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• Nitrogen (N) pollution from agriculture has negative environmental impacts.
• Environmental benefits of initiatives to reduce N loads not always detectable.
• N storage dynamics and time lag invalidate steady state models often used in policy.
• Researchers should advocate for integrating N stores and time lags into policy.
• Quantifying N storage aligns with phosphorus and carbon cycling research.
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Increased fluxes of reactive nitrogen (Nr), often associated with N fertilizer use in agriculture, have resulted in
negative environmental consequences, including eutrophication, which cost billions of dollars per year globally.
To address this, best management practices (BMPs) to reduce Nr loading to the environment have been intro-
duced in many locations. However, improvements in water quality associated with BMP implementation have
not always been realised over expected timescales. There is a now a significant body of scientific evidence show-
ing that the dynamics of legacy Nr storage and associated time lags invalidate the assumptions of many models
used by policymakers for decisionmaking regarding Nr BMPs. Building on this evidence, we believe that the con-
cepts of legacy Nr storage dynamics and time lags need to be included in these models. We believe the biogeo-
chemical research community could play a more proactive role in advocating for this change through both
awareness raising and direct collaboration with policymakers to develop improved datasets andmodels. We an-
ticipate that this will result in more realistic expectations of timescales for water quality improvements associ-
ated with BMPs. Given the need for multi-nutrient policy responses to tackle challenges such as
eutrophication, integration ofN storeswill have the further benefit of aligning both researchers and policymakers
in the N community with the phosphorus and carbon communities, where estimation of stores is more wide-
spread. Ultimately, we anticipate that integrating legacy Nr storage dynamics and time lags into policy frame-
works will better meet the needs of human and environmental health.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
. This is an open access article
Nitrogen (N) is an essential macronutrient, fundamental for growth
in both plants and animals (Schlesinger, 2005). Agricultural intensifica-
under
1. Introduction

tion and associated N fertilizer use has underpinned the world's
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growing population, resulting in a doubling of reactive N (Nr) fluxes in
the environment (Vitousek et al., 1997). Increased Nr fluxes have gener-
ated negative consequences for both human and environmental health,
leading to costs associated with eutrophication and drinking water
treatment alone in the billions of dollars per year (Dodds et al., 2009;
House of Commons Environmental Audit Committee, 2018; Pretty
et al., 2000).

In response to the ecological impacts of increasedNrfluxes, bestman-
agement practices (BMPs) have been implemented to reduceNrfluxes in
catchments. Some studies have shownBMPs to reduce nutrient export at
the field to plot scale (Liu et al., 2017). However, at the catchment to
basin scale, in many cases, the anticipated benefits of work to reduce
Nr fluxes have not been realised (Hamilton, 2012; Van Meter et al.,
2018). For example, despite millions of dollars spent on implementation
of best management practices (BMPs) to reduce Nr loadings from agri-
cultural sources, the Gulf ofMexico hypoxic zonewas the largest ever re-
corded in 2017, with the target date to reduce the size of the dead zone
delayed to 2035. These observations at the catchment scale emphasise
the need for the scientific community to address the apparent disconnect
between action and environmental benefit in the case of Nr.

2. Disconnect between action and benefit at the catchment scale:
evidence for legacy Nr storage dynamics and time lags

What is causing the apparent disconnect between actions and catch-
ment scale benefits in the case of Nr, despite some observations of ben-
efits at the local scale? There is now a compelling body of scientific
evidence from both field andmodelling research that demonstrates leg-
acy Nr storage in different compartments of the environment. Entry and
subsequent release of Nr from these stores can result in significant time
lags in the environmental benefits of actions designed to reduce newNr

loads to the environment. The dynamics of legacy nitrogen storage and
impacts of Nr release from stores on water quality have been shown to
be significant in Europe (Ascott et al., 2016; Bell et al., 2021; Durand
et al., 2011; Howden et al., 2011; Vero et al., 2018; Wang et al., 2016;
Worrall et al., 2015), Asia (Jia et al., 2018; Turkeltaub et al., 2020; Wu
et al., 2020; Wu et al., 2019), North America (Ator et al., 2020; Martin
et al., 2021; Sprague et al., 2011; Tesoriero et al., 2013; Van Meter
et al., 2016; Van Meter et al., 2018) and globally (Ascott et al., 2017;
Chen et al., 2018;McCrackin et al., 2017; Xin et al., 2019). In the past de-
lays in meeting water quality objectives due to time lags and legacy
storage dynamics have been dismissed as a generic excuse (Schaure
andNaus, 2010).More recently, however, policymakers are increasingly
aware of the role of legacy storage in controlling the efficacy of BMPs at
the catchment scale (e.g House of Commons Environmental Audit
Committee (2018); Meals et al. (2010); Stuart et al. (2016)).

Whilst there is now strong evidence for legacy Nr storage dynamics
and increasing awareness of this amongst policymakers, a major chal-
lenge remains in how nutrient legacies are represented in models and
budgets used in practice for decisionmaking. A number of conventional
modelling tools that inform policy and practice that underpins N man-
agement at the catchment scale invoke the steady state assumption
(e.g. SPARROW, PolFLOW, SAGIS, SEPARATE, NEAP-N, see Chen et al.
(2018) for a recent summary of approaches). These models have been
used to make decisions regarding control of Nr sources in the environ-
ment in order to reduce the risk of environmental damage, alongside
predicting the trajectory for recovery of the environment where impact
has already occurred. Interventions made on the basis of these tools
have not always been successful over predicted timescales, with time
lags associated with legacy storage dynamics invalidating the steady
state assumption over short (<50 year) timescales. There are also dis-
crepancies between research and practice regarding the definition of
the term ‘store’, with some practitioner studies (United States Environ-
mental Protection Agency, 2011) reporting a store as flux, whilst the ac-
ademic research community often deals with stores in terms of mass
(Chen et al., 2018; Van Meter et al., 2016).
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3. The need for policy advocacy by the biogeochemical research
community

Based on the body of scientific evidence highlighted above,we argue
that the biogeochemical research community could play a more proac-
tive role in advocating for integration of legacy storage dynamics and
time lags into Nr management strategies in policy and practice
(Fig. 1). We envisage that this would consist of both awareness raising
and direct collaboration to develop the next generation of datasets
and models to support decision making regarding BMPs.

3.1. Awareness raising

Whilst there is now some understanding in the policymaking com-
munity about the importance of legacy storage dynamics, we believe
that researchers should continue to raise awareness of the issue, partic-
ularly amongst practitionersworking in areaswhere implementation of
BMPs is relatively recent and rapid improvements may be desired. We
envisage that researchers could have direct engagement and discus-
sions with policymakers, contributions to government enquiries, com-
mittees (e.g. Ascott and Ward (2018)) and evidence syntheses.
Engagement at the local and regional level with key stakeholders (e.g.
farmers, agri-environmental community groups)may also be beneficial.

3.2. Data and model development

Beyond awareness raising, we believe researchers should collabo-
rate directly with policymakers to develop the next generation of
datasets and models to support BMP decision making. Initial require-
ments for such collaboration would be to ensure a consistent terminol-
ogy across both research and practice regarding stores (e.g. as a mass in
kg N), and sharing of existing models and datasets used in N biogeo-
chemical research with practitioners. Historic monitoring networks
have often been poorly set up to address legacy storage dynamics and
associated time lags (England et al., 2008; Hamilton, 2012), and reviews
of impacts of BMPs at themeso-scale have highlighted the need for long
termmonitoring to assess water quality changes (Melland et al., 2018).
Development of co-designed monitoring networks that quantify long
term fluxes to and from Nr stores and their magnitude would be bene-
ficial. For example, this could consist of porewater profiles in the unsat-
urated zone and soil N storage measurements, repeated every 5–10
years. Such monitoring would quantify reductions in the magnitude of
these Nr stores and provide the initial evidence that changes inmanage-
ment practices designed to control Nr fluxes are having the desired
effect. This would provide a sentinel indicator of potential future
changes in downstream components of the terrestrialwater cycle. Com-
paring the magnitude of different Nr stores could indicate the relative
impacts of anthropogenic activities on different components of the ter-
restrial environment such as soils, the unsaturated zone, groundwater
and riparian sediments. For example, large Nr storage in the unsaturated
zone suggests that future Nr concentration changes in linked receptors
(i.e. groundwater and surfacewater)will continue to be significantly af-
fected by release of Nr from this store, before any impacts from changes
in soil Nr leaching associated with recent changes in management prac-
tices are detected in the ultimate receptor. By combining consistent ter-
minology, sharing of existing models, and improved monitoring
networks, we believe that researchers can support the development of
newmodelling frameworks used in policy to provide better predictions
of catchment nutrient trajectories and timescales.

3.3. An example from England (UK)

What would a proactive advocacy role for the biogeochemical
research community look like in practice? Approaches to the inte-
gration of legacy Nr storage dynamics and time lags into policy
would need to be informed by dialogue between researchers and



Fig. 1. Past and potential future approaches to management of legacy Nr, including the role of the research community to advocate for integration of legacy Nr stores and time lags into
policy and practice
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practitioners to identify discrepancies between the state of the
science and models and tools used in policy within a particular set-
ting. To illustrate the potential opportunities, here we provide an ex-
ample of both awareness raising and data and model development
from England (UK). In England researchers have raised awareness
of the significance of legacy N storage dynamics to policymakers, na-
tional government and parliamentarians (Ascott and Ward, 2018).
The methodology used to designate agricultural land in which N ap-
plication may be restricted (known as Nitrate Vulnerable Zones
(European Union, 1991) is reviewed every four years in England. In
the latest review in 2020, time lags between nitrate leaching from
the base of the soil zone and changes in nitrate concentrations in
groundwater are being considered in themethodology using outputs
of previous modelling of unsaturated zone travel times by Wang
et al. (2012) (Hart and Kieboom, pers. comm.).

4. Synergy across macronutrient cycles

Better integration of time lags and legacy Nr stores would also align
researchers and policymakers in the N community with those in the
phosphorus (P) and carbon (C) communities. Successfully addressing
challenges such as eutrophication requires policy responses that are co-
ordinated across multiple nutrient elements (Conley et al., 2009;
Harpole et al., 2011). However, different conceptual frameworks cur-
rently pervade across N, P and C communities. For example, P and C
communities often more explicitly quantify the magnitude of stores
compared to theN community. For P this is primarily due to issues of re-
source availability associatedwithfinite resources ofmineral phosphate
rocks (Elser et al., 2014) and soil stores for agriculture (Haygarth et al.,
2014; Sattari et al., 2012). Consequently large-scale P budgets have
been developed using substance flow analysis (SFA) methods and the
principles of mass balance to calculate the absolute magnitude of a
number of P stores (Chen and Graedel, 2016; Yuan et al., 2018). For C
3

the quantification of the magnitude of stores is associated with climate
change, with global scale budgets synthesizing fluxes and stores from a
range of both observational and modelled data sources (Le Quéré et al.,
2014).Whilst Nr is drawn from a large and renewable resource of atmo-
spheric N2 (Erisman et al., 2008), the evidence for legacy Nr in the envi-
ronment highlights the need to quantify Nr stores in the terrestrial
environment. Whilst fluxes from agricultural systems are the primary
source of Nr to freshwater systems (Fowler et al., 2013), the same prin-
ciples of time lag and stores apply to other sources (e.g. contaminated
land, sewer leakage (Wakida and Lerner, 2005), mains leakage (Ascott
et al., 2018).

5. Concluding remarks

Despite a strong body of scientific evidence and increasing aware-
ness amongst stakeholders, models and budgets used by policymakers
in BMP planning often do not adequately represent legacy Nr dynamics
and associated time lags. Here we argue that the biogeochemical re-
search community needs to proactively advocate for integration of
time lags into future Nrmanagement strategies through awareness rais-
ing and data andmodel development. Thiswould supportmore realistic
estimates of the trajectories of change following measures to reduce Nr

loads, managing the expectations of stakeholders and supporting long
term sustainable agriculture. Incorporating Nr stores and time lags
into improvedmodels and budgets used in policy and regulatory frame-
works for the sustainable management of agriculture can better meet
the needs of human health and the environment.
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