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Abstract

Ecologists increasingly rely on complex computer simulations to forecast ecological systems. To
make such forecasts precise, uncertainties in model parameters and structure must be reduced and
correctly propagated to model outputs. Naively using standard statistical techniques for this task,
however, can lead to bias and underestimation of uncertainties in parameters and predictions.
Here, we explain why these problems occur and propose a framework for robust inference with
complex computer simulations. After having identified that model error is more consequential in
complex computer simulations, due to their more pronounced nonlinearity and interconnected-
ness, we discuss as possible solutions data rebalancing and adding bias corrections on model out-
puts or processes during or after the calibration procedure. We illustrate the methods in a case
study, using a dynamic vegetation model. We conclude that developing better methods for robust
inference of complex computer simulations is vital for generating reliable predictions of ecosystem
responses.
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INTRODUCTION

Ecological systems are often complex and interdependent
(Levin, 1998). To understand these systems, and to forecast
their dynamics under changing conditions, ecologists rely
increasingly on complex computer simulations (CCS, near
synonymous terms include: process-based models, mechanistic
models, system models; see e.g. Evans et al., 2012; Briscoe
et al., 2019; Thompson et al., 2020), for example to predict
ecosystem responses to climate change (e.g. Cheaib et al.,
2012; Rahn et al., 2018). The trend towards an increasing use
of complex computer simulations mirrors similar develop-
ments in other scientific fields, for example galaxy formation
(Somerville & Davé, 2015), macroevolutionary dynamics
(Rangel et al., 2018) or epidemiological disease control (Drake
et al., 2015).
For any of these models, precise forecasts and correct esti-

mates of predictive uncertainty are paramount, both for their
scientific interpretation (Petchey et al., 2015), and for decision
making and governmental actions (Dietze et al., 2018). The
IPCC report, for example, uses a combination of different
earth system models to simulate future behaviour of the atmo-
sphere, ocean, land surface and fluxes (Bindoff et al., 2013).
Using computer simulations for decision making is only sensi-
ble, however, if their predictions are sufficiently precise, and if
their uncertainties are correctly communicated (Budescu et al.,
2009).

Achieving these goals depends on correctly determining
model structure, parameters and their uncertainties. Where
parameters and model structure cannot be determined directly
by measurement or theory, they have to be estimated by com-
paring model predictions to data (model calibration and selec-
tion, e.g. Hartig et al., 2012; Dietze, 2017). In recent years,
the field has moved from informal methods for model calibra-
tion to established statistical methods such as maximum likeli-
hood estimation (MLE, e.g. Castiglioni et al., 2010) or
Bayesian inference (e.g. Harrison et al., 2012; Luke et al.,
2017). Superficially, it would seem that parameter calibration
and uncertainty propagation in CCS are no different from the
statistical regression models familiar to most ecologists, and
that no special statistical theory is needed for these models (at
least as long as model outputs are approximately determinis-
tic, for stochastic simulation models see Hartig et al., 2011).
In practice, however, there are important differences

between calibrating simple statistical models and CCS. One
trivial difference is the sheer computational challenge of con-
straining large models to big data (e.g. Fer et al., 2018).
Another, more fundamental disparity arises through the
model structure. Compared to statistical models, CCS are
characterised by having a higher level of interconnectedness
and nonlinearity, as well as multiple variables and outputs.
Moreover, CCS typically make a large number of structural
assumptions based on prior knowledge (Dormann et al.,
2012). As a consequence, they are often less flexible in terms
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of what outputs or patterns can be produced, despite having a
large number of parameters (Fatichi et al., 2016).
These traits lead to certain problems when calibrating CCS

that are less common in statistical models. A particularly
important example is trade-offs when calibrating to multiple
data streams. It has been argued that using multiple data
streams is desirable because information from different bio-
logical levels of organisation (e.g. daily carbon fluxes and
yearly inventory data) contains more complementary informa-
tion than a single data stream (e.g. Grimm, 2005; Medlyn
et al., 2015). However, the combination of internal constraints
(e.g. mass- or energy balance) with structural error will often
make it impossible for a CCS to fit all data streams simultane-
ously (for a list of examples, see MacBean et al., 2016). More-
over, the information or observation density of data at
different organisational levels can differ substantially, leading
to unbalanced data (substantial differences in the number of
observations of different data streams) for the calibration.
This means that the calibration cannot avoid a systematic
misfit (bias) in some of the model outputs, and additionally
faces a conflict between the information provided by different,
possibly unbalanced data streams, both situations that are less
common in statistical models.
The goal of this paper was to explore these problems in

more detail and provide an overview of strategies for robust
statistical inference with CCS. In the remainder of the text,
we first explain the problems that may occur when calibrating
CCS with structural error, illustrated with the example of a
complex forest ecosystem model. Based on our results, we test
a range of suggested remedies, and finally provide practical
recommendations for using statistical inference with CCS in
ecology and evolution.

WHY DOES MODEL ERROR AFFECT STATISTICS

DIFFERENTLY IN COMPLEX COMPUTER

SIMULATIONS?

To start our discussion, it will be helpful to further clarify
how conventional statistical models differ from CCS. Models
exist on a continuum between these two classes (Dormann
et al., 2012), but considering the ends of this spectrum, we see
clear distinctions between models typically used for statistical
data analysis (e.g. GLMMs, see Bolker et al., 2009) and CCS
(e.g. Trotsiuk et al., 2020). One key difference is that CCS
usually connect a sizeable number of state variables via pro-
cesses that aim to represent our scientific understanding of the
natural system, often with submodels that are calculated at
different time steps (e.g. daily, weekly and annual, see as an
example the LPJ-GUESS model Smith et al., 2001). It has
often been argued that their mechanistic nature makes CCS
more appropriate than regression models for forecasting far
into the future, because, at least in principle, they should be
able to predict into domains for which no previous data exists
(e.g. Kearney et al., 2010; Rastetter, 2017; Radchuk et al.,
2019).
These benefits of CCS, however, come along with larger

structural complexity, which exacerbates challenges in identi-
fying the correct model structure and correcting possible
model-data discrepancies (Peng et al., 2011). For example

their typically high interconnectedness hampers the localisa-
tion of structural errors. Moreover, while their mechanistic
underpinning grants better inclusion of prior knowledge
regarding the processes driving system dynamics (Dietze et al.,
2013), it can become a liability when mechanisms or parame-
ters are unknown and have to be guessed. A final point is that
CCS have to apply certain simplifications and discretisations
for computational reasons (e.g. discrete soil layers Tiktak &
Bouten, 1992). As a result of these and many more challenges,
most CCS display certain structural errors, which are difficult
to fix immediately (e.g. Richardson et al., 2012).
These structural errors (including observational bias as part

of the statistical model) and their associated uncertainties
increase the uncertainties in the calibration process (Bayarri
et al., 2007; see also Beven 2005; Trucano et al., 2006). To
address this issue, the field has moved towards using formal,
statistical methods for model calibration and uncertainty
propagation. These methods, however, infer parameters and
uncertainties conditional on the assumed model structure
being correct. Statistical modellers are usually not overly con-
cerned about these assumptions, because their models flexibly
adjust to data, and thus their main concerns are distributional
assumptions (e.g. Warton et al., 2015). In CCS, however, this
assumption will not hold, and structural errors will interact
with the inference, in particular when nonlinearities are large,
and when the model is fit to imbalanced data (Abramowitz
et al., 2008), i.e. when one data stream has much more obser-
vations than another.
A statistical calibration will respond to this problem by com-

pensating structural error through adjusting parameters to val-
ues that differ from the true values of the underlying process
(Bell & Schlaepfer, 2016). The resulting model may still display
acceptable performance in the domain for which data are avail-
able, but parameter estimates may be biased, and their uncer-
tainties may be underestimated. Moreover, when extrapolating
beyond the data domain, which is considered an important
strength of CCS, biases and underestimation of uncertainty can
become substantial (He et al., 2014), especially when the model
is calibrated to multiple unbalanced data streams (an example
dealing with these issues is Richardson et al., 2010). If the
model is not able to fit both data streams at the same time, the
calibration algorithm will face a conflict (MacBean et al., 2016).
In this situation, the calibration will tend to use parameters
adjustments to compensate the error in the more data-rich out-
puts, at the cost of increased error and too narrow confidence
intervals (Sargsyan et al., 2019) particularly in the data-poor
model outputs (Fig. 1).

Case study

To provide a practical example of these problems, we examine
the influence of structural model error on predictions, parame-
ters and uncertainty estimation by calibrating the Basic forest
model (BASFOR) to multiple balanced or unbalanced data
streams.

Model structure and introduced structural error
BASFOR simulates horizontal homogeneous forest stands by
representing three biogeochemical cycles (carbon, nitrogen
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and water) as well as soil environment interaction. It is driven
by environmental data (atmospheric CO2 concentration, solar
radiation, air temperature, precipitation, wind speed and
humidity) and desribes the forest stand by 17 state variables
(nine tree-related and eight soil-related).
To examine the implications of structural error, we modi-

fied several key processes in BASFOR. First, we changed
the temperature dependence of NPP allocation (higher opti-
mal temperature, fewer allowed deviations). Second, we
made decomposition of litter temperature-dependent. Third,
we changed dependence of water runoff to leaf-area-index
(exponential quadratic instead of exponential linear).
Fourthly, we weighted nitrogen allocation to tree compo-
nents with their nitrogen use efficiency. Lastly, we made
nitrogen leaching root-depth dependent. Although the exact
location and nature of these modifications were somewhat
arbitrary, we think of those modifications as realistic for
structural errors that could also occur in real ecosystem
models.

Statistical inference
We then used the original BASFOR model (henceforth called
the ‘true’ model) to simulate synthetic data with random
observation errors (0.2) for daily observations of Gross Pri-
mary Production (GPP) and daily (balanced data streams) or
10-day (imbalanced data streams, so called because of an
unbalance between the number of observations of GPP and
ET) measurements of evapotranspiration (ET). Drivers for the
simulation were climate data from 1920 to 2005 from Hyy-
tiala, Finland (Reyer et al., 2020).
Prior to the calibration, we conducted a sensitivity analysis

of BASFOR. Based on the results, we removed insensitive
parameters and three parameters that showed very high trade-
offs with other parameters from the calibration by fixing them
to their true values (the goal of this procedure is to speed up
MCMC computations; see, e.g. Minunno et al., 2013).
Because the true parameter values were known, no model
error was introduced by this procedure, and the validity of
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Figure 1 A visualisation of differences between complex computer simulations and statistical models. While statistical models are generally fit to only one

response variable, complex computer simulations often predict multiple response variables and thus can be fit to multiple data sources, which may vary in

sample size, and can be used to extrapolate to unobserved variables. Moreover, complex computer simulations typically have more variables that are in a

more nonlinear and connected dependence structure. From these differences, we hypothesise that 1) biased complex models will lead to biased parameter

estimates and wrong predictions, 2) standard calibration underestimates uncertainty and 3) both of these problems increase when calibrating against

unbalanced data sets.
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our further results is thus not affected by the parameter
screening. In a real application, where “true” parameter val-
ues would be unknown, this procedure could introduce addi-
tional model error, which would further motivate the need to
find methods to compensate for model error, such as the ones
we present in this study.
We applied Bayesian inference (e.g. van Oijen et al., 2011)

to infer the values and uncertainties of the remaining six
model parameters and the two standard deviation parame-
ters of the observation model from the synthetic data. We
specified flat (uniform) priors on the model parameters and
vague gamma priors for the standard deviation parameters.
We estimated posteriors with the Differential-Evolution Mar-
kov-Chain Monte-Carlo (ter Braak & Vrugt, 2008) algo-
rithm, implemented in the R package BayesianTools, Hartig
et al. (2019). To speed up computations, we generated initial
values and the Z matrix with a differential evolution opti-
miser (DEoptim, Ardia et al., 2016). We applied this proce-
dure to both the ‘true’ model and the model with structural
error.

Quantification of the error in inference
To assess the effect of model error on the inference, we calcu-
lated the average error of parameter estimates by averaging
the percentage difference between the ‘true’ parameter (p*)
and the calibrated parameter over the posterior, averaged over
N = 10000 samples from the posterior, the different parame-
ters (P) and the five replicates (M).

Parameter error¼ 1

P
∑
P

i

j 1
M

∑
M

j

1

N
∑
N

k

pi,j,k�pi
�

pi
� j (1)

Moreover, to assess the error of model predictions (also
called time-series error), we calculated the mean absolute error
of data di and model prediction miðx,θ jÞ (driven with climatic
drivers x and parameters θ j) averaged over time (T), the

posterior distribution (through N = 120 samples from the pos-
terior) and five calibration replicates (M).

Error¼ 1

M
∑
M

j

1

N
∑
N

k

1

T
∑
T

i

jdi�miðx,θ j,kÞj (2)

Note that in most cases with structural model error, the
error in the parameters and predictions was systematic, mean-
ing that it can be interpreted as bias.
To relate the error to the estimated uncertainties, and thus

examine if uncertainty estimates were reliable, we calculated
error scaled to estimated uncertainty (ESEU) by dividing the
mean error per day by the posterior standard deviation
σiðmiðx,θ jÞÞ, averaged over time, the posterior distribution
and the five replicates.

ESEU¼ 1

T
∑
T

i

jdi� 1
M∑M

j
1
N∑

N
k miðx,θ jÞj

σiðmiðx,θ jÞÞ (3)

A mean absolute error the same magnitude as the estimated
uncertainty (standard deviation) will result in an ESEU of 1.
Values substantially larger than one suggest that the estima-
tion or prediction error is larger than the estimated uncer-
tainty. For the model outputs and uncertainties, we
differentiated between calibration and extrapolation domain.

Comparison between calibrating a ‘true’ model and a model
with structural error
The results of the calibration with the ‘true’ model (without
structural error) show that the error of the inferred parame-
ters was virtually zero (<0.02%) for balanced and unbalanced
data sets (Fig. 2a). In both of these cases, extrapolation and
calibration error were small with narrow uncertainties
(ESEU = 0.1) (Fig. 2b).
For the model with structural error, inferential errors were

much larger (Fig. 2a). In particular, the parameter error was
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Figure 2 Performance of the model with and without structural model error for balanced and unbalanced data. The bars reflect error in absolute values and

numbers reflect the error scaled to estimated uncertainty (i.e. the error of the model which can be explained due to a high estimated uncertainty). The case

study indicates that structural model bias leads to (a) parameters with serious errors, (b) erroneous model outcomes and high error scaled to estimated

uncertainty.
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three times larger for the unbalanced data (c. 5%) compared
to the balanced data (c. 1.7%) (Fig. 2a). Higher parameter
error for the model with structural error led in all cases to
higher time-series errors compared to the correct model
(Fig. 2b). For the balanced data set, the error for calibration
was smaller than for extrapolation, whereas for the unbal-
anced data set this only was true for the high-resolution data
(GPP). Moreover, GPP error was slightly smaller for the
unbalanced than the balanced data set, but ET error other-
wise. These errors led to a very high ESEU (Fig. 2b). This
effect was stronger for the unbalanced data, especially for the
undersampled data (ET) in the calibration domain (Fig. 2b).
These results support our theoretical expectations that cali-

brating with a correct structural model leads to unbiased
parameter estimates, correct predictions and reliable uncer-
tainty estimates, regardless whether data streams are balanced
or unbalanced. Introducing structural model error, however,
led to erroneous parameter estimations (Fig. 2a), caused erro-
neous time-series predictions and high ESEU (Fig. 2b), and
these effects are intensified by unbalanced data sets (Fig. 2a
and b).

A TOOLBOX FOR STATISTICAL INFERENCE IN

COMPLEX COMPUTER SIMULATIONS

After having confirmed our intuition that statistical calibra-
tions of CSS are highly susceptible to structural error, we turn
our attention to possible solutions. Few general treatments of
the problem exist in literature, but there are certain strategies
and suggestions that are frequently used in practice. To deal
with the problem of imbalanced data, many studies rebalance
or reweight data streams. The remaining model-data discrep-
ancies (bias) have sometimes been addressed by introducing
data-driven models to the process-model after or during the
calibration. In the following, we will discuss these potential
solutions and test their applicability in our case study.

Weighting of data streams

The strategy of rebalancing and reweighting data addresses
the issue that standard statistical methods weight, the impor-
tance of each data stream principally by its content of inde-
pendent observations. While the latter is perfectly sensible for
a correct model, it will lead to distortions towards the model
output with more data when structural error makes it impos-
sible to fit both data streams at the same time.

Case study – weighting of data streams
To examine the possible benefits of weighting for our case
study, we down-weighted the likelihood for the GPP data
with 1/10, the ratio of ET to GPP observations, thus giving
both data streams the same weight (for details, see Supporting
Information S1, section 1.1). Weighting the data streams
increased the error for the estimated parameters of the correct
model (Fig. 3a) by a small amount, which propagates through
the model into a small error in predictions and a higher
ESEU (Fig. 3b). For the model with structural error, intro-
ducing weights in the likelihood decreased parameter error
leading to smaller ET error, but slightly increased GPP error
(Fig. 3b). Moreover, the ESEU of ET in the calibration
domain is smaller due to a reduction of ET error. Overall, we
can thus conclude that weighting slightly decreased the infer-
ential performance for the correct model, but dramatically
improved the performance for the model with structural error.

Bias correction after calibration

Another option to deal with model error is statistical bias cor-
rection. The simplest approach is to fit flexible statistical or
machine learning models post hoc (i.e. after the CCS has been
calibrated) to the residual errors (but see Beyer et al., 2019).
The logic here is that if the model makes the same error under
similar conditions (called ‘time invariance’ by Ehret et al.,
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Figure 3 Comparison of the performance of the model with structural model error and the correct model for weighted and unbalanced data. The bars

reflect error in absolute values and numbers reflect the error scaled to estimated uncertainty. The case study indicates that weighting the data streams

decreases a) parameters error, b) shifts error in model outcomes and improves ESEU
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2012), we can learn this error and apply corrections to future
predictions. Obviously, this method only corrects predictions
and not the parameter estimates, as the actual inference
remains unchanged.

Case study – bias correction after calibration
To test this method, we used a flexible Gaussian process (GP)
model from the kernlab package (Karatzoglou et al., 2004)
with a distance-based covariance structure (for details see
Supporting Information 1, section 1.2). We fitted the model to
approximately 6 years of residual errors as a response, and
the corresponding model drivers (e.g. temperature and humid-
ity) and CCS output as predictors, and extrapolated the error
to future predictions. Our results show that this approach
decreased the predictive GPP error of the model with struc-
tural error by similar amounts in the calibration and extrapo-
lation periods (Fig. 4). ET error was approximately the same
between the corrected and uncorrected versions of the model
with a structural error, but there was a large decrease in
ESEU (Fig. 4), not only caused by reduced error, but mostly
by the variance coming from the explicitly modelled model
error. Applying the same method to the true model intro-
duced a slightly larger error in the time series and increased
ESEU (Fig. 4). We speculate that this is due to the GP over-
fiting on random error.

Bias correction during calibration

A second option is to perform the bias correction within the
calibration. A common example of this is the Kennedy-
O’Hagan (KOH) approach (Kennedy & O’Hagan, 2001). In
this approach, we fit again a GP for the bias together with
the other model parameters in the same likelihood:

LðθÞ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � 1

2σ2
½

�
d�ðmðθ,xÞþGPðx,mÞÞ�2

�
(4)

Here, σ is the standard deviation of the observational error,
GP a Gaussian process. While the advantage of this approach
is that the bias correction can also improve the inference on
the model’s parameters, the drawback is that it may suffer
from an identifiability issue between parameters and model

error. Whether this problem occurs depends on how distinct
the structure of the process and the error model are. Note
also that multiple data streams can be helpful in this regard,
because they would typically impose independent constraints
on the process model. Moreover, it has been shown, that
incorporating suitable prior knowledge about the model error
(e.g. smooth with respect to some predictor variables) allows
the KOH method to separate between parameters and model
error (Brynjarsdóttir & O’Hagan, 2014). Because of these
attractive properties, there are a sizeable number of studies
which have tested and modified this approach (e.g. Higdon
et al., 2004, 2008; Goldstein & Rougier, 2009; Tuo & Wu,
2016; Tuo, 2017).

Case study – bias correction during calibration
In its original version, the KOH method fits the GP against
all calibration data with all drivers and state variables as pre-
dictors. However, as the computational cost of GP fitting and
evaluation scale unfavourable with the number of data points,
this makes it more difficult for typical environmental model
calibrations. The computational problems occur because the
calculation of the GP requires an inversion of a large covari-
ance matrix. Moreover, the KOH method assumes having
enough observational data of model determining variables
(model state and external drivers) to fully constrain the Gaus-
sian process (Kennedy & O’Hagan, 2001), which for typical
ecological models is not a realistic assumption (in our case
study, we do not have virtual measurements of any state vari-
ables, we measured only the fluxes GPP and ET).
For our case study, we propose an alternative variant of the

KOH method, which makes three changes to decrease compu-
tational cost. First, we only use the drivers and the observed
values as predictors. Secondly, we calibrate against a subsam-
ple of data (in our case we subsample to 10% of the data, the
last 8 years of data and drivers as best proxies for future dri-
vers). We do so because, typically models systematically pre-
dict GPP that is too small on warm summer days and ET
that is too high when humidity is low. Thirdly, we avoid the
costly inversion of the covariance matrix that is only needed
to match GP parameters to their prior by approximating the
inverse covariance by its diagonal, while still inferring the full
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covariance matrix (rbfdot kernel) in the likelihood. To code a
preference for explaining the data by the process-model, we
apply a regularising gamma(2,0.1) prior with a high probabil-
ity weight near zero on the diagonal. Based on the GP predic-
tions, we calculate model-data discrepancies for the rest of the
time series (a detailed tutorial is given in Supporting Informa-
tion S1, section 1.2).
When applying bias correction during calibration, parame-

ter error stayed near zero for the correct model, and decreased
for the model with structural error (Fig. 5a). However,
whereas time series error decreased in both outputs, for the
model with structural error, for the true model, error
increased (Fig. 5b), with an almost identical pattern to the
post hoc GP (Fig. 5b). For the model with structural error,
the calibration resulted in higher estimated uncertainty and
thus lower ESEU compared to a calibration without an expli-
cit model error term (Fig. 5b). Overall, the method improves
parameters, predictions and ESEU for the model with struc-
tural error, but decreases the performance for the correct
model.

Correcting processes rather than outputs

We have seen so far that correcting bias on the model outputs
can improve predictions and inference. The true error, how-
ever, is not on the outputs, but in the model processes them-
selves. It, therefore, seems obvious to explore if the processes
themselves could be bias-corrected. For simple population
models, this idea has been suggested under the name ‘partially
specified ecological models’ (Wood, 2001). The drawback of
this approach for CCS is that the complexity of the error term
and therefore the issue of identifiability increases significantly
if errors in all possible subprocesses are considered. For our
case study, we attempted to correct process-errors directly via
a state-space approach (details see supporting information S1,
section 1.3), but did not succeed in improving the statistical

inference in this way. Nevertheless, we believe that this is
worthwhile for further research, in particular because it would
not only correct errors, but also allow to identify their loca-
tion.

DISCUSSION

CCS are increasingly used in ecology, evolution and earth sys-
tem sciences. Our ability to confront these models with data
and to estimate uncertainties in parameters and predictions is
critical for their utility.
In this contribution, we highlighted that certain issues

emerge when using standard statistical methods to calibrate
CCS. Most importantly, our theoretical explanations as well
as our case study demonstrated that naive applications of
standard calibration methods to imperfect computer simula-
tions can lead to biased parameter estimates and predictions,
and to underestimated uncertainties (Fig. 2), and that these
biases are more pronounced than in flexible statistical models.
These issues are particularly severe when calibrating against
unbalanced data (Fig. 2). Weighting of data streams can
reduce the aggravating effect of unbalanced data (Fig. 3).
Data-driven models can be used to describe and remove the
remaining bias after or during the calibration. In our case
study, fitting model bias with a GP after calibration improved
time series predictions (Fig. 4). Thus, our results show that
robust methods exist for ameliorating negative consequences
of structural model for making predictions with calibrated
CCS.
Using a GP during calibration can additionally improve

parameter inference (Fig. 5). We acknowledge that the inter-
pretation of parameter values across structurally different
models is tricky, because those parameters have different
meanings in the respective models, and thus, one could argue
that both the true and the model with structural error have
parameters that are correct under their respective
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Figure 5 Comparison of the performance of the model with structural model error and the correct model for a correction during calibration. The bars

reflect error in absolute values and numbers reflect the uncertainty in units of standard deviation. The case study indicates that correcting error during the

calibration decreases (a) parameters error for the wrong model, (b) reduces error in the model outcomes and improves uncertainty estimation.
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assumptions. This view, however, neglects, that researchers
will tend to interpret parameter values as if their models were
structurally unbiased, and representation of the true process.
Our comparison of the estimated and the true parameter,
therefore, measures to what extent this interpretation is justi-
fied and shows that explicitly modelling structural error
increases the chances of model parameters representing their
real values (Goldstein & Rougier, 2009).
Our results regarding the consequences of model error are

qualitatively supported by the few earlier studies that have
looked at the problem (for balanced data by White et al.,
2014 and for unbalanced data sets by Abramowitz et al.,
2008). In general, however, this topic seems surprisingly
underappreciated in the statistical literature. We speculate that
most statisticians do not operate with large system models,
and the modellers that do are not primarily interested in sta-
tistical methods. Nevertheless, a good understanding of these
issues is urgently needed, as many important forecasts rely on
the correct identification of parameters and their uncertainties.
In the next subsections, we summarise our conclusions from
existing literature and our new simulations, provide practical
guidance for their use, and delineate a statistical research pro-
gram to develop a theory of robust inference for CCS.

Which methods work to improve inference for biased system

models?

To achieve a more balanced impact of the different data on
the calibration, many modelling studies weigh data streams.
Despite its popularity, few studies have examined the justifica-
tion for this practice. Contrary to Wutzler & Carvalhais
(2014), who only found minor improvements, we found that
weighting improved all considered performance measures
(Fig. 3). Different CCS and a different severity of model error
may explain the differences in the two studies. In general, ben-
efits from weighting likely depend on the statistical context,
the weighting strategy, and the model error. Overall, however,
we believe that weighting is a useful and conservative strategy
if structure model error is suspected. One open question that
would profit from more research is how the weighting of dif-
ferent data streams should be performed. Creating balance by
upweighting the less abundant data stream, which essentially
corresponds to the common practice of oversampling in
machine learning, could lead to a serious underestimation of
uncertainties as it is equivalent to using the same data multi-
ple times. Downweighting, the far more common approach in
studies calibrating CCS, is more conservative, but it also arti-
ficially decreases the information in the more abundant data
stream to the level of the less abundant stream, which can
hardly be optimal to get realistic uncertainties. In general,
these two options represent the extremes of a broad spectrum
of possibilities, and more research is required to understand
how an optimal weighting could be justified. An option to
avoid the problem would be to calibrate against patterns, as
suggested by the POM (Grimm, 2005), to independently
update subsets of parameters against different data streams
(Wutzler & Carvalhais, 2014), or to set up subjective likeli-
hoods (White et al., 2014), as in the GLUE approach (Beven
& Binley, 1992). The downside, however, is that these

approaches could be considered even more subjective than
weights on the data streams.
A complementary class of methods directly addresses the

issue of model error, by identifying and correcting structural
biases from model’s predictions. In our case study, this
approach (via the KOH method) improved parameters, pre-
dictions and uncertainty quantification (in line with Bryn-
jarsdóttir & O’Hagan 2014). However, the standard KOH
method has two main challenges – high computational com-
plexity (Conti & O’Hagan, 2010) and possible identifiability
issues between model parameters and model error (Bryn-
jarsdóttir & O’Hagan, 2014). We addressed the first problem
by only using a fraction of the available data to fit the GP
and extrapolated to the remaining calibration domain. We
speculate subsampling works for models with mechanistic
structure, as long as the learned discrepancy will behave simi-
larly in the future. We appreciate that using a fraction of the
calibration data potentially disregards useful information, and
that our additional numerical approximations could further
reduce the method’s performance. The fact that we reduced
the model error, however, suggests that these problems are
probably mild. Still, in situations where computational costs
are not limiting, it would be better to use the original method
suggested in Kennedy & O’Hagan (2001). The issue of identi-
fiability is important, but arises in many statistical situations,
and several strategies exist to deal with it, for example regu-
larisation or informative priors (Brynjarsdóttir & O’Hagan,
2014). Thus, we think these methods can lead to better predic-
tions for ecological CCS and modellers should be using them.
A limitation of our case study is that it tested validity and

effectiveness for one specific model, with one specific error
structure. While we do think that the chosen example is typi-
cal and representative for the field, it would be useful to
explore the generality of our results in future studies and their
robustness to observation errors and uncertainties, which can
be expected to exacerbate statistical problems.
Finally, all our successful examples used bias corrections on

model outputs. In particular, when making predictions, these
implicitly assume that the model error is stationary, which is
unlikely to be true (Chen et al., 2015). It would therefore be
preferable to move bias corrections directly inside the mod-
elled processes. In our case study, we attempted such a correc-
tion with a state-space approach, but could not achieve an
increase in inferential performance. It is possible that idiosyn-
crasies of our setup were responsible for this negative result,
but it seems equally plausible that corrections on the outputs
are already at the limit of what can be sensibly inferred from
data. Either way, these considerations suggest that bias cor-
rections are currently no panacea, and that careful improve-
ments of the model structure, if possible, are still the
preferable solution.

Practical suggestions

As famously noted by Box (1976): ‘All models are wrong, but
some are useful’. Accepting this fact, the question for CCS is
what type of error is dominant. If statistical error dominates
the structural error (this can be checked by an analysis of
residuals, see Supporting information section 2), all standard
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statistical techniques work fine, regardless of the balance of
data. In this case, using methods that accounting for possible
structural model errors tends to somewhat increase uncertain-
ties (Fig. 4 and 5, see recommendations Fig. 6). When struc-
tural error dominates, however, severe statistical problems can
arise, in particular for imbalanced data. In this case, weighting
of data streams or adding bias correction to the CCS can
improve the outcomes of a model calibration dramatically.
Our recommendation for modellers with little statistical back-
ground is that downweighting imbalanced data is a simple,
conservative approach that can alleviate some of issues cre-
ated by structural error. Although it is somewhat ad-hoc, it
improved results in our case study, and it makes uncertainty
estimates (e.g. confidence intervals) more conservative. For
more experienced modellers, we propose to consider addi-
tional bias corrections after or during calibration, or even
consider if bias corrections can be moved inside the processes,
which would not only improve the inference, but also model
understanding. For all these purposes we provide sample code
(https://github.com/JohannesOberpriller/Oberpriller-et-al-
2021).

Towards a statistical theory for robust inference in complex

computer simulations

More broadly, our paper highlights that structural model
error raises specific problems for statistical inference with
complex computer simulations. This should alert the ecologi-
cal community that model error is a real problem for the cali-
bration of CCS, and naively applying standard statistical
methodologies does not always lead to the desired results.
Although we did a step into the direction of robust infer-

ence in CCS by reviewing proposed solutions, explaining their
theoretical justification and providing practical guidance for
their application, further work is required to arrive at a gen-
eral solution for robust statistical inference. For example, we

have no good theory about how to set weights for different
data streams. When considering a data stream with only one
observation, it becomes clear that downweighting to the least
common data stream is likely not always optimal. Moreover,
it would be interesting to extend bias corrections also to meth-
ods that use simulation-based inference, such as Approximate
Bayesian Computing (ABC) or synthetic likelihood (Csilléry
et al., 2010; Hartig et al., 2011).
A last point is that statistical bias corrections are important

for improving the inference, but the correct model still consis-
tently performed best in our case study, and we should thus
also think about how to develop methods to track down the
location of the error. To localise errors, one could start by
analysing model discrepancies for patterns, and use those to
attempt a rough localisation of the structural error. Moreover,
we speculate that when a dramatic change of a parameter
value between KOH and standard calibration happens, this
gives a hint that model error affects this specific parameter
and thus that model error is ‘near’ to this parameter. Then
using time-dependent parameters (instead of constant) (Reich-
ert & Mieleitner, 2009) could be an option to get a better
localisation of the error. Another idea (Wood, 2001) goes a
step further, by saying that flexible models (generalised addi-
tive models) should account for the processes, or by (Reich-
stein et al., 2019), which propose to learn entire submodels.
These approaches should be tested in practice to finally
improve model performance.
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