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Global-scale patterns of observed sea surface
salinity intensified since the 1870s
W. John Gould 1✉ & Stuart A. Cunningham 2

Sea surface salinity patterns have intensified between the mid-20th century and present day,

with saline areas becoming saltier and fresher areas fresher. This change has been linked to a

human-induced strengthening of the global hydrological cycle as global mean surface tem-

peratures rose. Here we analyse salinity observations from the round-the-world voyages of

HMS Challenger and SMS Gazelle in the 1870s, early in the industrial era, to reconstruct

surface salinity changes since that decade. We find that the amplification of the salinity

change pattern between the 1870s and the 1950s was at a rate that was 54 ± 10% lower than

the post-1950s rate. The acceleration in salinity pattern amplification over almost 150 years

implies that the hydrological cycle would have similarly accelerated over this period.

https://doi.org/10.1038/s43247-021-00161-3 OPEN

1 National Oceanography Centre European Way, Southampton, UK. 2 Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, UK.
✉email: wjg@noc.ac.uk

COMMUNICATIONS EARTH & ENVIRONMENT |            (2021) 2:76 | https://doi.org/10.1038/s43247-021-00161-3 | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00161-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00161-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00161-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-021-00161-3&domain=pdf
http://orcid.org/0000-0002-3152-1277
http://orcid.org/0000-0002-3152-1277
http://orcid.org/0000-0002-3152-1277
http://orcid.org/0000-0002-3152-1277
http://orcid.org/0000-0002-3152-1277
http://orcid.org/0000-0001-9439-5442
http://orcid.org/0000-0001-9439-5442
http://orcid.org/0000-0001-9439-5442
http://orcid.org/0000-0001-9439-5442
http://orcid.org/0000-0001-9439-5442
mailto:wjg@noc.ac.uk
www.nature.com/commsenv
www.nature.com/commsenv


The scientific definition of salinity started in the 1890s and
only in the Atlantic1 has it been possible to document
salinity changes into the 19th century. For the voyages of

HMS Challenger (1872–1876)2 and SMS Gazelle (1874–1876)3,
which took place early in the industrial era4, we have derived
absolute salinity5 from the specific gravity measurements at the
almost 400 stations occupied (Fig. 1a). The process of converting
specific gravity observations to salinity and the assessment of the
data quality are described in the “Methods” section. When
combined with 20th century reconstructions of the global salinity
field, the data allow us to assess changes in surface salinity
globally over almost 150 years.

We focus the analysis on three periods, the 1870s and the
decades centred on 1954 and 2014. This allows comparisons with
other analyses describing salinity change between the latter two
periods6–9. The 1870s data are compared with the 5 m salinity
values in the EN4 (Version 4.2.1)10 data set. We chose the EN4
data set because it is based solely on observational data. We also
repeated the analysis using the newer Cheng et al.9 data set, which
relies on CMIP511 output.

Results and discussion
Patterns of salinity change since the 1870s. We noted that the
regional patterns of change between the 1950s and 2008 reported
by7 showed saline areas becoming more saline and the fresh areas

fresher, an amplification (defined as the amplitude of the change
between saline and fresh regions) believed to be indicative of
strengthening of the global hydrological cycle since the mid-20th

century and summarised in7,8.
In order to reveal whether the patterns of change between the

1870s and the 1950s might have been similar to those since the
1950s we identified regional groups of Challenger and Gazelle
stations, the positions of which lay in distinct areas of post-1950s
freshening or salinification revealed by the EN4 5m fields
representing the salinity difference from the decadal averages,
1950 to 1959 and 2010 to 2019.

Figure 1a shows the Challenger and Gazelle station positions in
relation to the mean EN4 5m surface salinity field (1950–2019).
The regionally- grouped 1870s stations are shown in Fig. 1b,
Challenger and 1c Gazelle). The stations in each regional group
are listed in Supplementary Table S1.

The areas traversed by Challenger and Gazelle were marked by
salinification in the subtropical gyres of the North and South
Atlantic and South Indian Oceans (Gazelle only). Freshening is
seen in the low-latitude western Pacific, the equatorial Atlantic
and the Southern Ocean. The patterns of change from the EN4
data are similar to those reported by6–8 between the 1950s
and 2012.

For each of these station groups we computed mean rates of
salinity change from the 1870s to the mean decadal average EN4
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Fig. 1 Challenger and Gazelle stations in relation to recent salinity fields. a Challenger (black) and Gazelle (yellow) station positions superimposed on
the mean (1950–2019) EN4 5m salinity field. Bold line is 35 g kg−1 contour. b (Challenger) and c (Gazelle) stations with regional groupings overlaid on
EN4 5m salinity change (2010–2019 minus 1950–1959). Station groupings key and definition of areas are given in Fig. 2 and Table S1.
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5 m salinity (1950–59) and compared these with the changes from
the 1950s to 2010–19. These comparisons are in Fig. 2.

The plots show a stronger correlation for Challenger than for
Gazelle. This reflects the wider regional distribution and larger
number of Challenger stations (285 after 15 rejected) than Gazelle
(101 after 9 rejected) stations in the regional analysis. The areas of
strongest and most consistent change since the 1870s are
freshening of the Pacific Warm Pool (Challenger and Gazelle)
and salinification in the North and South Atlantic subtropical
gyres (Challenger) and equatorial Atlantic (Gazelle).

The ratio of the regional salinity rate of change in these two
periods is a measure of the salinity amplification. For the
Challenger data there is a clear linear relationship between the

rates of change (slope 0.6 ± 0.2, correlation coefficient 0.64).
The equivalent figures for Gazelle are, slope 0.4 ± 0.3, correlation
coefficient 0.36. The slopes are statistically inseparable. We
also computed the equivalent relationships using the Cheng
(CZ16) data set for which the corresponding slopes and
correlation coefficients were Challenger (0.51 ± 0.31, 0.33) and
Gazelle (0.66 ± 0.46, 0.43).

In these analyses all regions were given equal statistical
weight even though they contained differing numbers of stations.
We chose this simple approach because the stations are
not equally spaced and thus the number of stations cannot
be seen as representative of the track length (area) in which
changes occur.
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Fig. 2 Regional salinity changes from the 1870s to the 1950s and from the 1950s to the 2010s. a Rates of salinity change (per annum) of Challenger and
b Gazelle data (EN4(1950–1959) minus 1870s) versus (EN4(2010–2019 minus EN4(1950–1959)). Each is scaled by the time span (1873 to 1954, 81 years),
(1955 to 2015, 60 years). The error bars for the 1870s reflect the variations within each region. For EN4 the error bar is ±1 standard deviation of monthly
mean 5m value and the total error in ordinate or abscissa is computed as the root-sum-square error from each component. The least-squares fit and 95%
confidence limit is given by the black lines. The degrees-of-freedom to estimate the fit is the total number of samples divided by the number of regions (for
Challenger dof= 24; for Gazelle dof= 13).
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To convert the rate of change in the salinity amplification to a
salinity anomaly in the 1870s we first computed the global salinity
change in the EN4 data sets between the decades centred on 1954
and 2014. (We excluded sea ice influenced areas north of 65°N
from this analysis where EN4 salinities appeared anomalous and
high latitude areas were not sampled in the 1870s). From EN4 we
calculated the global mean salinity change in areas where salinity
increased and in those where salinity decreased between 1955 and
2015. These values are respectively +0.0940 g kg−1 and −0.0897
g kg−1, giving a global amplitude of salinity amplification of
0.184 g kg−1 over 60 years. This implies that the rate of salinity
amplification since 1955 is 0.306 g kg−1 century−1 (Table 1).

We then used the ratio of regional salinity changes, as
represented by the slopes of Fig. 2, to project back to the 1870s.
This calculation implies a mean salinity change between the 1870s
and 1950s (based on analyses of Challenger and Gazelle and using
EN4 and CZ16 data sets) of 0.133 ± 0.041 g kg−1, a rate of 0.166 ±
0.052 g kg−1 century−1 (Table 1).

The ratio of pre-1950s rate of SSS change to post-1950s is
1:1.84 ± 0.44 (Table 1). Thus, we find that the rate of salinity
pattern amplification before the 1950s was 54 ± 10% lower than
the rate since the 1950s.

Implications for global hydrology. In order to investigate the
insights that our estimates of salinity change might give into the
global hydrological cycle we plot the salinity changes since the
1870s against changes in surface air temperature from the
HadCRUT.5.0.1.012 data sets and sea surface temperature from
HadSST.4.0.0.013 in Fig. 3. These plots show that our salinity
change results are consistent with the link described in6 between
the rate of amplification, (fresh gets fresher - saline gets saltier)
and temperature.

The statistics in Table 1 summarise the changes and rates of
change of SST, SAT and SSS (from this study) plotted in Fig. 3 for
the periods before and after the 1950s. While previous analyses of
the relationship between salinity change and the global hydro-
logical cycle have focussed on the relatively well-observed period
since the 1950s during which changes in SAT and SST have been
close to linear, this analysis includes the pre-1950s period which
exhibited slower changes in SAT and SST. Figure 3 and the
statistics in Table 1 suggest a closer relationship between SSS
pattern amplification and SST changes than with changes in SAT
over the 145 years of this study. The model-based analysis by Zika
et al.14 of the post-1950s salinity pattern amplification (5–8%)
attribute approximately half of that amplification to ocean surface
warming (SST) with the remainder being linked to strengthening
of the hydrological cycle.

Conclusions
The conversion of the Challenger and Gazelle specific gravity
observations from the 1870s to equivalent absolute salinities
produces values that are consistent with the large-scale surface
salinity structure as defined by the EN4 data set. This holds good
for the areas sampled by both expeditions covering all the major
ocean basins. Furthermore, the salinity values are of high enough
quality to permit meaningful estimates of the changes in salinity
since the 1870s in areas of persistent freshening and salinification.

The 1870s data, being from a time-window before the rapid
20th century changes, allow us to study changes during a time
span in which the rates of increase in both surface air temperature
and sea surface temperature accelerated. The regional Challenger
and Gazelle data when combined with the post- 1950s EN4 and
CZ16 products show that the pattern of salinity amplification
(fresh areas becoming fresher, saline areas more salty) is con-
sistent with the post -1950s pattern amplification reported by T
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Durack et al.8 in their investigation of the relationship of surface
salinity changes to the global hydrological cycle. Our analysis
shows that the pattern amplification has intensified with the value
before the 1950s being 54 ± 10% lower than after that decade.

There are indications (Fig. 3) that this change in amplification
over almost 150 years may be more closely aligned to changes in
sea surface temperature than to changes in surface air tempera-
ture. The investigation of what light these data from the 1870s
may shed on the interplay of SAT and SST in determining salinity
pattern intensification14 is beyond the scope of this paper.

After the analysis of these two sparse and sub-optimally dis-
tributed data sets, the following quote by Hubble15 may be
apposite. “For such scanty material, so poorly distributed, the
results are fairly definite”.

Methods
Conversion of specific gravity to salinity. At the time of the expeditions there
was no means of directly determining salinity but subsequently chemical analyses
of Challenger data by Dittmar16 started the development of the concept of salinity
based on the chlorinity of the samples17.

As noted earlier we converted the 1870s specific gravity measurements to
equivalent absolute salinities. (We assumed that the specific gravity measurements
corresponded directly to density, using the reference value of pure water at 0 °C of
1.00 g cm−3). The conversion of density to salinity used a modern-day equation of
state (TEOS-2010)5 using the temperatures to which the 1870s data were
standardised (15.56 °C for the Challenger data and 14°Réaumur (17.5 °C) for
Gazelle).

The means of measuring specific gravity on Challenger are well documented.
The narrative of the voyage1 states that “Water from the surface was collected in the
ordinary way in a bucket”. The Challenger reports also describe the determination
of specific gravity and the subsequent conversion to a value at a standard
temperature of 60 °F. The ambient temperature was determined by a Geissler
thermometer, the calibration of which was frequently checked in melting ice.
Specific gravity determinations were made using a Buchanan hydrometer18–20 to
which a series of standard weights could be added to accommodate a wide range of
values while retaining a high sensitivity. The same hydrometer and weights were
used throughout the voyage. Surface samples were drawn from a bucket and
analysed immediately. The determinations of specific gravity were made on a
swinging table to minimise the effects of ship motion and in rough weather
measurements were delayed until calmer conditions prevailed. Every single
measurement was made by the expedition’s chemist, J.Y.Buchanan, who noted that
he locked the laboratory door to avoid distractions21, (page 24).

There is less information about the collection of the surface samples by Gazelle.
The report states “S.M.S. “Gazelle” carried two different types of areometers for the
scientific observations, model STEEGER-KÜCHLER and model GREINER. The
STEEGER-KÜCHLER areometers were equipped with a scale corresponding to
specific gravities from 1,024 to 1,031. the weights consisting of small metal beads.

Usually the observations were performed with the STEEGER-KÜCHLER instruments
which had been provided in larger numbers onboard and for which correction tables
had been provided. This was not the case for the GREINER instruments. They
showed small differences to the former instruments. However, in the case of low
values of specific gravity of the water the latter instruments had to be used because
the STEEGER ones were not adequate”.

There are several potential sources of error in the specific gravity values
reported and analysed here. The most obvious is the multi-stage process between
the measurement being made aboard the vessels and recorded in hand-written logs
(we are not aware that these still exist) and then to the printed reports and finally to
our extraction of values from these reports. We have only been able to eliminate
errors in this last step. Other “outliers” in the 1870s data that we have rejected must
be attributed to transcription or other unknown errors of observation. The specific
gravity measurements are reported to 5 decimal places: a change of 0.00001 in
specific gravity ≡ 0.013 g kg−1 in salinity. i.e. rounding error is ±0.0065.
Surprisingly there is no discussion in the reports of the possible errors that might
be introduced by evaporation from the samples.

Assessing the quality of the 1870s data. The geographical coverage of the
Challenger and Gazelle stations at which specific gravity was measured are shown
in Fig. 1a which shows the tracks superimposed on the present-day near-surface
salinity field from the EN410 data set representing conditions from 1950 to 2019
inclusive. In this paper we do not analyse the subsurface values, the distribution of
which is shown in Supplementary Information Fig. S1.

Though the Challenger and Gazelle tracks are not ideal for sampling the major
features of the global salinity field, they did cross the northern and southern
subtropical gyres of the Pacific and Atlantic oceans. Challenger made a single
excursion across the Antarctic circumpolar current and Gazelle surveyed the south
Indian Ocean. Unfortunately, specific gravity sampling on Gazelle did not start
until the vessel had crossed the equator on its outward voyage.

For comparisons between the 1870s surface bucket sampled data and modern
values we use the shallowest EN4 level (5 m) and CZ16 (1 m) as being
representative of surface values. The post-1990 EN4 data have smaller uncertainties
since they include data from the World Ocean Circulation Experiment
(1990–1997)22,23 and from the Argo profiling float programme24 (2000 onwards
and covering the uppermost 2000m)25.

We removed outlying salinity values from the 1870s data based on two passes of
a standard deviation filter from the corresponding value in the EN4 reference set.
The first pass is three standard deviations, effectively removing egregious data, the
second pass is two standard deviations (95% confidence limit). The EN4 and CZ16
reference sets were determined by computing the monthly mean 5 m depth salinity
(1 m for CZ16) (1950–1959) for the month of the Challenger or Gazelle
observation. The standard deviation of this monthly mean is computed from
10 monthly values from the same month as the Challenger/Gazelle observation.

The first test of the value of the 1870s data is the extent to which they reproduce
the present-day variations along ships’ tracks. The comparisons to EN4 are shown
in Fig. 4.

From the upper panel it is clear that both the Challenger and Gazelle
observations follow the structures in the EN4 data. The close match is seen even for
the Challenger excursions into the low salinity region off Nova Scotia (around

Fig. 3 Surface salinity changes since the 1870s compared with Surface Air Temperature (SAT) and Sea Surface Temperature (SST). Surface salinity
(SSS) changes compared with changes in a, HadCRUT Surface Air Temperature (SAT) and b, HadSST Sea Surface Temperature (SST). Both data sets have
been adjusted so that the average temperature anomaly for the period (1950–1959) is zero. The solid black line from 1954 to 2014 is the mean EN4 salinity
change (2010–2019)-(1950–1959) between positive and negative salinity anomaly regions of 0.184 g kg−1. The salinity change pre-1950s is determined
from the comparison of the Challenger and Gazelle data to both EN4 and CZ16 data. The error bars are derived from the 95% confidence limits. Magenta
solid CH(EN4), magenta dashed GZ(EN4), green solid CH(CZ16) and green dashed GZ(CZ16). The solid red is the mean of the slope and error from the
four analyses.
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station 50) and into the Southern Ocean (around stations 150 and 310). The
Gazelle data similarly reproduce the large-scale variations including low salinities at
the mouth of the River Congo (Stn 31) and River Plate (Stn 151). We have been
unable to identify the cause of the large offset of the Gazelle salinities from EN4.
However, the central results of the analysis in the main section of this paper, since
they are based on the analysis of anomalies, are not affected by the magnitude of
the offset.

Aboard Gazelle, duplicate samples were taken and sealed in bottles that were
returned to Kiel where they were analysed after the voyage. Comparison of the
computed salinities of the two data sets shows that they are effectively identical.
Differences were 0.065 ± 0.217 g kg−1 based on70 duplicate pairs.

The mean difference shows that surface Challenger data after the elimination of
15 outliers are saltier than the 1950–1959 EN4 data by 0.224 ± 0.268 g kg−1 for
276 samples and after the rejection of 9 samples the Gazelle are saltier by 1.969 ±
0.289 g kg−1 for 101 samples.

Consistency of the Challenger and Gazelle data throughout the voyages. The
main analysis in this paper is dependent on there being no large-scale temporal or
spatial changes in the Challenger and Gazelle sample analysis other than those that
might be attributable to changes in evaporation/precipitation. In order to assess the
consistency of the determination of specific gravity we took advantage of the fact
that both vessels made observations in the South Atlantic during their outward and
return voyages (Challenger in 1873 and 1876 and Gazelle in 1874 and in 1876. We
calculated the EN4 minus 1870s offsets and these are summarised in Table 2.

From the fact that for each ship the two visits to the South Atlantic effectively
recorded identical salinities (Students t-test at 90% level), and subject to the proviso
that the ship tracks differed in the two occupations, we conclude that the analytical
technique used by Challenger and Gazelle were consistent throughout the voyages
and that any regional changes in EN4 minus 1870s data may therefore reflect
changes in oceanic conditions.

We also investigated whether there were large ENSO events in the 1870s that
might have created significant large-scale perturbations in surface conditions. The
classification of ENSO events by Gergis and Fowler26 suggests that there were no
such events during the mid 1870s. The longer (1990–2019) EN4 window period did
contain several ENSO events but we have assumed that these would have been
averaged and so exerted minimal regional bias to EN4.

Data availability
The original specific gravity observations are published in references3,21. The transcribed
values have been submitted to the US National Centres for Environmental Information
(https://doi.org/10.25921/jcca-e972).
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