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Abstract 5 

It is a great challenge to identify the many and varied sources of soil heavy metal pollution. Often 6 

little information is available regarding the anthropogenic factors and enterprises that could potentially 7 

pollute soils. In this study we use freely available geographical data from a search engine in conjunction 8 

with machine learning methodologies to identify and classify potentially polluting enterprises in the 9 

Yangtze Delta, China.   The data were classified into 31 separate and five integrated industry types 10 

by five different machine learning approaches. Multinomial naive Bayesian methods achieved an 11 

accuracy of 86.5% and Kappa coefficient of 0.82 and were used to classify the geographic data from 12 

more than 250 000 enterprises. The relationship between the different industry classes and 13 

measurements of soil cadmium and mercury concentrations was explored using bivariate local Moran's 14 

I analysis. The analysis revealed areas where different industry classes had led to soil pollution. In the 15 

case of cadmium, elevated concentrations also occurred in some areas because of natural sources. This 16 

study provides a new approach to investigate the interaction between anthropogenic pollution and 17 

natural sources of soil heavy metals to inform pollution control and planning decisions regarding the 18 

location of industrial sites. 19 

1. Introduction 20 

Rapid economic and industrial development has led to the accumulation of heavy metals in the 21 

soil of impacted sites across the world [1]. Heavy metals generally have persistent bioavailability, long 22 

residence times (commonly exceeding decades), and often low concentration thresholds indicate 23 

toxicity [2]. The excessive accumulation of heavy metals can hence disrupt the usual biochemical 24 



processes which occur in soils, leading to deterioration of soil quality, reduced agricultural productivity 25 

and quality and human health risks [3-4]. According to the National Soil Pollution Condition 26 

Investigation Communique of China, 16.1% of soil samples are contaminated with heavy metals [5] and 27 

therefore detailed studies of soil contamination in China are required. 28 

Human enterprises such as industry, transportation and agriculture can be the source of substantial 29 

quantities of heavy metals in soils [1]. According to the Statistical Yearbook of China in 2014, the 30 

number of registered and bankrupt enterprises in China were approximately 3.7 million and 3.0 million 31 

respectively (in combination, almost 30% of the enterprises in China).  It is extremely difficult to 32 

make timely investigations and reports of the pollution effects of different enterprises across large 33 

regions using traditional methods, especially when the region is large and dispersed. The traditional 34 

source apportionment methods mainly include principal component analysis (PCA), isotope ratio 35 

analysis, positive matrix factorization (PMF) and stochastic models [6-8]. For example, Hu et al [9] 36 

analyzed seven environment variables relevant to the source and behavior of heavy metals using 37 

stochastic models, and Ma et al [10] researched the major potential source of soil heavy metals and 38 

human health risk using PCA in high population density area. These methods analyze the contribution 39 

of different sources to soil heavy metal pollution, but ignore the spatial distribution and characteristics 40 

of these sources [11-12]. Furthermore, the model mechanisms and data collection requirements of 41 

diffusion models of source apportionment for soil heavy metals are very complex, which is not 42 

convenient for wide uptake across large-scale regions. Exhaustive information regarding the location 43 

and type of enterprises within a region is rarely available. 44 

In this study, we use freely available geographic information from a search engine to build an 45 

inventory of enterprises within the Yangtze Delta region of China. This geographic data does not 46 



specify the type of industry. We therefore survey a subset of the enterprise locations and form a training 47 

dataset of enterprise types. We test five different machine learning approaches to build a classifier of 48 

enterprise type and apply the best performing method to the full geographic dataset. We illustrate how 49 

these derived dataset might be utilized by using the bivariate local Moran’s I method to analyze the 50 

spatial correlation between these enterprises and elevated soil metal concentrations and thus provide 51 

effective guidance and assistance for the management and control of these anthropogenic sources of 52 

pollution [13-15]. 53 

2. Materials and Methods 54 

2.1 Study area 55 

The study area (27°2′-31°11′N, 118°01′-123°10′E) is located in the Yangtze Delta 56 

of China, which covers 105 500 km2 and has a population of 55.9 million. The study area possesses a 57 

typical subtropical monsoon climate, which is mild and humid with annual average temperature of 58 

16.5 ℃ and annual average precipitation of 1 575 mm. The western, eastern and southern parts of 59 

study area are mainly red soil and yellow soil, and the southeast coastal and northern parts are mainly 60 

paddy soil. The industries in study area mainly include textile industry, chemical industry, metalwork 61 

industry. The Yangtze River Delta is one of the most developed regions in China and the concentrations 62 

of soil heavy metals are also remarkably high. According to Soil Pollution Condition Investigation 63 

Communique of the study area in 2013, the proportion of samples contaminated by the chromium (Cr), 64 

lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As) elements were 0.87%, 0.24%, 15.63%, 10.94% 65 

and 1.03%, respectively. This study mainly focused on the source apportionment of Cd and Hg. 66 



 67 

Figure 1. Maps showing the location of the study area, soil sampling and enterprise sites in the Yangtze Delta 68 

of China. a: HUZ, HZ, QZ, LS, JH, SX, JX, ZS, NIB, TZ, WZ were respectively the English abbreviations of 69 

the 11 provincial cities in the study area, b: the yellow points and the blue polygon respectively represented the 70 

14801 soil samples and the river system, c: the red points represented the 264098 enterprises. 71 

2.2 Soil sampling 72 

A total of 14801 topsoil samples were collected from the study area in 2013 by the method of 73 

systematic grid sampling, making sample locations distributed as evenly as possible. Each soil sample 74 

was the bulked combination of five subsamples from five locations within five meters. All soil 75 

subsamples were collected at a depth of 0-20 cm using a stainless steel shovel. Fresh soil samples were 76 

transported to the laboratory, air-dried, ground, passed through a 2 mm sieve, and stored at room 77 

temperature. Soil pH was measured in H2O with the soil and solution ratio of 1:2.5 (m/v) using the 78 

glass electrode method. The Cd element in soils was digested by HF-HNO3-HCLO4 and measured by 79 

an inductively coupled plasma-mass spectrometer (ICP-MS, Agilent 7500a, Palo Alto, CA, USA). The 80 

Hg element in soils was digested by HNO3-HCl and determined by an atomic fluorescence 81 

spectrometer (Atomic Fluorescence Spectrometry, AFS) [5]. For quality control and quality assurance, 82 

blank control, duplicate samples, and standard reference soils were used in chemical analysis. 83 



2.3 Data collection and preprocessing 84 

Information including the latitude and longitude, potential contaminants, enterprise name and 85 

industrial category of 7 643 potentially polluting enterprises was collected by field investigation. 86 

Google search API data consisting of latitude and longitude and enterprise name was acquired for 264 87 

098 sites using the keyword ‘enterprise’. This search information did not include industry type which 88 

is likely to be a critical factor controlling the degree of soil pollution. Machine learning methodologies 89 

were therefore adopted to classify the industry types (as recorded in the field survey) using the Google 90 

search data. The degree of pollution in each soil sample was calculated using the single pollution index 91 

(SPI), which was calculated based on the national standard values of different soil heavy metal 92 

elements as the evaluation criterion.  93 

2.4 Industrial classification 94 

The main steps in performing classification of industry types, based primary on the enterprises 95 

name, were: 1) Word segmentation. The word segmentation, based on a hidden Markov model divided 96 

the text into words and the word corpus originating from the training (i.e. field investigation) samples 97 

was used for the segmentation of the unlabelled samples. 2) Feature vectorization. The feature 98 

vectorization consisted of the feature extraction and the feature selection. Feature extraction is required 99 

to remove noise, stop words and other irrelevant text and then present the text in vector form to the 100 

classification models. Feature selection leads to improved classification efficiency and reduces the 101 

computational complexity. The information gain method based on entropy was used to process this 102 

step in this study. The results were analyzed and evaluated by using the Kappa coefficient. Large Kappa 103 

coefficients indicate an accurate model. 3) Classification modelling. The classification models 104 

considered were Support Vector Machine (SVM), Naive Bayes (NB) and Artificial Neural Network 105 

(ANN) algorithm [16-17]. The SVM algorithm is a machine learning method based on statistical learning 106 

theory, to seek the best compromise between the model complexity and the learning ability using the 107 

limited sample information based on the principle of structural risk minimization. The NB algorithm, 108 



which is based on the probabilistic theory, estimates the classification according to the joint probability 109 

of the feature and classification. It has a strong theoretical foundation. The ANN algorithm is based on 110 

psychology, modern neurology and other specialties to simulate the behavioral characteristics of 111 

biological neural network and carries out distributed parallel information processing. It has the 112 

advantages of self-learning, nonlinear mapping, and flexible network structure. Details of the industrial 113 

classification procedure are illustrated in Figure 2. 114 

2.5 Bivariate spatial correlation analysis 115 

Traditional statistical analysis methods usually focus on statistical relationship between different 116 

variables recorded at the same site. However, pollution from an enterprise can potentially extend over 117 

a wider area. To overcome this gap, bivariate spatial correlation analysis was conducted to identify 118 

spatial association patterns of the industry type and soil pollution data. According to the number and 119 

spatial distribution of soil sampling sites, our study area was divided into nearly 5,000 (5 km × 5 km) 120 

grid cells. The bivariate local Moran's I was used for the spatial autocorrelation analysis of the grid 121 

data (Equation 1). 122 

𝐼𝑖
𝑎𝑏 = 𝑋𝑖

𝑎 ∑ 𝑤𝑖𝑗𝑋𝑖
𝑏

𝑛

𝑗=1,𝑗≠𝑖

 (1) 

where 𝑋𝑖
𝑎 is the value of the variable a at location i; 𝑋𝑖

𝑏 is the value of the variable b at location i; 123 

and wij is a weight which can be defined as the inverse of the distance dij among locations i and j [18]. 124 

When the value of 𝐼𝑖
𝑎𝑏 is significantly positive or negative, it shows that the variable a at the grid i is 125 

observably correlated with the variable b in the adjacent area; if not, it means that there be no obvious 126 

correlation between them. 127 



 128 

Figure 2. Workflow of the source apportionment in this study. KD: the Kernel Density method, SPI: the single 129 

pollution index, IDW: the Inverse Distance Weighted method, SVM: the Support Vector Machine method, NB: 130 

the Naive Bayes method, ANN: the Artificial Neural Network method. 131 

3. Results and Discussion 132 

3.1 Descriptive statistics of heavy metals and enterprises 133 

The summary statistics regarding the concentration of the Cd and Hg elements in soils are shown 134 

in Table 1. The observed range in the concentrations of Cd and Hg were respectively 0.00-114.00 and 135 

0.01-7.00 mg/kg. The mean concentrations of Cd and Hg were respectively 0.26 and 0.18 mg/kg, which 136 

are both higher than the soil background concentrations in the study area (0.07 and 0.09 mg/kg) and in 137 

China (0.10 and 0.07 mg/kg) [19]. The coefficient of variation (CV) of Cd and Hg with the values of 138 

403.85% and 133.33% indicated the presence of extremely large concentrations of each element 139 

possibly as a result of anthropogenic activities. 140 

Table 1. Descriptive statistics for the concentrations of the heavy metals Cd and Hg in soils. 141 



Element Mean Median SD Skew Min Max CV SBC1 SBC2 

Cd (mg/kg) 0.26 0.18 1.05 88.21 0.00 114.00 403.85% 0.07 0.10 

Hg (mg/kg) 0.18 0.11 0.24 8.24 0.01 7.00 133.33% 0.09 0.07 

SD: the standard deviation; CV: the coefficient of variation; SBC1: the soil back concentrations in the study area; 

SBC2: the soil back concentrations in China. 

The training dataset included 31 industrial categories. Almost 80% of the sites belonged to textile 142 

industry (29.6%), chemical industry (28.9%) and metalwork industry (18.9%). The other 29 industrial 143 

categories accounted for only 22.65% of the whole dataset, and the proportion of any single industry 144 

type was never more than 4%. The data classified according to the complete set of 31 industrial types 145 

is referred to as the separated dataset. We also formed an integrated dataset where the textile industry, 146 

chemical industry and metalwork industry classes were retained whilst the remainder were combined 147 

into a single class. In order to analyze the classification accuracy of different machine learning models, 148 

the training samples were divided into a calibration dataset (1 148 samples) and a validation dataset (6 149 

495 samples). 150 

3.2 Industrial classification of enterprises 151 

The radial basis function kernel and linear kernel were used within the SVM classification models. 152 

Multinomial NB and Bernoulli NB classified enterprises by adopting different strategies for calculating 153 

the likelihood probability of characteristics. The ANN model was a simple network model with only 154 

one hidden layer. The prediction results using different classification models are shown in Table 2. 155 

These five models had good predictive ability with high accuracy on both the separated and integrated 156 

datasets. The average accuracies of prediction results in calibration and validation dataset were 97% 157 

and 84% respectively. Overall, the accuracy of models using integrated samples was superior to those 158 

using separated samples. SVM, NB and ANN were improved by 1.17%, 2.46% and 1.94%, respectively. 159 

The SVM with linear kernel performed best on the calibration dataset with accuracies of 99% and 99% 160 

for the calibration dataset. However, by the comprehensive consideration of the results in different 161 



datasets, Multinomial NB was chosen to classify the enterprises since it had the highest accuracies of 162 

87% in the integrated validation dataset. 163 

Table 2. Correct rates of different indust classification models in calibration and validation datasets. 164 

Dataset 

Separation Integration 

SVMa SVMb NBa NBb ANN SVMa SVMb NBa NBb ANN 

Calibration (%) 98.04 99.17 94.55 92.16 99.29 98.38 99.17 94.27 94.32 99.17 

Validation (%) 82.32 83.54 83.62 81.62 81.36 85.28 85.71 86.50 84.67 85.37 

SVMa and SVMb: the Support Vector Machine model respectively with radial basis function kernel and linear kernel; 

NBa and NBb: the Naive Bayes model respectively using the Multinomial and Bernoulli theorem; ANN: the Artificial 

Neural Network model; Separation: the 31 industrial classifications; Integration: the 4 industrial classifications. 

For Multinomial NB model, the numbers of enterprise samples predicted correctly in validation 165 

dataset, of which industrial classifications were textile industry, chemical industry, metalwork industry 166 

and the other industry, were respectively 178, 274, 348 and 193 (Table 3). The average values of the 167 

prediction classification accuracy and the method classification accuracies in validation dataset were 168 

respectively 88% and 86%. The prediction classification accuracies in validation dataset were, from 169 

high to low, metalwork industry, chemical industry, textile industry and the other industry, respectively. 170 

Furthermore, the metalwork industry was also most accurately classified in the validation dataset. The 171 

prediction classification accuracies in validation dataset followed the order: metalwork 172 

industry>chemical industry>textile industry>the other industry.  The Kappa coefficient of the 173 

classification matrix was 0.82 that meant that the predicted results of industrial classification of 174 

pollution enterprises by Multinomial NB were almost identical with the actual results. 175 

Table 3. Comparison for industrial classification results of Multinomial NB model with the observed results. 176 

Actual 

Predicted 

Textile 

industry 

Chemical 

industry 

Metalwork 

industry 

The other 

industry 

Total 

Method Classification 

Accuracy 

Textile industry 178 3 1 3 185 96.22% 

Chemical industry 4 274 11 41 330 83.03% 



Metalwork industry 17 22 348 26 413 84.26% 

The other industry 7 16 4 193 220 87.73% 

Total 206 315 364 263 1148  

Prediction 

Classification Accuracy 

86.41% 86.98% 95.60% 73.38% 
 

Kappa Coefficient: 

0.82 

3.3 Applicability analysis of classification models 177 

The SVM approach was least sensitive to the number of industry classes and hence more widely 178 

applicable. The NB approach required a prior probability value in the classification process and hence 179 

was more sensitive to the distribution of categories of data than the other models. By comparing the 180 

classification results of separated and integrated samples, the model accuracies of SVM, NB and ANN 181 

were respectively improved by 1.17%, 2.46% and 1.94% after data integration. Therefore, SVM with 182 

linear kernel and Multinomial NB, which were the models with the highest accuracies in validation 183 

dataset, having an improvement of 1.04% and 1.89% after data integration. In this study, the training 184 

samples and unlabelled samples had similar distributions of industrial types since they were collected 185 

from the same research area. The spatial correction between the soil heavy metals and the main 186 

industries were analyzed, using only the textile industry, metalwork industry and chemical industry 187 

classes. Therefore, Multinomial NB was chosen for the industrial classification of unlabelled samples, 188 

as it had the highest accuracy of 87%. However, SVM with linear kernel had the best applicability 189 

ability. In the future work, when try to apply the classification model on the national scale, it is 190 

necessary to consider the applicability ability of models and adopt SVM with linear kernel. 191 

3.4 Spatial distribution of heavy metals and enterprises 192 

The search engine data classified to either the textile industry, metalwork industry or chemical 193 

industry were retained, accounting for 9.97%, 28.42% and 41.55% of the total content, respectively. 194 

The spatial distribution of enterprise density and soil heavy metal pollution degree are shown in Figure 195 

3. The textile industry, metalwork industry and chemical industry was distributed mainly in the eastern 196 

part of study area and near rivers and lakes. The number of the enterprises belonged to textile industry 197 



was less than that of the other industries and mainly distributed in the HZ and JX districts. The 198 

enterprises in metalwork industry and chemical industry had the similar distribution, which were 199 

mainly in the HZ, NIB, WZ, TZ districts. The region seriously contaminated by Cd was located in the 200 

QZ and HZ districts, and Hg contaminated region was mainly located in the SX and NIB districts. The 201 

WZ district included Cd and Hg pollution in soils, where the contamination degree and area was 202 

relatively low.  203 

 204 

Figure 3. Spatial distribution of enterprise density and soil heavy metal pollution degree. a: textile industry, b: 205 

metalwork industry, c: chemical industry, d: Cd element, e: Hg element. The density of pollution enterprises 206 

and the pollution degree of Cd and Hg elements were respectively mapped by the Kernel Density method and 207 

the Inverse Distance Weighted method. 208 

3.5 Source apportionment of soil heavy metal pollution 209 

The degree of spatial correlation between the soil concentrations of the different elements and the 210 

different enterprises as calculated from the bivariate local Moran’s I analysis is shown in the Figure 4. 211 

High-high and high-low indicate areas with high soil metal concentrations. In the former case this is 212 

likely to be the result of pollution from the enterprises whereas in the latter case it is more likely to 213 

result from natural factors. Low-high and low-low indicate uncontaminated areas. In low-high area, 214 

although the enterprises were distributed densely, the pollution prevention measures were better 215 



implemented and no soil pollution resulted. According to the results of bivariate spatial correlation 216 

analysis, Cd pollution in soils was mainly unrelated to the enterprises and located in the QZ and HZ 217 

districts, while Hg pollution basically belonged to enterprise pollution that was mainly distributed in 218 

the JX, SX, NIB and WZ districts. Considering the Cd pollution, the LS, WZ and TZ districts mainly 219 

had high-low area and a few high-low areas were sparsely located in the TZ district, meanwhile the JH, 220 

SX, WZ and TZ districts contained a small number of scattered high-high areas. In the case of Cd 221 

pollution, the textile industry led to almost no pollution in the TZ district and the chemical industry 222 

had almost no pollution in the JH district. The metalwork industry caused Cd pollution more seriously 223 

than the other industries. In the SX district, the Hg pollution was caused mainly by the textile industry 224 

and chemical industry, and in the WZ district by the metalwork industry and chemical industry. 225 

Moreover, the chemical industry had the largest high-high area in Hg pollution. 226 

The average high-low area of Cd in the different enterprise analysis was 4277.3 km2, which was 227 

4.05% of the whole study area, while the average area of Hg was 106.8 km2, 0.10% of the study area. 228 

The areas of Cd pollution mainly caused by the textile industry, metalwork industry and chemical 229 

industry were respectively 907.8, 1575.3 and 1161.5 km2, while the areas of Hg pollution were 230 

respectively 1441.8, 1716.8 and 1903.7 km2. The high-high distribution of Hg was relatively 231 

agglomerated compared with Cd. According to results of the field survey of 7643 enterprise 232 

contaminants, we found that the proportions of Cd contaminant in the textile industry, metalwork 233 

industry and chemical industry were respectively 1.45%, 17.57% and 9.75%, meanwhile the 234 

proportions of Hg contaminant were respectively 1.45%, 12.16% and 16.53%. In the three industries, 235 

the metalwork industry was the main source of Cd contaminant and the chemical industry mainly 236 

produced Hg contaminant. These results agreed with conclusion of our study using the search data to 237 

classify the industrial classes. 238 



 

Figure 4. Source apportionment of soil heavy metal pollution by bivariate local Moran's I model using the data 239 

of soil Cd and Hg pollution degree and pollution enterprises. a: textile industry & Cd element, b: textile 240 

industry & Hg element, c: metalwork industry & Cd element, d: metalwork industry & Hg element, e: 241 

chemical industry & Cd element, f: chemical industry & Hg element. 242 

In the late 1970s and early 1980s, the background values of heavy metal elements in soils of the 243 

study area were studied by the environmental protection department of the Zhejiang University. Table 244 

5 shows the derived background values of Cd and Hg elements in soils (0-20 cm). According to the 245 

Figure 4, the high-low area of Cd pollution was mainly distributed in the HUZ district. The background 246 

value of Cd element in the HUZ district was 0.34 mg/kg, which was obviously higher than the other 247 

districts of the study area. The high background value of Cd element appears to be the cause of high 248 

concentrations in this area. 249 

Table 5. Descriptive statistics for the background values of the Cd and Hg elements in soils. 250 

Element Statistics HUZ HZ JH JX NIB QZ SX TZ WZ 

Cd 

(mg/kg) 

Mean 0.14  0.23  0.18  0.11  0.11  0.34  0.17  0.15  0.13  

SD 0.13  0.42  0.14  0.06  0.03  0.33  0.08  0.08  0.08  



Hg 

(mg/kg) 

Mean 0.15  0.23  0.10  0.20  0.22  0.12  0.21  0.16  0.20  

SD 0.10  0.28  0.08  0.09  0.21  0.08  0.33  0.12  0.13  

HUZ, HZ, JH, JX, NIB, QZ, SX, TZ, WZ were respectively the English abbreviations of the 9 

provincial cities in the study area; SD: the standard deviation. 
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