisades, NY.
- 435 Dias, J. D., Simões, N. R., & Bonecker, C. C. (2012). Net cages in fish farming: a scientometric
- 436 analysis. Acta Limnologica Brasiliensia, 24, 12–17. org/10.1590/S2179437 975X2012005000022.
- 438 EL-Sayed, A. F. M. (2006). Intensive Culture. In A. F. M. EL–Sayed. (eds) Tilapia Culture. (62pp.)
 439 Wellingford, Oxfordshrire, UK: CABI Publishing.
- 440 FAO (2016). The State of World Fisheries and Aquaculture 2016. Contributing to food security441 and nutrition for all, Rome, Italy.
- Garcia de Souza, J., Solimano, P. J., Baigun, C., & Colautti, C. D. (2013). Effects of stocking
 density and natural food availability on the extensive cage culture of pejerrey (*Odontesthes bonariensis*). *Aquaculture Research*, *2*, 1–13.
- 445 Hamilton, S. E., Gallo, S. M., Krach, N., Nyamweya, C. S., Okechi, J. K. Aura, C. M., Ogari, Z.,
- 446 Roberts, P. M., & Kaufman, L. (2020). The use of unmanned aircraft systems and high-
- resolution satellite imagery to monitor tilapia fish-cage aquaculture expansion in Lake
 Victoria, Kenya. *Bulletin of Marine Science 96*: 71-94.
- Hecky, R. E., Mugidde, R., Ramlal, P. S., Talbot, M. R., & Kling, G. W. (2010). Multiple stressors
 cause rapid ecosystem change in Lake Victoria. *Freshwater Biology*, 55, 19–42.
- 451 Kashindye, B. B., Nsinda, P., Kayanda, R., Ngupula, G. W., Mashafi, C. A., & Ezekiel, C. N.
- 452 (2015). Environmental impacts of cage culture in Lake Victoria : the case of Shirati Bay
- 453 Sota, Tanzania. *SpringerPlus*, <u>doi.org/10.1186/s40064-015-1241-y</u>.

454	Kundu, R., Aura, M. C., Nyamweya, C. S., Agembe, S., Sitoki, L., Lung'ayia, H. B. O., Ongore					
455	C., Ogari, Z., & Werimo, K. (2017). Changes in pollution indicators in Lake Victoria					
456	Kenya and their implications for lake and catchment management. Lakes and Reservo					
457	Management, 22, 199–214.					
458	Longdill, P. C., Healy, T. R., & Black, K. P. (2008). An integrated GIS approach for sustainable					
459	aquaculture management area site selection. Ocean & Coastal Management, 51, 612-624.					
460	Longgen, G., Zhongjie, L., Ping, X., & Leyi, N. (2009). Assessment effects of cage culture on					
461	nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China.					
462	Aquaculture International, 17, 229–241.					
463	Lung'ayia, H., Sitoki, L. & Kenyanya, M. (2001). The nutrient enrichment of Lake Victoria					
464	(Kenyan waters). Hydrobiologia, 485, 75-82.					
465	LVFO (2018). Guidelines for Establishment and Operation of Cage Fish Farming in the East					
466	African Community. Lake Victoria Fisheries Organization, Jinja, Uganda					
467	Lwama, G. K. (1991). Interactions between aquaculture and the environment. Critical Reviews in					
468	Environmental Control, 21, 177–216. doi.org/10.1080/10643389109388413.					
469	Malczewski, J. (1999). GIS and multi-criteria decision analysis. John Wiley & Sons, New York,					
470	MSINGI (2018). MSINGI: Aquaculture. MSINGI, Nairobi, Kenya.					
471	Njiru, J. M., van der Knaap, M., Kundu, R., & Nyamweya, C. (2018a). Lake Victoria fisheries:					
472	Outlook and management. Lakes & Reservoirs: Science, Policy and Management for					
473	Sustainable Use, 23, 152-162. doi.org/10.1111/lre.12220.					
474	Njiru, J. M., Aura, M. C., & Okechi, J. K. (2018b). Cage fish culture in Lake Victoria: A boon or					
475	a disaster in waiting? Fisheries Management and Ecology, 26, 426-434.					
476	doi.org/10.1111/fme.12283.					

- 477 Ochumba, P. B. O. & Kibaara, D. I. (1989). Observations on blue-green algal blooms in the open
 478 waters of Lake Victoria, Kenya. *African Journal of Ecology*, *27*, 23-34.
- Odada, E. O., Olago, D. O., Kulindwa, K., Ntiba, M., & Wandiga, S. (2004). Mitigation of
 Environmental Problems in Lake Victoria, East Africa: Causal Chain and Policy Options
 Analyses. Ambio: *A Journal of the Human Environment*, *33*, 13–23.
- 482 Okely, P., Imberger, J., & Antenucci J. P. (2010). Processes affecting horizontal mixing and
 483 dispersion in Winam Gulf, Lake Victoria. *Limnology and Oceanography*, 55, 1865–1880.

484 Ongore, C., Aura, M. C., Ogari, Z., Njiru, J. M., & Nyamweya, C. (2018). Spatial-temporal

485 dynamics of water hyacinth, *Eichhornia crassipes* (Mart.), other macrophytes and their

- 486 impact on fisheries in Lake Victoria, Kenya. *Journal of Great Lakes Research*, 44, 1273487 1280.
- 488 Opande, G.O., Onyango, J.C., & Wagai, S.O., (2004). Lake Victoria: the water hyacinth
 489 (*Eichhornia crassipes* [Mart.] Solms), its socio-economic effects, control measures and
 490 resurgence in the Winam Gulf. *Limnologica*, *34*, 105-109.
- 491 Perez, O. M., Telfer, T. C., & Ross, L. G. (2005). Geographical information systems-based models
 492 for offshore floating marine fish cage aquaculture site selection in Tenerife, Canary Islands.
 493 Aquaculture Research, 36, 946-961.
- 494 QGIS Development Team (2009). QGIS Geographic Information System. Open Source Geospatial
 495 Foundation. URL <u>http://qgis.osgeo.org</u>.
- 496 R Core Team (2014). R: A language and environment for statistical computing. R Foundation for
- 497 Statistical Computing, Vienna, Austria <u>http://www.R-project.org/</u>.

- Radiarta, I. N., Saitoh, S-I., & Miyazono, A. (2008). GIS-based multi-criteria evaluation models
 for indentifying suitable sites for Japanese scallop (*Mizuhopecten yessoensis*) aquaculture
 in Funka Bay, south western Hokkaido, Japan. *Aquaculture*, 284, 127-135.
- 501 Ross, L. G., Falcone, L. L., Mendoza, A. C., & Palacios, M. C. A. (2011). Spatial modelling for
- freshwater cage location in the Presa Adolfo Mateos Lopez (El Infiernillo), Michoacan,
 Mexico. *Aquaculture Research*, *42*, 797-807.
- Sitoki, L., Gikuchi, J., Ezekiel, C., Wanda, F., Mkumbo, O., & Marshall, B. (2010). The
 environment of Lake Victoria (East Africa): Current status and historical changes. *International Review of Hydrobiology*, 95, 209-223.
- 507 Sitoki, L., Kurmayer, R. & Rott, E. (2012). Spatial variation of phytoplankton composition,
 508 biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria,
 509 Kenya). *Hydrobiologia*, 691, 109-122.
- Taabu-Munyaho, A., Marshall, B., Tomasson, T., & Marteinsdottir, G. (2016). Nile perch and the
 transformation of Lake Victoria. *African Journal of Aquatic Science*, *41*, 127-142.
- 512 United Nations Population Division (1995). World population prospects: the 1994 revision. United
 513 Nations, Rome, Italy.
- Venturoti, G. P., Veronez, A. C., Salla, R. V., & Gomes, L. C. (2016). Variation of limnological
 parameters in a tropical lake used for tilapia cage farming. *Aquaculture Reports*, *2*, 152–
 157. doi.org/10.1016/j.aqrep.2015.09.006.
- 517 Verschuren, D., Johnson, T. C., Kling, H. J., Edgington, D. N., Leavitt, P. R., Brown, E. T., Talbot,
- 518 M. R. & Hecky, R. E. (2002). History and timing of human impact on Lake Victoria, East
- 519 Africa. *Proceedings of the Royal Society B: Biological Sciences*, 269, 289-294.

- Villamagna, A. M. & Murphy, B. R., 2009. Ecological and socio-economic impacts of invasive
 water hyacinth (*Eichhornia crassipes*): a review. *Freshwater Biology*, 55, 282–298
- 522 Vincenzi, S., Caramori, G., Rossi, R., & De Leo, G. A. (2006). A GIS-based habitat suitability
- 523 model for commercial yield estimation of *Tapes philippinarum* in a Mediterranean coastal
 524 lagoon (Sacca di Goro, Italy). *Ecological Modelling*, *193*, 90–104.
- Weston, M. (2015). Troubled Waters. Why Africa's largest lake is in grave danger.
 http://www.slate.com/articles/news_and_politics/roads/2015/03/lake_victoria_is_in_grav

527 <u>e_danger_africas_largest_lake_is_threatened_by.html</u> [uploaded 7/05/2016].

- Wetzel, R. G., & Likens, G. E. (1991). Limnological analyses (3rd ed). Springer Verlag, New
 York, Inc., USA. pp 429.
- Wu, Y. S., Forsyth, P. A., & Jiang, H. (1996). A consistent approach for applying numerical
 boundary conditions for multiphase subsurface flow. *Journal of Contaminant Hydrology*,
- *23*, 157-184.

533	Figure	legends
000		

FIGURE 1 Schematic representation of the process for determining suitable areas for potential
cage fish culture within Lake Victoria, Kenya.

FIGURE 2 Lake Victoria, Kenya, showing current cage culture sites and fishing grounds that were
sampled for water quality. The sites were categorised as Lit = Littoral zone; Nea = Near cages; Off
= Off-shore, Fsg = Fishing grounds. Samples were collected quarterly between October 2016 and
October 2018.

FIGURE 3 Maps showing (a) fish breeding sites (potential areas for protection), and (b) water
hyacinth hotspots of Lake Victoria, Kenya (Adapted and modified from Ongore et al., 2018 and
Aura et al., 2018b)

FIGURE 4 Map of Lake Victoria, Kenya, showing potential suitability for cage fish culture.

Figures

FIGURE 1 Schematic representation of the process for determining potentially suitable areas for cage fish culture within Lake Victoria, Kenya.

FIGURE 2 Lake Victoria, Kenya, showing current cage culture sites and fishing grounds that were sampled for water quality. The sites were categorized as Lit = Littoral zone; Nea = Near cages; Off = Off-shore, Fsg = Fishing grounds. Samples were collected quarterly between October 2016 and October 2018.

FIGURE 3 Maps showing (a) fish breeding sites (potential areas for protection), and (b) water hyacinth hotspots of Lake Victoria, Kenya (Adapted and modified from Ongore et al., 2018 and Aura et al., 2018b).

FIGURE 4 Map of Lake Victoria, Kenya, showing potential suitability for cage fish culture.

Tables

TABLE 1 Justification of the selected biophysical variables used in the cage culture site

suitability classification.

Variable	Justification	References	
Chlorophyll- <i>a</i> (µg L ⁻¹)	Indicator of primary production	OECD (1982) Bhatnagar & Devi (2013), Aura et al. (2016)	
Temperature (°C)	Water temperature affects fish metabolism, oxygen consumption, ammonia and carbon dioxide production rates, Feed Conversion Ratio (FCR) and fish growth rate.	Muir (2000), Pillay & Kutty (2005)	
Dissolved oxygen (DO, mg L ⁻¹)	DO influences growth, survival, behavior and physiology of fish	Muir et al. (2000)	
Secchi depth (m)	Composite measure of water transparency or visibility; affected by suspended and dissolved solids, sunlight and salinity.	Beveridge (2004)	
Depth (m)	Greater depth facilitates water exchange and avoids oxygen depletion, accumulation of uneaten food, fecal material and debris, disease infection and buildup of noxious gases such as hydrogen sulphide and methane from decomposition of wastes; depths greater than 20 m should be avoided for small cages as they tend to have high waves that can stress the fish.	Beveridge (2004), Perez et al. (2005)	
Distance to fish breeding grounds (km)	Distances to fish breeding have been included to help safeguard wild fish populations.	Ongore et al. (2018)	
Distance to water hyacinth/moving islands (km)	Distances based on hotspots taking wind patterns and water currents into account; interference from water hyacinth or moving islands can destroy cage installations.	Ongore et al. (2018)	
Distance to land (km)	Access to the sites for supply of goods and services (e.g. feed, equipment, fuel) and route to the markets for fish produced.	Ross et al. (2011)	

TABLE 2 Suitability ratings for cage culture sites in a lacustrine ecosystem (Adapted fromOECD, 1982; Bhatnagar & Devi, 2013).

Indicator	Most suitable	Suitable	Less suitable	Unsuitable
Chlorophyll- <i>a</i> (µg L ⁻¹)	7.5 - 4.5	<4.5 - 1.5	<1.5 - 0.5	>7.5 & <0.5
Temperature (°C)	30 - 28	<28 - 26	<26 - 24	>30 & <24
Dissolved oxygen (DO, mg L ⁻¹)	≥5	<5 - 3	<3 - 1	<1
Secchi depth (m)	>0.7	0.7 - >0.5	0.5 ->0.3	≤0.3
Depth (m)	<10 - 8	<8 - 6	<6 - 4	$\leq 4 \text{ or } \geq 10$
Distance to breeding grounds/water hyacinth (km)	>0.5	0.5 ->0.4	0.4 - >0.2	≤0.2
Distance to land (km)	> 0.4	0.4 - >0.3	0.3 ->0.2	≤0.2

TABLE 3 Average water quality values (\pm StDev) for major beaches with cage culture sites compared to those for fishing grounds at similar locations. To provide representative coverage, site selection was based on intensity of cage culture practice, fishing intensity and county administrative coverage (Wu et al., 1996; Kashindye et al., 2015). Sites were categorised as Lit = Littoral zone; Nea = Near cages; Off = Off-shore; Fsg = Fishing ground and sampled quarterly between October 2016 and October 2018.

Station	Site	Chlorophyll <i>a</i> (µg L ⁻¹)	Temperature (°C)	DO (mg L ⁻¹)	Secchi depth (m)	Depth (m)
Ogal	Lit	2.29 ± 0.00	26.36 ± 0.16	5.03 ± 0.87	0.35 ± 0.00	2.67 ± 0.29
	Nea	4.58 ± 0.30	26.85 ± 0.80	5.35 ± 1.11	0.48 ± 0.03	3.93 ± 0.12
	Off	6.76 ± 1.11	27.19 ± 1.22	5.43 ± 1.01	0.50 ± 0.00	3.83 ± 0.58
	Fsg	6.53 ± 0.10	26.23 ± 0.31	7.81 ± 0.63	0.30 ± 0.00	6.70 ± 0.00
Ramba	Lit	7.20 ± 0.40	26.00 ± 0.19	5.52 ± 0.17	2.23 ± 0.40	2.23 ± 0.40
	Nea	11.56 ± 1.31	26.45 ± 0.51	4.61 ± 0.76	3.20 ± 0.17	29.67 ± 0.58
	Off	7.50 ± 0.71	26.14 ± 0.58	4.99 ± 1.02	3.00 ± 0.00	28.00 ± 0.00
	Fsg	5.47 ± 28	26.44 ± 0.33	8.18 ± 1.54	1.65 ± 0.00	41.80 ± 0.00
Nyandiwa	Lit	4.47 ± 0.17	26.55 ± 0.29	5.02 ± 0.72	1.42 ± 0.84	4.25 ± 0.00
	Nea	8.94 ± 0.22	26.36 ± 0.30	4.76 ± 0.87	1.90 ± 0.00	8.00 ± 0.00
	Off	5.61 ± 1.10	26.31 ± 0.28	4.85 ± 0.69	1.90 ± 0.00	9.50 ± 0.00
	Fsg	8.58 ± 0.74	26.24 ± 0.13	6.45 ± 1.08	0.40 ± 0.00	34.00 ± 0.00
Anyanga	Lit	5.26 ± 0.29	26.03 ± 0.07	3.64 ± 0.56	1.43 ± 0.21	1.67 ± 0.29
	Nea	12.56 ± 17	26.16 ± 0.31	4.48 ± 1.24	1.40 ± 0.00	4.17 ± 0.29
	Off	4.47 ± 0.00	26.28 ± 0.42	5.50 ± 1.57	1.13 ± 0.06	5.00 ± 0.00
	Fsg	5.50 ± 0.09	25.90 ± 0.00	6.69 ± 0.00	1.25 ± 0.00	4.70 ± 0.00
Mulukoba	Lit	4.47 ± 0.69	26.56 ± 0.25	5.78 ± 0.62	1.30 ± 0.17	2.77 ± 0.00
	Nea	8.94 ± 0.87	26.50 ± 0.69	7.09 ± 0.52	1.10 ± 0.10	6.00 ± 0.87
	Off	5.61 ± 0.17	26.52 ± 0.50	6.68 ± 0.43	1.10 ± 0.00	7.87 ± 0.32
	Fsg	$\boldsymbol{6.22 \pm 0.41}$	25.90 ± 0.00	6.69 ± 0.00	1.25 ± 0.00	4.70 ± 0.00
Naya	Lit	5.38 ± 0.43	26.37 ± 0.05	$\boldsymbol{6.29 \pm 0.25}$	1.25 ± 0.09	2.17 ± 0.76
	Nea	12.14 ± 0.31	26.30 ± 0.24	6.44 ± 0.40	1.30 ± 0.10	4.33 ± 0.29
	Off	8.31 ± 0.57	26.15 ± 0.26	6.40 ± 0.49	1.20 ± 0.00	5.00 ± 0.00
	Fsg	7.78 ± 0.62	26.82 ± 0.49	8.51 ± 1.61	0.90 ± 0.00	$7.40\pm\ 0.00$

TABLE 4 Surface area of Lake Victoria, Kenya, in each cage culture suitability class as determined by the criteria shown in Table 3. Values are expressed as a percentage of total potential area (about 4,100 km²).

Parameter	Most suitable	Suitable	Less suitable	Unsuitable
Chlorophyll- <i>a</i> (µg L ⁻¹)	48.7	32.0	10.0	9.3
Temperature (°C)	52	33	8	7
Dissolved oxygen (DO, mg L ⁻¹)	51.6	36.3	10.7	1.4
Secchi depth (m)	40.4	34.6	11.2	13.8
Depth (m)	61.0	30.1	5.7	3.2
Distance to breeding grounds/water hyacinth (km)	14.5	18.9	37.5	29.1
Distance to land (km)	15.2	22.8	29.4	32.6