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Editorial on the Research Topic

Field Data, Models and Uncertainty in Hazard Assessment of Pyroclastic Density Currents and
Lahars: Global Perspectives

Pyroclastic density currents (PDCs, e.g., Sparks et al., 1978; Branney and Kokelaar, 2002; Sulpizio
et al., 2014; Dellino et al., 2019) and lahars (e.g., Manville et al., 2009; Vallance and Iverson, 2015;
Thouret et al., 2020) are two of the most destructive volcanic phenomena. They can generate
enormous losses of life (e.g., Auker et al., 2013; Baxter et al., 2017; Brown et al., 2017), as well as
extensive structural damage to buildings and infrastructure within tens of kilometers from their
source (e.g., Valentine, 1998; Baxter et al., 2005; Jenkins et al., 2015). Hazard assessments of PDCs
and lahars represent the foundation for estimating the substantial risk that these volcanic mass
flows pose to the human environment.

Unfortunately, these hazard assessments are complicated by the spatio-temporal complexity
associated with the processes of triggering, propagation (including flow transitions) and
emplacement of PDCs and lahars (e.g., Iverson, 1997; Pierson and Major, 2014; Dufek et al., 2015;
Dufek, 2016). This natural variability (or aleatory uncertainty), alongside incomplete and imperfect
knowledge (or epistemic uncertainty, cf. Woo, 1999; Connor et al., 2001; Marzocchi et al., 2004; Sparks
and Aspinall, 2004; Marzocchi and Bebbington, 2012) should ideally be incorporated into the mass-flow
hazard assessment (e.g., Bayarri et al., 2009, 2015; Sandri et al., 2014, 2018; Spiller et al., 2014; Neri et al.,
2015; Mead et al., 2016; Tierz et al., 2016, 2017, 2018; Bevilacqua et al., 2017, 2019; Mead and Magill,
2017; Wolpert et al., 2018; Hyman et al., 2019; Rutarindwa et al., 2019). At the core of any volcanic
hazard assessment resides the volcanological knowledge available for the volcano of interest and/or
analogous ones, including information about the sources of uncertainty (e.g., Newhall and Hoblitt, 2002;
Aspinall et al., 2003; Sandri et al., 2012; Pallister et al., 2019; Tierz et al., 2019, 2020; Cioni et al., 2020).

In this Research Topic (RT), we have attempted to gather and showcase volcanological expertise
from around the globe, related to any component of PDC and lahar hazard assessment:
i.e., volcanological field data collection, analysis and interpretation; experimental and/or
numerical and/or statistical modeling, including uncertainty quantification. Volcanic systems in
12 countries and 6 continents have been studied (Figure 1A). Below, we summarize the main
findings of each article, highlighting the most relevant methodological and volcanological aspects.

Zhao et al. provide a thorough description of the characteristics and spatial distribution of PDC
lithofacies, including systematic changes with distance from the vent and topography of the volcanic
edifice, associated with the VEI 7 Millennium eruption (946 AD) of Tianchi volcano (China-DPR
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Korea border). The work underlines the significant PDC hazard
from past (and future) eruptions at Tianchi, and recalls the
notable thermal hazard of PDCs.

Takarada and Hoshizumi re-evaluate the distributions and
eruptive volumes of large-scale PDC (up to 166 km runout) and
tephra fall deposits derived from the caldera-forming Aso-4 eruption

FIGURE 1 | Summary of present and future global perspectives in the field of volcanic hazard assessment of pyroclastic density currents (PDCs) and lahars derived
from this Research Topic. (A)Global distribution of countries where volcanic systems have been analyzed in the Research Topic, divided according to whether the main
object of study were PDCs or lahars (NB. Two different studies, one for PDCs, Patra et al., and another for lahars,Walsh et al., were presented for Volcán de Colima,
Mexico). Map generated using Quantum Geographical Information System (QGIS Development Team, 2021), and Eurostat GISCO Geodata (©EuroGeographics
for the administrative boundaries, 1:3 Million Scale. Downloaded January 25, 2021). (B) Interrelationships between three main approaches commonly used in volcanic
hazard assessment of PDCs and lahars. One is based on collating fundamental volcanological knowledge for the volcanic system of interest (and/or analogue
volcanoes). Both scenario-based as well as probabilistic volcanic hazard assessments (PVHA) build upon this primary volcanological knowledge. Currently, there is a
balance between the degree of physical detail and the uncertainty accounted for that can be achieved with scenario-based and PVHAmethods. We argue that the three
approaches are complementary andmutually beneficial, and that they should be increasingly merged in future hazard assessments.We also stress the key importance of
acknowledging the presence of epistemic uncertainty on all three approaches, and of trying to quantify it as best as possible.
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(87–89 ka) of Aso volcano (Japan). The total eruptive volume of the
Aso-4 eruption is about 1.5–3 times larger than the previous
estimation, making it now a M8.1–8.4 (VEI 8) super-eruption.

Silleni et al. develop a new isopach-based method to estimate
(large-magnitude) ignimbrite volumes, using extrapolations of
the pre-eruption topography to better constrain epistemic
uncertainty. The method should be reproducible for other
topography-controlled ignimbrites and, applied to the M7
Campanian Ignimbrite eruption (∼40 ka) of Campi Flegrei
caldera (Italy), significantly reduces the epistemic uncertainty
in total erupted volume compared to previous estimates.

Gillies et al., by means of a comprehensive field-mapping at
Mt. Ruapehu volcano (New Zealand), have identified 12 new
PDC deposits from at least 10 previously unknown flows.
Concentrated-flow behavior and the approximate age ranges of
these flows were inferred from lithofacies, stratigraphy and
whole-rock geochemistry. The article highlights the capability
of Mt. Ruapehu to generate different sizes and styles of PDCs, a
key element for future hazard planning.

Gilbertson et al. propose an alternate mechanism for
secondary hydroeruptions in PDC deposits. Analogue
experiments suggest hydroeruptions are possible where low-
permeability (fine-grained) beds are capped by high-
permeability (coarse-grained) beds through a drag-based
mechanism. Gas pockets and explosive failure may occur if
gas flow supports fluidization of the fine, but not coarse
particles. This expands the range of physical mechanisms for a
secondary hazard often poorly represented in the geologic record.

Walsh et al. analyze lahar dynamics using a 3-component,
broadband seismometer at Volcán de Colima (Mexico). The study
argues the merits of utilizing all three seismic components to analyze
the spectral content of ground motion parallel to and across the
drainage channel. They further relate these seismic analyses to the
flow rheology and physical processes of the observed lahars.

Córdova et al. combined fieldwork, laboratory, remote-sensing
and numerical-modeling techniques to infer the relation between
a hummocky field at Chalupas caldera (Ecuador), and the partial
collapse of the post-caldera Buenavista lava dome. The work
evidences the advantages of integrating classical and modern
techniques for the interpretation of volcanological phenomena,
and sheds light on the directionality, timing and approximate
volume of the associated breccia flow.

Dille et al. tested the effectiveness of two flow models for
simulating rain-triggered lahars at Karthala volcano, Grand
Comore Island. Karthala has a lower gradient and poorly incised
channels that can limit the reliability of models compared to
stratovolcanoes. Field methods to improve the Digital Elevation
Model (DEM) and constrain inputs improved accuracy of the
results. This article demonstrates approaches that may improve
hazard assessment accuracy in difficult-to-model settings.

Gueugneau et al. numerically investigate the Mount Pelée May
8th, 1902 pyroclastic current, using a two-phase model that
simulates both the block-and-ash flow and the ash-cloud
surge. The study discusses conflicting interpretations of the
pyroclastic current dynamics, either a blast related to a
laterally oriented dome explosion or an ash-cloud surge
derived from the block-and-ash flow.

Charbonnier et al. conducted a multi-disciplinary study on the PDCs
generated by El Misti volcano (Peru) in its reference eruption for hazard
assessment inArequipa (>1Mresidents). Combining newfield-mapping
with a 2-m resolution DEM, they re-assessed the area invaded by PDCs
and their total bulk volume. The latter is used in the VolcFlow model to
assess the probability of similar PDCs impacting specific valleys, which is
key to understand potential effects of PDCs on Arequipa.

Patra et al. describe an uncertainty-quantification approach to
characterize models of geophysical flows (e.g., TITAN2D) and
analyze the contribution of each force term (e.g., gravity, bed
friction) to the outputs. They present the method by comparing
three rheology assumptions, across a wide range of flow regimes,
in the case study of a block-and-ash flow propagating on the SW
slope of Volcán de Colima (Mexico).

Clarke et al. present a comprehensive procedure for PVHA of
PDCs; from primary field-data collection, analysis and interpretation,
to the physical/statistical modeling required for uncertainty
quantification. The method is applied to Aluto volcano (Ethiopia)
but is transferable to other volcanic systems. A basic understanding of
past eruptions remains crucial to design and justify the modeling
strategy but initial PVHA of PDCs may be possible at data-scarce
volcanoes, if supported by data from analogue volcanoes.

Spiller et al. introduce a probabilistic model for the cessation of
PDC activity that accounts for the time elapsed from the last PDC.
They combine this model with a structured and reproducible
uncertainty quantification framework that allows robust, yet rapid,
PVHA using observational data for dome-collapse PDCs, numerical
simulations of TITAN2D and Gaussian process emulators. The
method is applied to a hiatus in volcanic activity, or post-eruption
unrest context, at Soufrière Hills Volcano, Montserrat.

In conclusion, we suggest that increased connections between
the PDC/lahar scientific communities worldwide will result in
further advances in the field. We believe that future hazard
assessments will require enhanced multi- and inter-disciplinarity
among volcano scientists; continuous communication and mutual
learning between observational volcanology and physical/statistical
modeling aimed at simulating eruptive scenarios and/or quantifying
uncertainty in PVHA (Figure 1B).
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