
1. Introduction
Carbon and nutrients are consumed by phytoplankton in the surface ocean during primary production, 
leading to a downward flux of organic matter. This “marine snow” is transformed, respired, and degraded 
by heterotrophic organisms in deeper waters, ultimately releasing those constituents back into dissolved 
inorganic form. Oceanic overturning and turbulent mixing return resource-rich deep waters back to the 
sunlit surface layer, sustaining global ocean productivity. The “biological pump” maintains this vertical gra-
dient in nutrients through uptake, vertical transport, and remineralization of organic matter, storing carbon 
in the deep ocean that is isolated from the atmosphere on centennial and millennial timescales, lowering 
atmospheric CO2 levels by hundreds of micro-atmospheres (Ito & Follows, 2005; Volk & Hoffert, 1985). The 
biological pump resists simple mechanistic characterization due to the complex suite of biological, chem-
ical, and physical processes involved (Boyd et al., 2019), so the fate of exported organic carbon is typically 
described using a depth-dependent profile to evaluate the degradation of sinking particulate matter.

Various remineralization profiles can be derived from assumptions about particle degradability and sinking 
speed(s) (Armstrong et al., 2001; Banse, 1990; Cael & Bisson, 2018; Kriest & Oschlies, 2008; Lutz et al., 2002; 
Martin et  al.,  1987; Middelburg,  1989; Rothman & Forney,  2007; Suess,  1980). The ubiquitous “Martin 
Curve” (Martin et al., 1987) is a power-law profile (Equation 1) that assumes slower-sinking and/or labile 

Abstract The ocean's “biological pump” significantly modulates atmospheric carbon dioxide levels. 
However, the complexity and variability of processes involved introduces uncertainty in interpretation 
of transient observations and future climate projections. Much research has focused on “parametric 
uncertainty,” particularly determining the exponent(s) of a power-law relationship of sinking particle flux 
with depth. Varying this relationship's functional form introduces additional “structural uncertainty.” 
We use an ocean biogeochemistry model substituting six alternative remineralization profiles fit to a 
reference power-law curve, to systematically characterize structural uncertainty, which, in atmospheric 
pCO2 terms, is roughly 50% of parametric uncertainty associated with varying the power-law exponent 
within its plausible global range, and similar to uncertainty associated with regional variation in power-
law exponents. The substantial contribution of structural uncertainty to total uncertainty highlights the 
need to improve characterization of biological pump processes, and compare the performance of different 
profiles within Earth System Models to obtain better constrained climate projections.

Plain Language Summary The ocean's “biological pump” regulates atmospheric carbon 
dioxide levels and climate by transferring organic carbon produced at the surface by phytoplankton to 
the ocean interior via “marine snow,” where the organic carbon is consumed and respired by microbes. 
This surface to deep transport is usually described by a power-law relationship of sinking particle 
concentration with depth. Uncertainty in biological pump strength can be related to different variable 
values (“parametric” uncertainty) or the underlying equations (“structural” uncertainty) that describe 
organic matter export. We evaluate structural uncertainty using an ocean biogeochemistry model by 
systematically substituting six alternative remineralization profiles fit to a reference power-law curve. 
Structural uncertainty makes a substantial contribution, about one-third in atmospheric pCO2 terms, 
to total uncertainty of the biological pump, highlighting the importance of improving biological pump 
characterization from observations and its mechanistic inclusion in climate models.
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organic matter is preferentially depleted near the surface causing increasing sinking speed and/or reminer-
alization timescale with depth (e.g., Kriest & Oschlies, 2011).

( ) ,b
p pf z C z (1)

where fp(z) is the fraction of the flux of particulate organic matter from a productive layer near the surface 
(Buesseler et al., 2020) sinking through the depth horizon z [m], Cp [mb] is a scaling coefficient, and b is 
a nondimensional exponent controlling how fp decreases with depth. Equation 1 is often normalized to a 
reference depth zo but this parameter is readily absorbed into Cp.

Considerable effort has been dedicated to determining value(s) for the exponent, b (e.g., Berelson, 2001; 
Gloege et al., 2017; Henson et al., 2012; Honjo et al., 2008; Kriest et al., 2012; Kwon & Primeau, 2006; Mar-
tin et al., 1987, 1993; Primeau, 2006; Wilson et al., 2019). Open ocean particulate flux observations from 
the North Pacific (Martin et al., 1987) indicate a b value of 0.858. Further analyses of expanded sediment 
trap datasets suggest a possible range of approximately 0.84 ± 0.14 for the global b value (Berelson, 2001; 
Gloege et al., 2017; Honjo et al., 2008; Martin et al., 1993; Primeau, 2006), though a much wider range 
has been observed when including regional variability in b and optically and geochemically derived flux 
estimates (Guidi et al., 2015; Henson et al., 2012; Pavia et al., 2019). This may result from differences in 
temperature (Matsumoto, 2007), microbial community composition (Boyd & Newton, 1999), particle com-
position (Armstrong et al., 2001), oxygen concentration (Devol & Hartnett, 2001), particle aggregation (Ge-
hlen et al., 2006; Niemeyer et al., 2019; Schwinger et al., 2016), or mineral ballasting (Gehlen et al., 2006; 
Pabortsava et al., 2017).

Uncertainty in the value of b translates to uncertainty in the biological pump's impact on the ocean carbon 
sink, atmosphere-ocean carbon partitioning, and climate model projections. Thus, constraining b for the 
modern ocean and how it may differ in the past, or the future, is of much interest from a climate perspective. 
Varying a global value of b between 0.50 and 1.4 altered atmospheric pCO2 by 86–185 μatm after several 
thousand years of equilibration, in an influential modeling study (Kwon et al., 2009): Higher values of b 
result in enhanced particle remineralization at shallower depths. Shallow water masses are more frequently 
ventilated, allowing remineralized CO2 to be released back into the atmosphere on shorter timescales. Due 
to this depth-dependence, a small change of degradation depth can appreciably change atmospheric pCO2 
(Kwon et al., 2009; Yamanaka & Tajika, 1996). Varying b over the plausible range in global values between 
0.70 and 0.98 produces a more modest change in atmospheric pCO2, over the range of (−16, +12)μatm 
(Gloege et al., 2017), while the modeled uncertainty in atmospheric pCO2 associated with regional variation 
in b is estimated between 5 and 15 μatm (Wilson et al., 2019).

Biogeochemical models are subject not only to parametric uncertainty (which value for b and how b var-
ies in space and time), but also structural uncertainty, that is, which equation(s) to choose for the vertical 
flux of organic matter. The Martin Curve power-law is an empirical fit to sediment trap data, but sever-
al other functional forms have also been put forward (Armstrong et  al.,  2001; Banse,  1990; Dutkiewicz 
et al., 2005; Lutz et al., 2002; Marsay et al., 2015; Middelburg, 1989; Rothman & Forney, 2007; Suess, 1980) 
that fit sediment trap fluxes equivalently well and have equal if not better mechanistic justification (Cael & 
Bisson, 2018). Atmospheric pCO2 and many other global biogeochemical properties (Aumont et al., 2017; 
Kriest et al., 2012; Kwon & Primeau, 2006) will be affected by this structural uncertainty, so it is critical to 
evaluate the impact of choosing one remineralization profile “shape” over another.

We assess the effect of remineralization profile shape on biological pump strength and evaluate a com-
prehensive estimate of structural uncertainty in terms of atmosphere-ocean carbon partitioning in a 
global ocean biogeochemistry model. We substitute the reference power-law curve for six plausible alter-
native remineralization profiles: exponential (Banse, 1990; Dutkiewicz et al., 2005; Gloege et al., 2017; 
Marsay et  al.,  2015), ballast (Armstrong et  al.,  2001; Gloege et  al.,  2017), double exponential (Lutz 
et al., 2002), stretched exponential (Cael & Bisson, 2018; Middelburg, 1989), rational (Suess, 1980), and 
upper incomplete gamma function of order zero (Rothman & Forney, 2007, we use the shorthand “gam-
ma function” for “upper incomplete gamma function of order zero,” although different orders are possi-
ble). Each form corresponds to a basic mechanistic description of particle fluxes (Cael & Bisson, 2018), 
that we tightly constrained to the reference profile by statistically minimizing export fraction misfits or 
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by matching degradation depth scales (Kwon et al., 2009). See Supporting Information for derivations 
of these profiles.

These simulations indicate that structural uncertainty is an appreciable component, around one-third, of 
total uncertainty for understanding the biological pump (with the remaining two-thirds attributed to par-
ametric uncertainty in b). Changing remineralization functional form alters atmospheric pCO2 by ∼10–
15 μatm depending on how structural uncertainty is quantified, equivalent to ∼0.08 uncertainty in a global 
value of the power-law exponent, b, and similar to the uncertainty resulting from regional variation of b.

Our results underscore the importance of characterizing basic mechanisms governing the biological pump. 
Furthermore, our results corroborate that depth-dependence of these mechanisms is particularly important 
(Gehlen et al., 2006; Kriest & Oschlies, 2008): not only is biological pump-driven carbon export and storage 
an important control on atmospheric pCO2, we find that rapidly decreasing particle degradation in the 
upper ocean is equally important for a sufficient quantity of carbon to become isolated in the deep ocean. 
While a given flux curve may be chosen for historical reasons or mathematical convenience, its skill should 
be compared to those of other idealized flux profile parameterizations in Earth System Models used for 
projections of future climate.

2. Materials and Methods
2.1. Fitting the Alternative Remineralization Curves

We fit the alternative functions for export fluxes and remineralization (Figure 1, Equations S1–S6, see Sup-
porting Information) to the reference power-law curve (Equation 1) with the exponent b = 0.84 using non-
linear regression on the model vertical grid to minimize the absolute curve mismatch (“ABS” simulations). 
Subsurface points were weighted equally (1.0), except for a heavily weighted top-level (valued 1,000, but 
the overall fit was largely insensitive to the choice of this value) to ensure all the profiles pass through the 
same value as the control profile, that is, fraction of export from the productive surface layer is unity. We 
further matched the e-folding depth of remineralization to the reference (“EFD” simulations) by adding a 
second heavily weighted point to the reference power-law at 164-m depth (z0e(1/b)), with an export fraction 
of e−1. In a third set (“RFIT” simulations), the nonlinear regression is performed on the natural logarithm 
of the remineralization fraction to minimize the relative error of the reference profile match. Goodness of 
fit is evaluated by the Standard Error of Regression, , which is the sum of squared residuals, divided by 
statistical degrees of freedom (number of points minus number of parameters). Coefficients and  values 
for the 18 curves are given in Table S1.
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Figure 1. Fraction of sinking particulate organic matter exported from the 50 m surface layer remaining at each depth for (a) the reference power-law 
(Equation 1) with exponents 0.84 ± 0.14, and six alternative functions (Equations S1–S6) fit to the reference power-law curve (b = 0.84) by (b) statistically 
minimizing the relative error (“RFIT”), or (c) the absolute error (“AFIT”), and (d) matching the e-folding depth scale of 164 m (“EFD”). See Section 2, Table S1 

for fitting details, coefficients, and fit statistics. Inset plots show the attenuation rate of the export flux with depth  
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2.2. Numerical Ocean Biogeochemistry Model

Alternative remineralization profiles are substituted into global ocean simulations of a coarse resolution 
(2.8°, 15 vertical levels) configuration of the Massachusetts Institute of Technology general circulation mod-
el, MITgcm (Marshall et al., 1997), coupled to an idealized marine biogeochemistry model that considers 
the coupled cycles of dissolved inorganic carbon, alkalinity, phosphate, dissolved organic phosphorus, oxy-
gen, and dissolved iron (Dutkiewicz et al., 2006; Parekh et al., 2005, 2006).

Two-thirds of surface net community production (that depends on light, phosphate, and iron us-
ing Michaelis-Menten kinetics) is channeled into dissolved organic matter that is largely remineral-
ized in the surface ocean with a timescale of 6  months (Yamanaka & Tajika,  1997), while one-third is 
exported to the ocean interior via sinking particulate organic matter subject to depth-dependent rem-
ineralization rates. Elemental biological transformations are related using fixed stoichiometric ratios 

  4
: : : : 2 117 : 16 : 1 : 4.68 10 : 170C N P Fe OR  (Anderson & Sarmiento,  1994) with a prescribed inorganic 

to organic rain ratio of 7% (Yamanaka & Tajika, 1996). The total atmosphere-ocean carbon inventory is 
conserved as there is no riverine carbon input or sediment carbon burial, which may impact the model's 
transient behavior and steady state (Roth et al., 2014). Atmosphere-ocean exchange of CO2 captures the 
magnitude and variation of observed air-sea fluxes (Lauderdale et al., 2016).

Our model includes tracers to separate the in situ concentrations of carbon into (i) a component subducted 
from the surface layer and transported conservatively by ocean circulation (the “preformed” carbon con-
centration, Cpre), and (ii) a component that integrates export and remineralization of sinking particles as 
a water mass transits the ocean interior (the “biological” carbon concentration, Cbio), which encompasses 
both soft tissue regeneration and carbonate dissolution, and connects more directly to the biological pump 
(Ito & Follows, 2005; Volk & Hoffert, 1985). We integrate simulations for 10,000 years toward steady state in 
atmosphere-ocean carbon partitioning.

3. Results
3.1. Varying the Exponent of the Reference Power-Law Curve

Global power-law exponent, b, estimates range from 0.70 (Primeau, 2006) based on sediment traps to ∼1.00 
based on inverse models fit to tracer distributions (Kwon & Primeau, 2006, 2008; Kwon et al., 2009; Kriest 
et al., 2012). These values match the global b interquartile range of 0.70–0.98 in Gloege et al. (2017). We 
integrate three simulations with b = 0.84 ± 0.14 (Figure 1a) using the standard power-law parameterization 
(Equation 1) to produce a baseline estimate of biological pump parametric uncertainty. The reference sim-
ulation has the exponent b = 0.84.

Higher b values cause the fraction of sinking particulate matter to decrease faster with depth, that is, atten-
uation    1 / /p pf f z  is higher in the upper ocean, whereas lower exponents have less attenuation and a 
larger proportion of export reaching the deep ocean (Figures 1a and S2a–S2f). A negative feedback occurs 
near the surface in our simulations. For example, when b is increased, higher rates of upper ocean attenua-
tion cause an increase in surface nutrient availability, and therefore more overall biological production (see 
ΔBC, Table S2). Local biological activity enhancement increases local rates of particle export, evaluated by 
integrated fluxes through the deepest mixed layer depth (ΔEmld, Table S2). However, higher shallow export 
is compensated by greater upper ocean remineralization, due to larger exponent value, resulting instead in 
reduced export flux anomalies through 1-km depth (ΔE1km, Table S2), and vice versa when b is decreased 
(e.g., global experiments in Kwon et al. [2009] and Kriest and Oschlies [2011]). The global ocean reservoir of 
biological carbon changes proportionally with ΔE1km (Figure 2, blue symbols, S2g–S2l, and ΔCbio, Table S2) 
and inversely proportional to ΔEmld (Figure S3a).

3.2. Impact of Alternative Remineralization Curve Shape

Generally speaking, the six alternative remineralization profiles (Equations S1–S6) objectively characterized 
by statistically fitting parameters to match the reference power-law curve (b = 0.84) do reproduce similar 
sinking particle remineralization rates (Figures 1b–1d). This is perhaps not a surprise, since we would not 
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consider these functions to be plausible alternatives to the Martin Curve 
if they could not describe export fluxes at least as well as a power-law.

Nevertheless, the simple exponential and gamma function curves do not 
fit the reference power-law profile as well as the other functions (Fig-
ures 1b–1d) because these profiles cannot capture a strong depth-change 
in remineralization. The ballast profile has a more complex distribution 
of biological carbon anomalies in surface, intermediate, and deep waters 
such that the relationship between export flux and ΔCbio is better cap-
tured by considering deeper horizons (e.g., green symbols in Figure 2 at 
the 1-km horizon vs. 2 km in Figure S3b).

Simulations with lower-attenuation profiles result in increased export 
fluxes (Figure S4), and vice versa, as with the simulations varying b (Fig-
ure  2). These particulate flux anomalies translate into changes in the 
distribution of biological carbon, with positive export flux anomalies 
through the 1-km depth horizon (ΔE1km) corresponding to an increase 
in the biological carbon pool (Cbio, Figure 2), while negative export flux 
anomalies result in lower biological carbon concentrations. For instance, 
in RFIT simulations, the exponential and gamma function profiles show 
an increase in 1 km export fluxes and biological carbon storage, while 
the reverse occurs for exponential and gamma profiles in AFIT and EFD 
simulations.

Geographically, stronger ocean interior sinking fluxes tend to redistribute 
biological carbon into the Southern Ocean and deep North Pacific at the 
expense of the North Atlantic (Figures S5–S7), while shallower reminer-
alization tends to increase North Atlantic biological carbon concentra-
tions whilst decreasing concentrations in the Southern Ocean and deep 
North Pacific. This is a reflection of the accumulation of Cbio as a wa-
ter mass transits the global meridional overturning circulation with the 
oldest waters upwelling in the Southern Ocean and North Pacific (Kriest 
et al., 2012; Kriest & Oschlies, 2011; Kwon et al., 2009; Kwon & Prime-
au, 2006; Romanou et al., 2014). These anomalies of Cbio (Figures S5–S7) 

account for the direct effects of organic and inorganic particle fluxes. At the same time, changes in biologi-
cal activity affect surface alkalinity both through carbonate export and surface charged nutrient abundance, 
which reinforces ocean carbon uptake or outgassing due to the inverse relationships relating carbon and 
alkalinity to CO2 solubility (Kwon et al., 2009). However, atmospheric CO2 anomalies driven by different 
remineralization profiles integrate several compensating processes. Indirect carbon changes, including the 
effect of alkalinity on ocean carbon saturation, regenerated carbon upwelling, as well as unrealized air-sea 
exchange due to the finite timescale of atmosphere-ocean CO2 fluxes (Ito & Follows,  2005; Lauderdale 
et al., 2013, 2017), that are captured by preformed carbon anomalies actually counteract approximately two-
thirds of the direct biological ocean carbon storage.

3.3. Evaluating Structural Uncertainty of the Biological Pump

Altering the strength of the biological pump leads to changes in air-sea carbon balance. The reference sim-
ulation has a steady-state atmospheric pCO2 of 269.3 μatm. Increasing b from 0.70 to 0.98 increases pCO2 by 
46.36 μatm in this model (range: −21.6 to 24.8 μatm, wide gray bars in Figure 3a, Table S2). This is higher 
than the “nutrient restoring” case in Kwon et al. (2009), but lower than their “constant export” case, consist-
ent with our model's dynamic biological productivity and interactive biogeochemistry response.

Alternative profiles with reduced export flux through 1 km and reduced biological carbon storage result in 
increased atmospheric pCO2, and vice versa (Figure 3a, Table S3). The double exponential function has the 
most free parameters (four) and therefore fits the power-law extremely well, producing small differences 
in atmospheric pCO2 (less than 2 μatm). The rational function also agrees well, but could produce larger 
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Figure 2. Change in the integrated export flux rate [PgC y−1] passing 
through the 1-km depth level against integrated biological carbon reservoir 
anomaly [PgC], both with respect to the power-law curve where b = 0.84 
(Martin et al., 1987). Three power-law simulations (b = 0.84 ± 0.14) 
are indicated by the blue symbols (diamond, cross, and pentagon), 
circle, square, and triangle symbols indicate that profile coefficients 
(Equations S1–S6) were derived by minimizing the relative fit error 
(“RFIT”), minimizing the absolute fit error (“AFIT”), and fixing the 
e-folding depth of remineralization (“EFD”), respectively, to the reference 
power-law curve. Values are given in Tables S2 and S3.
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anomalies if the reference profile's b-value was further from 1.00, that is, 0.70. Stretched exponential and 
ballast curves produce moderate changes in atmospheric pCO2 but are generally smaller than, or similar to, 
the 0.14 changes in b for the power-law curves (Figure 3a). However, the simple exponential and gamma 
function anomalies clearly deviate from the other simulations, with greater biological carbon concentra-
tions and drawdown of atmospheric CO2 for the RFIT simulations, and the inverse for AFIT and EFD sim-
ulations. Export fluxes and remineralization are significantly different in the upper ocean for these parame-
terizations, which can be explained by their largely invariant attenuation rates with depth (Figure 1 insets): 
simple exponential and gamma parameterizations cannot have both short remineralization lengthscales in 
the upper ocean and long remineralization length scales in the deep ocean.

There are multiple ways to compare parametric and structural uncertainty quantitatively. Parametric uncertain-
ty is found by varying the power-law exponent within its plausible global range (b = 0.84 ± 0.14), producing ab-
solute atmospheric pCO2 anomalies of 21.6–24.8 μatm (Figure 3a, Table S3). For structural uncertainty, the me-
dian change in absolute atmospheric pCO2 is 12.47 ± 10.67 μatm (b-anomaly equivalent of 0.07 ± 0.06) across 
all simulations with alternate functional forms. We choose the median ± median absolute deviation so that our 
result is robust to large anomalies associated with simple exponential and gamma functional forms. For RFIT, 
AFIT, and EFD simulations separately, the medians are 15.15 ± 10.40, 10.65 ± 7.30, and 20.57 ± 15.37 μatm, 
respectively, giving a 15.15 ± 4.51 μatm grand median (b-anomaly equivalent of 0.09 ± 0.03). Excluding profiles 
with largely invariant attenuation rates with depth, that is, exponential and gamma function profiles, the overall 
medians for RFIT, AFIT, and EFD are 10.07 ± 2.32, 7.96 ± 2.69, and 10.57 ± 1.98 μatm, respectively, with a 
10.07 ± 0.50 μatm grand median (b-anomaly equivalent of 0.06 ± 0.00). In summary, our results are largely ro-
bust, indicating a structural uncertainty of 10–15 μatm, roughly half of parametric uncertainty for the biological 
pump (22–25 μatm, b = 0.84 ± 0.14), analogous to a ∼0.08 change in b.

3.4. Role of Nonlinearity in the Biological Pump

Much emphasis is placed on the biological pump's effect on climate by significantly lowering atmospheric 
CO2 levels, but our exponential and gamma function simulations indicate that having a biological pump 
(i.e., uptake, export, and depth-dependent remineralization) and an associated biological carbon store is 
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Figure 3. Impact of alternative remineralization curve shape on the air-sea carbon balance (a) atmospheric pCO2 anomalies (μatm) for remineralization 
profiles with respect to the reference power-law (b = 0.84) for power-law exponent values b = 0.70 and 0.98, and statistical fits of alternative profiles “RFIT” 
(left), “AFIT” (middle), and “EFD” (right). Values are given in Tables S2 and S3; (b) comparison of a simulation with no particulate organic matter production 
(“NOPOM”), that is., no biological pump, to the simple exponential profile, and reference power-law profile for “AFIT” (left), and “EFD” (right) fits. From a 
“NOPOM” ocean without sinking particle export, establishing (i) a biological pump with an exponential remineralization curve and constant attenuation of 
sinking particles with depth only draws down roughly 80 μatm atmospheric CO2, while a further 80 μatm drawdown can be achieved by establishing (ii) a 
biological pump with a power-law remineralization profile that has decreasing particle attenuation, or increasing remineralization length scale, with depth. 
Thus, biological pump non-linearity appears to be equally important for air-sea carbon partitioning as export and storage of biological carbon.
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not necessarily sufficient to produce atmospheric carbon drawdown of the expected magnitude, such as a ∼ 
200 μatm difference between biotic and abiotic oceans (Volk & Hoffert, 1985). To understand what aspects 
of the biological pump are important for significantly lowering atmospheric CO2, we ran a simulation (“NO-
POM”) that represents a hypothetical ocean with no particulate organic matter export. Instead, biological 
production is channeled into dissolved organic matter that is remineralized near the surface.

Atmospheric pCO2 in NOPOM increases 165.4 μatm (Table S2) with respect to our reference power-law: 
slightly less outgassing than Volk and Hoffert (1985), but the NOPOM ocean does have biological activity 
and a small biogenic carbon store. This is roughly twice as large as the outgassing resulting from the use of 
a simple exponential remineralization profile fit to the reference power-law curve in AFIT and EFD simu-
lations (70.3 and 92.6 μatm), despite these simulations supporting significant 1 km export fluxes (1.460 and 
1.238 PgC y−1, only 20% less than the reference power-law) as well as large stores of biological carbon (1,830 
and 1,900 PgC, compared to 176 PgC for NOPOM). Thus, only about half of the biological pump's effect on 
atmosphere-ocean carbon drawdown (∼80 μatm) can be attributed to export of particulate organic matter 
and biological carbon storage (Figure 3b).

The remaining ∼80 μatm drawdown in atmospheric carbon content is due to the change in shape of remin-
eralization curves between a biological pump represented by AFIT and EFD exponential curves compared 
to a biological pump represented by the reference power-law profile. Exponential profiles have a constant 
rate of change of remineralization, or attenuation of the sinking particle flux, with depth (Figures 1c and 1d, 
insets), which results in the majority of the sinking particle flux from the surface ocean being remineralized 
in the upper 2 km. Export fluxes through this horizon are 0.204 and 0.140 PgC y−1. Alternatively, attenuation 
for the power-law curve decreases significantly with depth, leading to a substantial 2 km export flux of 0.802 
PgC y−1. Thus, for AFIT and EFD exponential profiles, there is much less abyssal biological carbon storage 
to act as a long-term reservoir of atmospheric CO2, whereas rapidly decreasing attenuation in the reference 
power-law supports long-term biological carbon storage.

In other words, decreasing upper ocean particle attenuation, or increasing remineralization lengthscale 
with depth, appears to be equally important for air-sea carbon partitioning as export and storage of biolog-
ical carbon (Figure 3b).

4. Discussion and Conclusions
Atmospheric CO2 levels are intimately tied to the strength of the ocean's biological pump (Ito & Fol-
lows, 2005; Volk & Hoffert, 1985). The challenge of measuring particulate fluxes via sediment traps, optical 
proxies, or geochemical methods (Berelson, 2001; Guidi et al., 2015; Henson et al., 2012; Honjo et al., 2008; 
Martin et al., 1987; Pavia et al., 2019), the spatiotemporal variability of fluxes, and the complexity of the 
governing mechanisms introduce uncertainty into representation of the biological pump in ocean bioge-
ochemistry, ecosystem, and climate models. We explored the impact of structural uncertainty—reminer-
alization profile shape—on atmosphere-ocean carbon partitioning, using seven mechanistically distinct 
functional forms of particulate organic matter flux that capture observational spread equivalently well (Cael 
& Bisson, 2018). In our model, a 0.14 change in the power-law exponent, b, results in a 22–25 μatm change 
in atmospheric pCO2, indicating that the structural uncertainty revealed by our simulations of 10–15 μatm 
is equivalent to ∼0.08 change in the global b value. Thus structural uncertainty is roughly half the size 
of parametric uncertainty, making it a substantial one-third contribution to our overall estimate of total 
uncertainty (the sum of structural and parametric uncertainties) in understanding the biological pump. In 
addition, our result is in the upper range of the 5–15 μatm uncertainty associated with regional variation in 
b (Wilson et al., 2019).

Historically, the focus has been on remineralization lengthscale (Kwon et al., 2009), but our results, indicat-
ing that vertical gradient in attenuation is a first-order control on climate, imply that multiple lengthscales 
of attenuation are critical to the biological pump's global impact. Thus, not only is the existence of a bio-
logical pump that maintains interior ocean biological carbon stores a key factor in the biological pump's 
modulation of atmospheric CO2 levels (Volk & Hoffert, 1985), but also a significant decrease of attenuation 
with depth is necessary to achieve the full amount of drawdown usually attributed to the biological pump 
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(Figure 3b). Even when the exponential profiles' parameters are determined by matching the e-folding rem-
ineralization depth of the reference power-law curve (Kwon et al., 2009), the result is still large atmospheric 
pCO2 anomalies caused by largely invariant attenuation rates with depth.

Our study evaluates structural uncertainty in the ocean's biological pump in a systematic way. Although 
previous studies have compared individual, or a subset, of the alternative remineralization curves used here 
(e.g., Yamanaka & Tajika, 1996; Gehlen et al., 2006; Kriest & Oschlies, 2008; Schwinger et al., 2016; Gloege 
et al., 2017; Niemeyer et al., 2019; Kriest et al., 2020) with a focus on minimizing model-observational dif-
ferences, none has attempted to evaluate this structural uncertainty by just changing the shape of the rem-
ineralization profile, which we do here by comparing six alternative functional forms statistically fit in three 
different ways to a reference power-law profile. Despite these profile choices resulting in non-negligible 
differences in ocean biogeochemical distributions (Aumont et al., 2017; Kriest et al., 2012) and atmospheric 
CO2 levels (Kwon et al., 2009), comparison of model output to climatological data (Boyer et al., 2018; Garcia 
et al., 2018) does not significantly change (Figure S8), such that all the curves still quantitatively reproduce 
the observations to a similar degree.

As Earth System Models continue to rely on simple biological pump parameterizations, our estimate of 
structural uncertainty underscores the importance of research aimed at improving the basic mechanistic 
characterization of the biological pump (Boyd et al., 2019), and particularly the depth-dependence or evolu-
tion of these mechanisms. One such improvement is to consider the spectrum of sinking particle properties, 
such as size (Schwinger et al., 2016; Niemeyer et al., 2019), sinking speeds (Kriest & Oschlies, 2008) or mate-
rial lability (Aumont et al., 2017), and how they affect export fluxes. These studies often derive components 
that rely on upper and lower incomplete gamma functions, as well as gamma distributions, but ultimately 
do not produce gamma function flux profiles. The Rothman and Forney (2007) profile (Equation S6) is a 
special case of the upper incomplete gamma function (where the order, a = 0). However, statistical fits of 
integer orders of the upper incomplete gamma function where a > 0 to the reference power-law (b = 0.84) 
are poor (See Figure S1, including the simple exponential curve, which is proportional to an upper incom-
plete gamma function of order a = 1), and as stand-alone remineralization parameterizations may include 
particle classes whose remineralization profiles may not exist in the ocean. On the other hand, a more 
general three-parameter upper incomplete gamma function parameterization, CgΓ(ag, z/ℓg), fits the Martin 
Curve very well with ag ≈ −0.8 (Figure S1), and would correspond to a constant-sinking reactivity contin-
uum model (Aumont et al., 2017) with a power-law reactivity distribution. However, reactivity continuum 
models do not describe reactivity using a power law and instead use lighter-tailed distributions such as the 
gamma (Boudreau & Ruddick,  1991), beta (Vähätalo et  al.,  2010), or log-normal distribution (Forney & 
Rothman, 2012). Thus we did not include these additional profiles in our biological pump structural error 
ensemble as there is not a justifiable basis for a > 1, nor a plausible mechanism for a < 0, unlike the six 
alternative remineralization curves presented.

A better process-based understanding is critical to choosing between these parameterizations based on their 
mechanistic underpinnings and thus reducing structural uncertainty, because empirical fits to flux meas-
urements alone cannot currently do so (Cael & Bisson, 2018; Gehlen et al., 2006). Indeed, there are also 
no guarantees that more extensively sampled ocean nutrient distributions are able to distinguish between 
the performance of idealized and more explicit remineralization schemes either (Niemeyer et  al.,  2019; 
Schwinger et al., 2016).

In our simulations, the parameterizations were forced to be as similar as possible with regard to the three 
different criteria (minimizing misfit error or matching the reference e-folding depth of remineralization), 
but functional forms based on different processes will have different sensitivities to temperature and other 
phenomena, and therefore will produce divergent projections and different climate feedbacks. Further-
more, each alternative functional form will be associated with its own parametric uncertainty. Unfortu-
nately, significantly less is known about the natural range of parameters associated with the alternative 
remineralization profiles in the real ocean, because they have not been used as widely as the Martin Curve.

There are other factors that could affect the distribution, export, and depth-dependent remineralization 
of sinking particles, and therefore ocean carbon sink/atmospheric CO2 sensitivity, that we held the same 
between simulations. For example, our assumption of a closed carbon cycle with no sediment burial or 
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riverine fluxes may underestimate the biological pump effect on atmospheric CO2 for the different reminer-
alization profiles by four to seven times (Roth et al., 2014) on timescales of 10–100 thousand years. Between 
different models, the overall strength of the deep ocean carbon store may be more dependent on remineral-
ization profile parameters than on different ocean circulations, although circulation impact on upper ocean 
production would modify the overall relationships shown here (Kriest et al., 2020; Romanou et al., 2014). 
Vertical grid resolution and numerical diffusion might also result in changes to the ocean carbon sink (Kri-
est & Oschlies, 2011), although again these changes may not manifest in the short timespan that many more 
complex coupled ocean-ecosystems are integrated for (Kwon et al., 2009; Schwinger et al., 2016). Despite 
these challenges, it would be valuable to compare these different functional forms within state-of-the-art 
Earth System Models, either directly or via implied remineralization profile shape, to improve confidence 
in projections involving biosphere-climate interactions.
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