
1. Introduction
The continual flux of organic carbon from the surface to the deep ocean sequesters carbon from exchanging 
with the atmosphere, and thus maintains atmospheric CO2 and global temperature appreciably below what 
they would otherwise be (Sarmiento & Gruber, 2006; Sigman & Boyle, 2000; Sigman et al., 2010; Williams 
& Follows, 2011). The majority of organic carbon flux occurs via the gravitationally forced sinking of ma-
rine particles created in the sunlit upper ocean from photosynthesis. As they sink, particles are decom-
posed (“remineralized”) which releases inorganic carbon back to solution in seawater at the depth where 
remineralization occurs (Herndl & Reinthaler, 2013). The balance of sinking speed and remineralization 
thus determines the depth of carbon sequestration, which in turn determines the residence time before the 
sequestered carbon can be released back to the atmosphere (Buesseler & Boyd, 2009; DeVries et al., 2012; 
DeVries & Primeau, 2011). Particulate fluxes are proportional to particles' sinking speeds, so for a given 
rate of remineralization, faster sinking speeds lead to deeper remineralization and lower atmospheric CO2 
(Kwon et al., 2009). Thus, understanding the controls on particle sinking speeds is critical for understanding 
the biological pump's role in marine biogeochemistry and climate.

Physical theory (Clift et al., 2005; Stokes et al., 1851) suggests that a particle's sinking speed w (m/d) should 
be controlled by its excess density Δρ (kg/m3) relative to the density of the surrounding fluid ρo (kg/m3), 
its shape, and its size, commonly expressed in terms of equivalent spherical diameter d (mm). For an ideal 
solid sphere at low Reynolds number in a quiescent fluid, this speed is given by Stokes' Law:




 2Δ ,
18

gw d (1)

Abstract Sinking particles are critical to the ocean's “biological pump,” sequestering carbon from the 
atmosphere. Particles' sinking speeds are a primary factor determining fluxes and subsequent ecological 
and climatic impacts. While size is a key determinant of particles' sinking speeds, observations suggest 
a variable size-sinking relationship, affected by other particle properties, resulting in substantial spread 
in parameterizations of particle sinking and fluxes. We compile particle size-sinking observations and 
apply hierarchical Bayesian statistical models to resolve the size-sinking relationship while accounting for 
other factors. We find an overall scaling close to the general Navier-Stokes drag equation, and differences 
between particle types, open ocean versus coastal/laboratory particles, and in situ versus ex situ methods. 
These results can help harmonize how Earth system models parameterize particle fluxes and support a 
weaker size-dependence than often assumed, with implications for the flux contribution of small particles 
and the predicted future shrinking of marine particle populations.

Plain Language Summary Sinking particles in the ocean comprise a major flux within the 
global carbon, nutrient, and oxygen cycles. Particle flux is strongly influenced by sinking speed, which 
in turn is thought to be strongly influenced by particle size. However, observed variability in particle 
geometry and composition complicates this size-sinking relationship and has introduced significant 
uncertainty into ocean flux models. Using hierarchical Bayesian statistical modeling, we show marine 
sinking particle observations are broadly consistent with the general Stokes' theory for particle terminal 
speeds. These results revise flux models currently used in earth system model predictions and have 
implications for the predicted shrinking of marine particles with climate change.
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where g is the gravitational constant and μ is the dynamic viscosity of seawater (kg/ms). This simple equa-
tion suggests that sinking speeds scale positively and nonlinearly with size and is practically appealing 
because of its simplicity and basic theoretical underpinnings. However, it has been noted that observa-
tions of sinking particles typically deviate widely from the basic relationship (Diercks & Asper, 1997; Lau-
renceau-Cornec et al., 2015, 2019; Figure 1). Individual studies of different assemblages of particles over the 
past few decades find size-sinking relationships ranging from a Stokes'-Law-like relationship (Azetsu-Scott 
& Johnson, 1992) to an overall decrease of sinking velocity with size (McDonnell & Buesseler, 2010). The 
diversity of assumed relationship demonstrates the importance of various factors that obscure the overall 
size-dependency of sinking speeds such as inclusion of ballast minerals (Klaas & Archer, 2002) or “sticky” 
transparent exopolymers (Engel & Schartau, 1999), ambient temperature (Iversen & Ploug, 2013), or parti-
cles' geometry (Johnson et al., 1996). Several variations to Equation 1 have been proposed for nonspherical 
and porous particles, generally with scaling exponents <2 (Tang & Raper, 2002), but it is not clear whether 
any of these is appropriate for the large diversity of natural marine particles.

As a result, Earth system models use a variety of different size-sinking relationships to parameterize par-
ticulate organic matter fluxes (e.g., Dunne et al., 2010; Dutkiewicz et al., 2015; Gehlen et al., 2006; Kriest 
& Oschlies,  2008; Yool et  al.,  2013; Figure  1). These size-sinking relationships yield order-of-magnitude 
differences in sinking speeds for particles of the same size (Figure 1) and therefore predict widely different 
fluxes and introduce uncertainty into models of ocean biogeochemistry (Gehlen et  al.,  2006; Niemeyer 
et al., 2019). Furthermore, size-sinking relationships have additional implications for climate change pro-
jections, as plankton models suggest a shrinking of cell size with warming, which would positively feedback 
onto atmospheric CO2 due to reduced particle sinking speeds predicted from size-sinking relationships 
(Bopp et al., 2005; Finkel et al., 2010). Though it has become increasingly clear that environmental con-
text, particle type, and other factors can limit our ability to extrapolate observed empirical relationships to 
estimate large scale fluxes (Laurenceau-Cornec et al., 2015), these uncertainties have not yet been treated 
in a statistical fashion, which could help harmonize biological pump parameterizations in ocean models. 
Determining particles' size-sinking relationships is not only of interest for global modeling but also for the 
increasingly prevalent technique of estimating particle fluxes from optically derived ambient particle size 
distributions (Guidi et al., 2008) using, for example, the Underwater Vision Profiler (Picheral et al., 2010). 
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Figure 1. Left: Particle size (expressed as equivalent spherical diameter d (mm)) versus sinking (speed w (m/d)) from the sources in Table S2 and from models. 
Individual studies are randomly colored, with ordinary least squares linear regressions of log-transformed data overlaid. The solid orange line is the median 
result of the hierarchical regression to the overall data set (log10(α) = 2.11, β = 0.63) and the solid black line is the result of an ordinary least squares regression 
(log10(α) = 2.11, β = 0.45). Dashed, dotted, and dash-dotted lines are common model parametrizations of size-sinking relationships (Dunne et al., 2010; 
Dutkiewicz et al., 2015; Gehlen et al., 2006; Niemeyer et al., 2019; Yool et al., 2013). Thin black line is a Stokes'-Law-like β = 2. Right: 100-m normalized fluxes 
(flux at a given depth divided by flux at 100 m) for particle populations of different sizes with a remineralization rate of k = 0.24 days−1 (Collins et al., 2015) and 
sinking speeds from relationships in the left panel (β = 2 not shown).
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These methods require knowledge of how particle sinking speed and mass scale with size, and how these 
might vary for different particles or environments.

Here, we attempt to resolve the size-sinking relationship in marine particles by assembling the largest data 
set of particle size and sinking speed to date. Our objective is to quantify size-sinking scaling relationships 
from particle observations, provide confidence bounds on this scaling, and its dependence on other factors. 
We develop a Bayesian hierarchical model framework, motivated from a generalized Navier-Stokes drag 
equation, to estimate a universal size-scaling relationship while taking into account context-dependent fac-
tors. For nonspherical, heterogeneous particles like “marine snow” aggregates or zooplankton fecal pellets, 
a more general Navier-Stokes drag equation can be used to describe sinking speed (Laurenceau-Cornec 
et al., 2019; Stokes et al., 1851):




 
   
 

1/2
4 Δ ,

3 o D

gw d
C

 (2)

where CD is the dimensionless drag coefficient. Here both Δρ and CD are size-dependent. The former de-
pendence is typically expressed in terms of the fractal dimension f as Δρ ∝ df−3, whereas CD scales inversely 
with Reynolds number for solid spheres. (f can be thought of in less technical terms as quantitatively ex-
pressing how much less volume-filling larger particles are than smaller particles.) In general, f and CD are 
not well-characterized for complex natural particle shapes and structures (Loth, 2008; Tang & Raper, 2002), 
though both Δρ and CD should decrease with d. Thus, according to Equation 2 sinking speed should scale 
approximately with the square root of particle size diameter, but in potentially complex or variable ways, 
depending on factors that modulate the parameters of the generalized drag equation in Equation 2.

A general parameterization of Equation 2 has the form

  w d d (3)

where β is the dimensionless scaling exponent and α is the prefactor coefficient (m/d), or the speed of a 
1 mm particle. Viewed this way, α and β are unknown parameters with variability that depends on particle 
type and environmental factors. We formulate Equation 3 as a hierarchical Bayesian model and allow de-
viations from an overall size-scaling relationship according to: (1) aggregate particles versus. fecal pellets, 
(2) coastal versus open ocean versus laboratory measurements, (3) in situ versus. indirect in situ versus flow 
chamber versus other measurement methodologies, (4) “warm” (≥14°C) versus “cold” (<14°C) environ-
ments, (5) diatom versus nondiatom for aggregate particles, and (6) ballast versus nonballast for aggregate 
particles (see Methods for more detail). Hierarchical Bayesian regression has enjoyed success in other sci-
entific fields (Gelman & Hill, 2006), but has not previously been applied to marine particle datasets. We 
fit the model to the compiled data set, representing sinking speeds from a wide variety of contexts, and 
report posterior probability distributions for the overall scaling and context-specific deviations. We discuss 
the implications of our estimated size-sinking relationships for biogeochemical models and for the global 
carbon cycle.

1.1. Overall Scaling

The hierarchical model suggests a posterior median overall scaling exponent β = 0.63 (with a standard 
deviation ± 0.06) and a median coefficient α = 129 ± 26 m/d. The overall and study-specific posterior 
distributions for α and β are plotted in Figure 3. Despite large study-to-study variability in both parame-
ters, the hierarchical model finds an overall scaling exponent much smaller than Equation 1 (β = 2) and 
roughly in line with Equation 2 (β = 1/2). The difference between the 1/2-scaling in Equation 2 and the 
β = 0.63 ± 0.06 scaling in Figure 3 may be due to environmental and/or methodological discrepancies 
(see below) but in general suggests that the ratio Δρ/CD changes only weakly with particle size. We note 
that the overall parameter distributions are virtually unchanged across all the different model networks 
we used, indicating that these overall α and β parameter values are robust (top level in Figure 2). The 
hierarchical model also finds a higher β than the β  =  0.45  ±  0.01 found by an ordinary least squares 
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(OLS) regression of the total aggregated data set (a posterior probability 
of p  >  99%), but almost exactly the same α, suggesting faster sinking 
velocities than OLS for particles >1 mm and slower sinking velocities 
for particles <1 mm (Figure 1).

The total flux F (g m−2 d−1) of an assemblage of particles can be expressed 
(Guidi et al., 2008) as

     0 dN d w d m d d  (4)

where N(d) is the number of particles of diameter d, w(d) is the average 
size-sinking speed relationship, and m(d) is the average size-mass rela-
tionship. Thus substituting Equation 3 into Equation 4 shows that total 
particle flux F is proportional to the coefficient α, and that the relative 
contribution of small and large particles to F will be determined by β 
and how both N and m scale with d. The utility of the hierarchical ap-
proach is primarily in constraining β, as seen by the fact that the overall 
α  =  129  ±  26  m/d matches both the overall α found by a simple OLS 
regression and a common “rule of thumb” estimate that particles sink on 
the order of 100 m/d. An overall scaling exponent of β = 0.63 ± 0.06 sug-
gests a much more substantial contribution of small particles to total flux 
than if particles sank like solid spheres or individual cells (Laws, 1975; 
Niemeyer et  al.,  2019), as has been increasingly recognized (Alon-
so-González et al., 2010; Durkin et al., 2015; Riley et al., 2012). This is 
further supported by the fact that a low β is consistent with a low fractal 
dimension f, that is, a low mass-size scaling exponent, even if the quanti-
tative link between β and f is uncertain (Johnson et al., 1996; Tang & Rap-
er, 2002). Furthermore, this suggests particle fragmentation is less effec-
tive at attenuating total flux; if a particle becomes fragmented, the change 
in average sinking speed of the resulting (smaller) particle fragments will 
be less than if β were larger. A β = 0.63 ± 0.06 also suggests that future de-
creases in particle size distributions (Bopp et al., 2005; Finkel et al., 2010) 
would not change the total flux F nearly as much as if β were more akin 
to the larger values for individual cells (Laws, 1975) or solid objects (Clift 
et al., 2005; Stokes et al., 1851).

The differences in relative contribution to total flux of small and large particles between our overall result 
and example model parameterizations can be seen in Figure 1. For a parameterization using β = 1.17, effec-
tively all of the flux below the upper few hundred meters of the water column is due to very large (∼3 mm) 
particles, as smaller particles are attenuated rapidly. In contrast, a step-function parameterization vastly 
overpredicts flux due to ∼300 μm particles, and vastly underpredicts flux due to ∼30 μm particles, compared 
to the hierarchical model's estimated relationship. Our hierarchical β of 0.63 ± 0.06 is both globally plausi-
ble and biogeochemically relevant as supported by a recent study (Niemeyer et al., 2019) which showed that 
a β = 0.62 appreciably outperforms a β = 1.17 in a global biogeochemical model's ability to simulate tracer 
distributions. The value of 0.62 in that study was derived from one of the equations that have been proposed 
to link β to particles' fractal dimension f (Kriest, 2002).

1.2. Group-Level Scalings

Our hierarchical models' group-level results largely confirm general expectations about the deviations from 
the overall size-sinking relationship (Figure 4; Table S1). First, both α and β are larger (p > 99% and p ≈ 86%, 
respectively) for fecal pellets than for aggregates. The higher α is expected as fecal pellets are generally 
thought to be denser (meaning larger Δρ) and less rough than aggregates (meaning smaller CD; Ebersbach 
et al., 2011; Yoon et al., 2001). The higher β is also partly explained by lower porosity, or higher fractal di-
mension, of the fecal pellets, as the effective density of fecal pellets should decrease comparatively less with 
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Figure 2. Schematic of hierarchical regression. The likelihood of 
individual observations is evaluated conditional on the hierarchy of 
parameters defined upstream. Individual studies' scaling coefficients 
are drawn from groups (i.e., dividing studies by type of particle, type of 
environment, type of method, or temperature – or no grouping is imposed 
in the three-level network case) of studies' distributions, which in turn 
are drawn from the overall scaling coefficients' distribution. Here p refers 
to a probability density function, i is an index indicating different groups, 
j is an index indicating different studies within groups, and k is an index 
indicating different individual particle observations within studies, that is, 
wijk is the kth sinking speed observation within study j within group i. The 
likelihood of each individual observation given the parameters' values is 
evaluated on the “data” level. See Materials and Methods for details.
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increasing particle size, resulting in a higher β. In any case these results 
provide supporting evidence that aggregates' and fecal pellets' sinking 
should be parameterized differently in biogeochemical models (Table S1).

We find larger α in warm environments (p ≈ 76%), expected due to the 
lower viscosity of seawater at higher temperatures (Taucher et al., 2014) 
resulting in faster sinking speeds for all particles. α is also higher for bal-
lasted (p ≈ 94%) and diatom-enriched (p ≈ 75%) aggregates, as expected 
from the higher densities of these materials (Engel et  al.,  2009). Dia-
tom-enriched and ballasted aggregates are not only expected to be com-
posed of more dense material but also more compact (Laurenceau-Cor-
nec et al., 2019), and therefore expected to have a higher β, also borne 
out by these analyses (p ≈ 75% and p ≈ 69% respectively). It is unclear 
whether β would be expected to be higher, lower, or the same for particles 
from warmer environments; β is found to be larger for the warm group 
(p ≈ 72%), further indicating faster sinking speeds for these particles.

We find larger α (p ≈ 91%) and β (p ≈ 77%) for coastal particles compared 
to open ocean particles. Particles from coastal environments are expected 
to sink faster because coastal environments are subject to loading of min-
erals and other dense material from rivers, sediment resuspension, dust 
deposition, and other sources, and also because coastal ecosystems tend 
to be more dominated by diatoms (Armbrust, 2009). Similarly, as labo-
ratory-generated particles are typically generated in volumes with artifi-
cially high collision rates (Jackson, 2015), from diatom cultures or from 
phytoplankton collected in close proximity to the laboratory, they should 
also have a larger α and β for the same reasons as above, which we also 
find (p ≈ 85% and p ≈ 83%, respectively). Though these differences are un-
surprising, they are important because much of our understanding and 
parameterization of open ocean particles comes from coastal and labo-
ratory studies, which may influence not only the magnitude of sinking 
speeds (α) but also their size dependence (β). We find a β of 0.56 ± 0.09 
for the open ocean group, that is, within one standard deviation of the 1/2 
scaling from Equation 2. When modeling sinking speeds of open ocean 
particles, we therefore recommend the β  =  0.56  ±  0.09 exponent. As 
above, we interpret the lower open ocean β to result from higher porosity 
or lower fractal dimension of open-ocean particles.

Finally, surprising and potentially illuminating differences are revealed by the hierarchical model which 
groups by methodology. The in situ direct methods (those which measure sinking speeds, e.g., Carder 
et al., 1982) and indirect methods (those which infer speeds from the ratio of flux to concentration, Mc-
Donnell & Buesseler, 2010) are in very good agreement in terms of α and β. The indirect group's parameters 
have larger uncertainties, likely due to smaller number of studies using these methods, but their central es-
timates are indistinguishable. In contrast, the “flow chamber” (Ploug & Jørgensen, 1999) and “other ex situ 
methods” (e.g., roller tank (Shanks & Edmondson, 1989) or settling column (Smayda, 1969)) groups have 
substantially different posterior distributions for both parameters. Both have larger α values than the “in 
situ” group (p ≈ 98% and p > 99%, respectively), but also larger β values (p ≈ 93% and p ≈ 75%, respectively). 
As with the open ocean group above, the in situ direct and indirect methods groups are consistent with the 
1/2 scaling from Equation 2. While the differences between methods distributions may be in part explained 
by the types of particles considered in the studies employing these methods, these ex situ methods have 
been employed widely and in a variety of contexts, and the evidence for these differences is strong. Fragile 
particles that would be disturbed by collection and therefore not easily captured by ex situ techniques (Gier-
ing et al., 2020) should be expected to sink slower and be less compact (i.e., have lower fractal dimensions), 
accounting for these parameter differences, but these results do suggest that such particles are a non-negli-
gible component of in situ sinking particle populations.

CAEL ET AL.

10.1029/2020GL091771

5 of 11

Figure 3. Posterior distributions for α and β for the three-level 
hierarchical model (i.e., no groupings imposed). Thick black lines are 
the posteriors for the overall parameters (top level in Figure 2) with 
medians and standard deviations given in the legends; colored lines are the 
posteriors for the individual studies (“study” level in Figure 2).
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2. Discussion
These results help resolve the size-sinking relationship of marine parti-
cles, with implications for particulate carbon fluxes and our understand-
ing of the global carbon-climate system. Our approach establishes a base-
line for a universal size-sinking relationship and quantifies important 
context dependent deviations. The hierarchical framework allowed us to 
account for unbalanced sampling across different contexts and provides 
a rigorous uncertainty bound that can also be propagated through sub-
sequent carbon flux analyses. With this new hierarchical analysis across 
datasets, we have provided evidence that size-sinking relationships hold 
at broad scales and under various environmental conditions, and have 
quantified them for use in biogeochemical modeling and optical flux 
estimation.

These parameterizations can inform not only size-spectrum-resolving bi-
ogeochemical models (Kriest & Oschlies, 2008) but also those with only a 
few (e.g., two) size classes (Yool et al., 2013), as well as those with implicit 
flux profiles (Cael & Bisson,  2018; Najjar et  al.,  2007). The parameter-
izations are also important for the rapidly expanding field of optically 
derived particle flux estimation (Giering et al., 2020). It also has impor-
tant implications for particle fluid dynamics that the study-specific scal-
ing exponents vary greatly from study to study while the central scaling 
exponent is close to that of the generalized Navier-Stokes' drag equation 
exponent of 1/2 (Equation 2). This suggests that the size-dependencies of 
excess densities and drag coefficients of natural aggregates vary between 
particle populations, but that overall they are in approximate balance.

To date, carbon flux models generally combine sinking speed and rem-
ineralization relationships to achieve a predicted distribution of bioge-
ochemical tracers that approximates observations (Najjar et  al.,  2007). 
However, the variety of size-sinking relationships in use (Figure  1) 
suggests that the two processes are being combined in highly uncertain 
ways. Uncertainty in size-sinking and remineralization relationships 
have direct implications for climate change (Völker et al., 2016). Warm-
er oceans are predicted to enhance water column stratification and re-
duce nutrient fluxes, which is predicted to shift cells toward smaller sizes 
(Finkel et al., 2010). Shifts in average cell size would lead to decreases in 
sinking speed and therefore carbon flux, which feedbacks onto atmos-
pheric CO2 and global climate. Our results suggest a comparatively weak 
size-dependence of sinking speed, which suggests this climate feedback 
may be weaker than previously assumed. A better parameterization of 
the size-sinking relationships should also allow better isolation in Earth 
System Models of remineralization relationships that are expected to vary 

with warming due to faster rates of heterotrophic metabolism (Cael & Follows, 2016; Cavan & Boyd, 2018; 
Cavan et al., 2019), especially given the large vertical gradients in temperature in the upper ocean. Improved 
parameterization of particle flux thereby provides a means to better predict changes in the ocean carbon 
cycle with climate change.

Our results underscore the importance of not only size but also composition, structure, and/or density in 
determining particle sinking speed; as seen in Figure 1, for example, a small aggregate can sink at similar 
velocity as that of a large aggregate. While much remains unknown or uncertain about the controlling fac-
tors for sinking speeds of in situ formed aggregates, comparatively much more is known about the plankton 
communities from which these aggregates are formed, including where and when different types of plank-
ton are prevalent or dominant (Barton et al., 2013). Therefore, the distinct parameterizations we provide for 
fecal pellets, ballasted aggregates, and nonballasted aggregates (Figure 4, Table S1) that extract information 
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Figure 4. Posterior distributions for α and β for the group levels of 
hierarchical models (“group” level in Figure 2). Vertical lines show the 
medians of each distribution. n. b. the bottom two rows do not include 
fecal pellet data, and legends from the left column apply to the right 
column. See Table S1 for medians and confidence intervals.
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about the size-sinking relationships for different particle/aggregate types may be particularly useful for im-
proving particle flux estimates based on community composition. This is an especially appealing possibility 
as it is becoming possible to differentiate community structure information (e.g., whether diatoms vs. coc-
colithophores vs. flagellates are dominant) from remote sensing (Kramer & Siegel, 2019), though challenges 
persist for the rigorous application of such approaches (Cael et al., 2020). Given suitable data, it would be 
particularly valuable in this context to estimate scaling relationships for aggregates formed from plankton 
communities dominated by different functional groups such as diatoms versus coccolithophores.

While our results help bridge the gap between modeled fluxes and observed sinking speed variability, more 
work remains to be done in understanding the unexplained variance (Figure 1). The statistical framework 
herein is useful for propagating the uncertainty due to explained variance in the data. Some of the unex-
plained variance is likely due to spatial sampling variability and measurement error, but other more mech-
anistic relationships should also be developed to explain the variance that may provide more predictive 
relationships for modeling sinking particle fluxes. Note also that the relationships we find are bulk scalings 
that are of interest for predicting particles' impact on biogeochemical fluxes; individual particles' sinking 
speeds will undoubtedly vary around these scalings.

In summary, our results advance our understanding of ocean carbon fluxes through an improved, data-driv-
en description of the gravitationally driven sinking of marine particles. Our data compilation and hierar-
chical modeling suggests an approximately 0.6-scaling of sinking speed with particle size, with implications 
for the role of small particles in the biological pump and for how carbon flux will vary with climate change. 
Despite these results, the data compilation also points to significant unexplained variability that requires 
further study to confidently predict changes in these climatically important ocean processes.

3. Materials and Methods
3.1. Size-Sinking Data Compilation

We compiled observations of 5,655 particles' sizes and sinking speeds from 54 studies published in 32 papers 
(Alldredge & Gotschalk, 1988, 1989; Azetsu-Scott & Johnson, 1992; Belcher et al., 2016a, 2016b; Carder 
et al., 1982; Cavan et al., 2018; Deibel, 1990; Diercks & Asper, 1997; Engel & Schartau, 1999; Gibbs, 1985; 
Engel et al., 2009; Hawley, 1982; Hill et al., 1998; Iversen & Ploug, 2010, 2013; Iversen & Robert, 2015; Ivers-
en et al., 2010, 2017; Jouandet et al., 2011; Kajihara, 1971; Laurenceau-Cornec et al., 2015, 2019; McDonnell 
& Buesseler, 2010; Nowald et al., 2009; Shanks & Trent, 1980; Smayda, 1969; Syvitski et al., 1995; Van der 
Jagt et al., 2018); see Table S2. Size data were standardized to equivalent spherical diameter in units of 
millimeters. Sinking data were standardized to sinking speed in units of meters per day. Data that we were 
otherwise not able to access were digitized (https://automeris.io/WebPlotDigitizer/). Previous analyses of 
digitized data suggest that the error introduced by digitization is negligible (<1%; Cael & Bisson, 2018). 
Particles were classified as aggregate or fecal pellet, diatom-enriched or not, ballasted or not, and by their 
environment according to information from the publications. Temperatures were classified as “warm” if 
≥14°C and “cold” otherwise. We chose this coarse temperature classification because many of the publi-
cations did not report environmental temperature, in which cases we supplemented by referencing the 
sampling locations and times to a monthly climatology (Reynolds et al., 2007); 14°C is the median of that 
climatology. Methods were classified into in situ direct observations, indirect in situ observations (i.e., esti-
mation by the ratio of flux to concentration, e.g., Jouandet et al., 2011), flow chamber observations (Ploug & 
Jørgensen, 1999), and other ex situ methods (which measure speed by distance traveled per unit time, e.g., 
settling column (Smayda, 1969)). See Table S2 for the sources and classifications of the data.

3.2. Bayesian Hierarchical Analysis

We consider the model that individual observations vary according to study-specific size-sinking scaling re-
lationships. These study-specific scalings then deviate from an overall scaling relationship for marine sink-
ing particles. We also consider models where the study-specific scalings deviate from group-specific scaling 
relationships, which in turn deviate from an overall scaling relationship. We formalize each of these by 
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fitting a hierarchical model to these data, which captures group, within-group, and within-study variance in 
a single statistical framework. Each hierarchical model can be represented as a network of conditional prob-
abilities (see Figure 2). At the “overall” level we assume that the overall particle size-sinking relationship 
can be represented as a scaling relationship (Equation 3) governed by overall parameters 10log  and  . 
Group level parameters (indexed by i) then deviate from these overall distributions according to the group 
parameter distributions

p

p
i i

i i

(log | log ) (log , ,

( | ) ( , ).

)10 10 10   

   












 

There is no group level in the case where studies are not partitioned into groups. Similarly, we assume that 
at the study level (indexed by j) the studies' mean parameters deviate from these group distributions accord-
ing to the study distributions

p

p
ij i i ij

ij i i ij

(log | log ) ( log , ,

( | ) ( , ).

)10 10 10   

   












 

Lastly, the observation level of analysis assumes Gaussian errors on the logarithms of individual measure-
ments (indexed by k) of (w, d),

p w dijk ij ij ij ij ijk
w(log | log , ) (log log , ).10 10 10 10       

We assume broad uniform priors over all α, β, and σ parameters. Broad bounds were imposed to keep the 
parameters from nonphysical values. No posteriors were close to the bounds and so these bounds did not 
impact the inference.

Models are fit via Markov Chain Monte Carlo (MCMC) sampling, drawing random samples of model parame-
ters and propagating them through the hierarchical network. Doing so many times yields a set of samples from 
the posterior distribution, that is, the distribution of the model parameters after the data are taken into ac-
count. We use the RStan and brms software package to perform the MCMC sampling (Betancourt et al., 2017; 
Bürkner et al., 2017; Carpenter et al., 2017). We run 4 chains with 5,000 iterations per chain. We discarded the 
first 2,500 samples from each chain as warmup, leaving a total of 10,000 samples from each posterior. All R̂ 
statistics for the MCMC chains were between 1.0 and 1.1 which indicated convergent mixing.

Data Availability Statement
All code and data will be made shared on GitHub and archived on Zenodo, and the data will also be ar-
chived on Pangaea, should this manuscript be accepted for publication. The data are also available via the 
supporting information.
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