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Abstract

Zoonoses disproportionately affect tropical communities and are associated with human

modification and use of ecosystems. Effective management is hampered by poor ecological

understanding of disease transmission and often focuses on human vaccination or treat-

ment. Better ecological understanding of multi-vector and multi-host transmission, social

and environmental factors altering human exposure, might enable a broader suite of man-

agement options. Options may include “ecological interventions” that target vectors or hosts

and require good knowledge of underlying transmission processes, which may be more

effective, economical, and long lasting than conventional approaches. New frameworks

identify the hierarchical series of barriers that a pathogen needs to overcome before human

spillover occurs and demonstrate how ecological interventions may strengthen these barri-

ers and complement human-focused disease control. We extend these frameworks for vec-

tor-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne,

neglected zoonosis affecting poor forest communities in India, involving complex communi-

ties of tick and host species. We identify the hierarchical barriers to pathogen transmission

targeted by existing management. We show that existing interventions mainly focus on

human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur

Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey)

deaths). We review the validity of existing management guidance for KFD through literature

review and interviews with disease managers. Efficacy of interventions was difficult to quan-

tify due to poor empirical understanding of KFDV–vector–host ecology, particularly the role

of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify
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tick populations. Monkeys may act as sentinels of human infection or are hypothesised to

act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via

monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research prior-

ities for refinement of current management strategies or development of ecological interven-

tions targeting vectors and host barriers to prevent disease spillover in the future.

Author summary

Zoonotic diseases (caused by pathogens passed between animals and people) dispropor-

tionately affect tropical communities. Management to prevent human cases is often hin-

dered by a poor ecological understanding of zoonotic disease systems, which may involve

complex communities of vector (e.g., ticks) and host species involved in pathogen trans-

mission. Thus, management usually focuses on human medical treatments such as vacci-

nation. However, there may be other alternative interventions targeted at vectors or

wildlife hosts which may be more effective, economical, or long lasting. Furthermore,

more conventional human-focused intervention strategies could be improved through

better ecological understanding of the disease system. Here, we refine a new framework

developed to identify barriers in the disease system that a pathogen needs to overcome in

order to spillover to cause human disease cases, to include additional barriers pertinent to

vector-borne pathogens. We apply this refined framework to Kyasanur Forest Disease

(KFD), a potentially deadly tick-borne infection from India which affects poor forest com-

munities in the Western Ghats and demonstrate how it can be used to identify key knowl-

edge gaps that that need to be addressed in order to evaluate the effectiveness of existing

management and to design new interventions.

Introduction

Zoonotic diseases disproportionately affect tropical communities, resulting in 26% of disabil-

ity-adjusted life years lost to infectious diseases in lower middle-income countries [1–3]. Their

burdens and impacts are increasing worldwide due to wide-ranging sociopolitical, ecological,

and environmental changes [4]. Most zoonotic diseases have complex transmission cycles

involving communities of vector and animal hosts, with disease dynamics highly dependent

on host ecology and evolutionary biology [5,6]. Further complexity arises since human behav-

iour and ecosystem use alters exposure to infected vectors and hosts [7], making it challenging

to predict human infection risk and develop effective control strategies. This complexity is

highlighted in the global “One Health” initiative, which recognises the interconnectedness of

human and animal health and the environment and recommends a coordinated, interdisci-

plinary, cross-sectoral approach to management of zoonotic diseases [8,9]. Despite this, many

zoonotic disease control programmes utilise interventions that are focused on humans (e.g.,

vaccination and preventative drug treatment). Such conventional interventions are applied

without understanding or consideration of the underlying ecological complexity and environ-

mental settings in which spillover to humans occurs (spillover defined as transmission of a

pathogen from a vertebrate animal to a human [5,10]). This is particularly true of neglected

zoonoses, for example, rabies, echinococcosis, leishmaniasis, and leprosy that primarily affect

poor and marginalised populations in low-resource settings. Neglected zoonoses are defined

as those that receive less attention and funding (for both research and interventions) compared

to diseases such as malaria, tuberculosis, and HIV/AIDS, leading not only to vast
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underreporting but also to poor understanding of the disease systems [5,11,12]. Integrating

ecological and evolutionary understanding of multi-vector and multi-host transmission,

human and environmental factors into disease control policy is considered essential for reduc-

ing the impact and probability of emergence of zoonotic diseases [5,6,10]. However, there are

widespread examples of effective disease control being hampered by a poor ecological evidence

base or limited application of existing evidence into policy and practice (see reviews in [5,13]).

New frameworks have recently been developed that identify the hierarchical series of barri-

ers that a pathogen needs to overcome for spillover from a wildlife reservoir into a human host

to occur. Such barriers could then be targeted by management interventions to prevent

human disease ([10,14], Fig 1). These frameworks demonstrate how a broad range of interven-

tions could be developed to complement conventional approaches which target humans such

as vaccination and drug treatment [10]. In contrast to conventional interventions, ecological

interventions are defined as those that consider the ecological context in which human spill-

over occurs and which harness improved understanding of the disease system ecology in order

to manage the underlying transmission process [10]. An example would be restoration of natu-

ral enemy populations through habitat creation or management in order to reduce mainte-

nance host populations. This strengthens the important barrier against having sufficient

densities of reservoir hosts necessary for effective pathogen transmission [10]. Such ecological

interventions may lead to more targeted, long-term, effective, and economical approaches to

managing human disease cases because they aim to disrupt underlying transmission processes.

A good example of the effectiveness of ecological versus conventional interventions is in the

Fig 1. A schematic of the hierarchical barriers to spillover of vector-borne zoonotic diseases to humans, extending the framework set out in

[10,14]. Management interventions may reduce or prevent spillover by targeting these barriers, with green layers representing reservoir hosts, blue

representing the environment and vectors, and yellow the spillover hosts. Current KFD management shown on the right-hand side mainly targets

the final 2 barriers associated with the spillover hosts, aiming to reduce human exposure and susceptibility to infection. The dotted outlines of boxes

indicate where the empirical evidence for impacts of management interventions is particularly incomplete. Surveillance activity, currently conducted

for KFDV in people, ticks, and monkeys informs these interventions, with dotted outlines indicating where strategies could be refined to better

target interventions. KFD, Kyasanur Forest Disease; KFDV, Kyasanur Forest Disease Virus.

https://doi.org/10.1371/journal.pntd.0009243.g001
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case of Nipah virus control in Asia. Here, knowledge of transmission mechanisms, reservoir

and amplifying hosts, and human social factors driving infection risk led to the development

of ecological intervention strategies and a move away from conventional approaches such as

culling of wildlife and domestic animal hosts. Pteropus spp. of bats are known to be mainte-

nance hosts for the Nipah virus, but pigs are amplifying hosts [15–17]. Human spillover arises

through direct ingestion of fruit contaminated by Nipah virus–shedding bats or by pigs, which

are also infected via ingestion of infected fruit or contamination with bat faeces or urine [18–

20]. Based on this knowledge, ecological interventions that target the human spillover barrier

of human host exposure are being practiced and developed including surveillance in pigs in

areas where pig farming overlaps with Pteropus spp. distributions to facilitate early interven-

tion, restrictions on fruit trees near pig farms, the use of bamboo skirts over sap collection pots

to prevent contamination, and education and measures to prevent human consumption of

contaminated plant products [21–23].

Current frameworks for identifying hierarchical barriers to spillover [10] are particularly

suited to directly transmitted pathogens. However, a large proportion of zoonotic diseases are

vector-borne, and refinement is needed to identify additional barriers applicable to such dis-

eases. To inform the development and operationalisation of such frameworks in real-world

settings, we focus on a case study: an emerging, tick-borne zoonotic pathogen in India.

India has been identified as a global hotspot of zoonotic emerging disease risk, alongside

other tropical forest regions in Central Africa, South America, and Asia, because of the high

levels of deforestation and land-use change, high biodiversity and spatial overlap between

wildlife and human populations, high human and livestock population densities, and also the

low performance of health systems [24,25]. Moreover, India ranks high both in terms of the

diversity of endemic and emerging zoonotic diseases, for example, rabies, anthrax, leishmania-

sis, and leptospirosis, and the resulting economic and health burden [26–29]. Kyasanur Forest

Disease Virus (KFDV) is a tick-borne virus (family Flaviviridae, genus Flavivirus) causing

debilitating and potentially fatal haemorrhagic disease (approximately 500 cases per annum,

up to 10% mortality [30]) in people in the Western Ghats region of South India. Historically,

Kyasanur Forest Disease (KFD) cases were restricted to a small number of districts in Karna-

taka state since the disease was first described in 1957 [30,31]. Human cases of KFD have

increased since 2005, with a recent dramatic spread to neighbouring states of Goa, Tamil

Nadu, Maharashtra, and Kerala [32]. The disease primarily affects low-income rural forest

communities such as small-holder farmers, plantation and forestry workers, and tribal groups

reliant on harvesting of non-timber forest products [33–35]. Household surveys of small-

holder farmers and tribal groups within KFD-affected areas found that 69% of respondents

(n = 227) were perturbed by the impact of KFD on their livelihoods, highlighting KFD as a

major health issue in the region [36].

As well as affecting diverse forest users, KFDV has a broad vector and host range. The trans-

mission cycle is complex, with various tick species involved (principally Haemaphysalis spini-
gera but infection has also been reported from an additional 8Haemaphysalis species and

some Ixodes) and multiple hosts implicated, including wild rodents and shrews, bats, monkeys,

and some birds [30]. Despite some experimental evidence from laboratory studies [37,38] and

modelling [39], transovarial transmission, whereby adult female ticks pass KFDV to their off-

spring, has never been recorded in the wild. Humans contract KFDV when bitten by an

infected tick, which became infected either by feeding on a reservoir host with systemic infec-

tion or by feeding in close proximity to an infected tick before moulting and biting a human

host. Humans are incidental hosts for the disease and are not involved in onward transmission

[40]. Thus, like the Lyme disease agent Borrelia burgdorferi, KFDV is a spillover pathogen for

which almost every human case represents a spillover event from a wildlife reservoir via the
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infected tick vector. However, we lack empirical knowledge of the role of different species of

vector and hosts in the KFDV transmission cycle and how human behaviour and environmen-

tal changes like deforestation are leading to disease spillover. Monkeys, principally the black-

footed grey langur (Semnopithecus hypoleucos) and the bonnet macaque (Macaca radiata), are

hypothesised to act as amplifying hosts, because infection has been shown to lead to high titres

of circulating virus, meaning they are likely to pass infection to their ticks [41]. Cattle are not

considered to amplify KFDV since they do not develop viraemia of long duration [42,43], but

are hypothesised to increase tick population density through their importance as a blood meal

host [44,45]. The lack of robust testing of these 2 hypotheses in the field is indicative of the sig-

nificant gaps in our empirical knowledge of the ecology of the KFD system. Even though spill-

over of KFDV to humans has been widely linked to deforestation [31,46–48], we lack

mechanistic understanding of these patterns. Empirical data collection on host–vector–patho-

gen interactions is restricted to disease emergence events that occurred last century in the

1960s and 1980s and has not been updated for current, further degraded forest conditions or

for areas where KFD has more recently emerged.

The purpose of this review is to (1) identify current management recommendations to pre-

vent human KFD cases and map them onto a framework of the hierarchical barriers to spill-

over for a vector-borne pathogen; (2) review the empirical evidence underpinning each KFD

management recommendation; (3) review evidence for the effectiveness of the current man-

agement practice; and (4) identify knowledge gaps in our understanding of KFD–vector–host

transmission dynamics that currently prevent evaluation of management options and develop-

ment of a broader range of interventions, including ecological interventions, to prevent

human cases of KFD.

Methods

Ethics statement

The protocols for this study were approved by the Institutional Ethics Committee of the Insti-

tute of Public Health (IPH IEC), Bangalore (Study ID, IEC-FR/04/2017) and received a

Favourable Ethical Opinion from the Liverpool School of Tropical Medicine Research Ethics

Committee (research protocol 17/062). All workshop and interview participants were adults

and provided informed consent via email through acceptance of the workshop invitation or

verbal consent for interviewees.

Reviewing current management recommendations and empirical support:

A coproduction approach

This review is part of our interdisciplinary One Health Indo–UK partnership, the MonkeyFe-

verRisk project (https://www.monkeyfeverrisk.ceh.ac.uk/), which together with disease man-

agers and policy makers across the public health, animal health, and environmental sectors,

aims to improve our understanding of risk factors and coproduce guidance and decision sup-

ports tools for KFD [23]. Embedded in this One Health network, we reviewed the current

management practices undertaken to prevent human cases of KFD, identifying guidance doc-

uments and sources in the grey literature available to disease managers. In order to review the

empirical evidence for these management practices for the KFD system, we conducted a litera-

ture search for the search term “KYASANUR” using Web of Science and PubMed for peer-

reviewed literature and discussed with key stakeholders to ensure that further grey literature

was not missed. In order to identify literature pertaining to the ecological evidence underpin-

ning management practices for tick control for the main tick species involved in KFD
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transmission, we also conducted searches for “HAEMAPHYSALIS AND INDIA.” Where

there was no direct empirical evidence for a specific management practice impacting on KFD

orHaemaphysalis tick vectors, we searched for additional evidence from other tick-borne

infections, for example, from well-studied systems such as Lyme disease. However, a full

review of topics, for example, repellent and acaricide efficacy, was beyond the scope of this

paper. Therefore, searches via PubMed and Web of Science were made primarily for review

papers on specific topics. Search terms used to identify literature are provided in Table 1.

Some recommended management practices, such as wearing protective clothing and washing

of clothes to remove ticks, are well-accepted interventions that are endorsed by global health

bodies such as the World Health Organization (WHO), and we cite such web pages where

appropriate (Table A in S1 Appendix).

We supplemented the review of documents and published literature on KFD management

with a series of key informant interviews to ascertain views and experiences with KFD surveil-

lance and control. Interviews were conducted (between July and August 2019) with district

and taluk public health managers (N = 11) from Shivamogga headquarters, Sagar and Thirtha-

halli taluks in Karnataka, directly responsible for KFD management. The selection of inter-

viewees was based on purposive and snowball sampling, which are advantageous techniques in

situations where existing networks of relevant people are lacking. Purposeful sampling identi-

fies a key set of people with the relevant expertise and/or experience to provide information

and insights on the topic. Snowball sampling then broadens the net of potential interviewees

when further relevant people are identified by the interviewees from the purposive sampling.

Interviews were conducted in Kannada or English based on participant preference and were

transcribed and analysed using an open thematic coding approach [49]. In addition, we also

collated and analysed messages shared on our MonkeyFeverRisk WhatsApp platform, a group

numbering 121 participants set up in 2018 at the request of our stakeholders to facilitate

knowledge exchange on KFD between researchers and practitioners working in different sec-

tors and affected areas. The messages reported here were specific questions posed to research-

ers by participants about KFD management that illustrated evidence and knowledge gaps

about how environmental or wildlife management aligns with KFD management guidance

(Table C in S1 Appendix). For the interview data, identified patterns and contradictions from

the data were coded and organised into emergent themes. These themes were reviewed to

ensure they accurately reflected the meanings evident in the data. The initial findings were

noted and subsequently compared with the document review (of current management prac-

tices) based on which recommendations for effective and integrated management are made

[50]. Participation was voluntary, and interviewees gave their full prior informed verbal

Table 1. Search terms used to identify literature in Web of Science and PubMed providing empirical evidence for

disease ecology and transmission of KFD and for the effectiveness of current management recommendations.

Search term(s) Number of citations identified

KYASANUR 257

HAEMAPHYSALIS AND INDIA 108

REPELLENT AND TICK AND REVIEW AND EFFICACY 32

ACARICIDE AND TICK AND REVIEW AND EFFICACY 46

VEGETATION AND TICK AND BURNING 19

CLOTHES AND WASHING AND TICK 21

CLOTHES AND PROTECTIVE AND TICK 166

KFD, Kyasanur Forest Disease.

https://doi.org/10.1371/journal.pntd.0009243.t001
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consent before the conduct of the interviews, which lasted between 30 and 45 minutes. The

interview data were anonymised to protect the confidentiality of participants. Table A in S1

Appendix outlines the main themes and exemplar quotes identified through the key informant

interviews, and Table B in S1 Appendix identifies key informants.

We extended the framework of Sokolow and colleagues [10] to consider additional barriers

that operate for vector-borne zoonotic diseases compared to those that are directly transmit-

ted. Vector-borne pathogens not only have to evade the immune systems of reservoir hosts

and humans to effect spillover, but also have to overcome several tissue barriers and immune

responses within the body of the arthropod vector in order to survive and replicate to trans-

missible levels (see review by [51]). A key prerequisite for spillover of vector-borne zoonotic

pathogens is that their arthropod vectors are sufficiently abundant, widespread [52], and over-

lap in the same habitat with key reservoirs and with people [53]. Furthermore, spillover host

exposure depends on how human activities within the ecosystem interface with vector and res-

ervoir host habitats and behaviour [54] and whether vectors prefer to bite both people and res-

ervoirs [55]. We then mapped the existing key management recommendations identified from

our review onto our new extended framework for vector-borne zoonoses.

We summarised our overall assessment of the validity of current management practices by

scoring each recommendation using separate traffic light scales for the degree of empirical

support and management effectiveness. For assessment of empirical support, red indicates no

or poor support; amber indicates some support from observations and laboratory studies but

lacking rigorous empirical data in a field setting; and green indicates good empirical support

including rigorous empirical field data. For management effectiveness, red indicates that the

management practice is unlikely to significantly reduce human cases of KFD; amber indicates

that it is unknown whether the management practice will reduce human cases; and green indi-

cates that the management practice will reduce human cases of KFD. Our proposed research

and surveillance priorities were targeted at addressing knowledge gaps (a) to improve the exist-

ing management practices (short-term priorities); or (b) to allow more integrated or ecological

interventions to be implemented in the future (long-term fundamental research priorities).

Results

The review of existing management practices and supporting empirical evidence for KFD

identified 257 sources based on the keywords “KYASANUR” and an additional 67 sources

(108 citations identified in total) based on the keywords “HAEMAPHYSALIS AND INDIA”

(Table 1). The numbers of citations pertaining to reviews of topics where empirical informa-

tion was not specifically available for the KFD system are provided in Table 1. Two key guid-

ance documents detailing existing management recommendations for KFD were identified by

stakeholders in the grey literature, originating from the public health sector, namely the Indian

National Centre for Disease Control and the Department of Health and Family Welfare Ser-

vices, Government of Karnataka (DHFWS), a guidance bulletin [56] and a manual on KFD

[57]. Full details of the review of empirical support for current management practices recom-

mended for preventing human cases of KFD in the Western Ghats area of India are given in

Table A in S1 Appendix. Although Table A is not included in the main text of the paper due to

space constraints, we hope this detailed table will provide a key reference document for practi-

tioners involved in KFD management. Table 2 summarises current management practices,

indicating that many of the current management interventions are not well supported by

empirical evidence. Of the 15 management recommendations identified, only 5 had sufficient

empirical support pertinent to KFD, with a further 2 supported by empirical evidence from

other disease systems (green on the traffic light assessments). Moreover, evidence was not
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Table 2. Overall assessment of the validity of current management practices for KFD.

Current management

recommendations for KFDV

Local

empirical

evidence

Evidence

from other

systems

Rationale for evidence

score

Effectiveness of

management

practice

Rationale for effectiveness

assessment

Recommendation

PPMs should be taken (long

clothes covering neck, chest,

back, and legs) before going to

the forest

Green Green Good evidence from

multiple systems that

PPMs can reduce tick

bites

Amber Only effective in

conjunction with

application of effective

repellents, washing the

clothes and body, and

effective checking and

removal of attached ticks

PPMs should be

recommended for any activity

where persons may brush

against vegetation that may

harbour ticks, not just forests,

and should include covering

the feet and tucking in clothes

People living in the forest or

visiting forest areas should use

tick repellents (DMP oil,

DEET, or local herbs) before

going to the forest.

Permethrin-based repellents

should be used on clothing

Amber Green Good evidence that

repellents prevent tick

bites, but efficacy of

locally available repellents

may be poor or untested

Amber Locally available repellents

may have poor efficacy.

Only effective in

conjunction with

appropriate clothing,

washing the clothes and

body, and effective

checking and removal of

attached ticks

Recommend applying

repellents during any activity

where persons may brush

through vegetation that may

harbour ticks, not just forests,

and guidance on reapplying

repellents regularly

People should wash their

clothes and body with hot

water and soap after returning

from the forest

Amber Green Good evidence from

other systems that

washing can remove

unattached ticks, but

more limited local

evidence and people use

cold water

Amber Only effective in

conjunction with wearing

of appropriate clothing,

application of effective

repellents, and effective

checking and removal of

attached ticks

Recommend that additional

education is needed to inform

people that washing alone will

not remove attached ticks

from the body

The spraying of insecticide

(malathion) may be carried out

in areas where monkey deaths

have been reported within a

radius of 50 feet around the

location of the monkey death.

It is also effective on forest

tracks frequently visited by

people for various activities

Red Amber May be effective over the

area of spraying in the

short term but

effectiveness untested

locally and little known

about resistance

Red Infected ticks likely to be

found across broader

habitats associated with

monkey deaths so spraying

a small area is likely

ineffective. Malathion

resistance may be

problematic

Not recommended without

empirical evidence of

effectiveness and better

knowledge of the scale of

infection risk

Application/injection of

insecticide on/into cattle can

prevent ticks and the

transportation of ticks from

forests to dwelling premises

Amber Amber Acaricides can be effective

at lessening tick burden

on livestock (although

caution needed due to

resistance), but no

evidence that they prevent

tick movements

Red May well prevent tick

movements but no

empirical evidence that

cattle are associated with

higher prevalence of

human KFDV cases.

Untested whether cattle

might operate as diluting

hosts for KFDV

Need more evidence before

recommending as KFDV

preventative measure but

need to consider prevention

of other tick transmitted

infections too

Controlled burning of the dry

leaves and bushes in the forest

boundaries, premises of

human habitats

Red Amber Conflicting evidence

about the temporal scale

over which this lowers

tick abundance, lack of

data on whether forests

are main KFDV-risky

habitat

Red Unclear whether this may

increase tick abundance in

the longer term

Not recommended without

empirical evidence of

effectiveness and better

knowledge of the scale of

KFDV infection risk

Burning of monkey carcass Red Red No empirical support that

dying or dead monkeys

create hotspots of infected

ticks

Red Infected ticks likely to be

found across broader

habitats and burning

monkey carcass unlikely to

be important for

preventing KFD

Recommended as is a good

way of disposal of carcasses

which may pose a general risk

to human health through

disease transmission from

bodily fluids. Robust

postmortems and sample

collection protocols needed

prior to burning

(Continued)
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Table 2. (Continued)

Current management

recommendations for KFDV

Local

empirical

evidence

Evidence

from other

systems

Rationale for evidence

score

Effectiveness of

management

practice

Rationale for effectiveness

assessment

Recommendation

Vaccination of people within a

5-km radius of cases

Green Green Substantial evidence that

vaccination reduces

human cases of KFDV

Amber Vaccine efficacy and

formulation needs to be

improved. Vaccine uptake

is poor as administration is

painful, requires 3 initial

doses, and annual boosters

to confer immunity.

Modelling is needed to

optimise the spatial scale

over which vaccination is

targeted

Urgent need for a more

effective vaccine with fewer

doses required and better

education to increase uptake.

Need better understanding of

the scale at which risk

operates

Educate the villagers to avoid

the forests areas where

monkeys have died. Don’t visit

the area where recent monkey

death has been reported,

especially an area where case of

KFDV has been reported in

the past

Amber Evidence that monkeys

may act as sentinels of

human disease but poor

empirical evidence over

the mechanism and

spatial scaling

Amber If monkeys are effective

sentinels then avoiding

forests may help prevent

human cases

Need better empirical

evidence of tick habitat

associations and better

knowledge of the scale of

infection risk. Education

needed on effective PPM and

risk associated with brushing

against vegetation, not just in

forests

Don’t bring the leaves of trees

from KFDV-infected area to

the village for cattle bedding

material

Amber Ticks have been found in

leaf litter but survival

times in such litter are

unknown

Amber May prevent the spread of

infected ticks but need for

better empirical evidence.

Alternative sources of

bedding may not be

available

Need better empirical testing

of the risks posed by leaf

collection from different

habitats, and the levels of tick

infestation in leaf litter used

for animal fodder and

bedding. Also need more

education on appropriate

PPM

Don’t handle the infected

monkey carcass by bare hand

without personal protective

equipment

Amber Amber Good evidence from

multiple systems that

protective clothing can

reduce tick bites but

needs to be more than

wearing gloves

Amber Only effective in

conjunction with

application of effective

repellents, washing the

clothes and body, and

effective checking and

removal of attached ticks.

Needs to be undertaken

not just when handling

monkey carcasses

Monkeys should not be

handled by members of the

public. PPM should be

recommended for any activity

where persons may brush

against vegetation that may

harbour ticks, not just when

handling monkeys

Highlighting risky activities:

for example, to not sit on the

ground or in bushy areas of the

forest

Amber Amber Evidence that ticks move

onto humans when they

brush against vegetation,

some species actively

quest. Limited empirical

quantification of questing

behaviour in vectors

associated with KFDV in

the wild and of the risk

associated with different

habitats and human

activities

Amber Difficult to judge

effectiveness without

further empirical data on

how activities in different

habitats increase KFD risk

and on tick habitat

associations. Emphasis

should not just be on

forests without better

empirical data on risk

Reasonable to keep

recommendation but to

expand to be aware that risk

of ticks may occur in habitats

other than forests and that

effective PPM, use of

repellents, and checking for

ticks are essential

Human disease surveillance:

surveillance of fever cases

between December and May

with sera screened for KFDV

antibodies in order to target

vaccination

Green Green Surveillance is a useful

way of monitoring past

and present spillover

Amber Surveillance needs to be

undertaken strategically

across areas both within

and out with the historical

KFD regions

Recommended but

improvements could be made

to how surveillance effort is

targeted

(Continued)
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deemed robust enough to designate any of the management practices as being highly effective,

with all 15 measures being assessed as red or amber on the traffic light scale. Below, in the dis-

cussion, we summarise the validity of current KFD intervention measures and identify knowl-

edge gaps and research priorities. We also map these research priorities onto the hierarchical

barriers framework (see Table 3).

Fig 1 indicates how current management recommendations for KFD in India align with the

hierarchical barriers to human spillover identified in our extended framework for vector-

borne diseases. From this, it is clear that current recommendations are conventional interven-

tions largely focused on humans as the spillover host: (i) reducing exposure through commu-

nity education and tick bite prevention; and (ii) reducing the number and severity of cases in

humans through vaccination. Measures for reducing tick populations at perceived infection

hotspots and monitoring disease events in monkeys as a sentinel vertebrate host are also

encompassed in existing government KFD management recommendations.

Finally, the experiences and views of disease managers in implementing and engaging with

local communities on specific current recommended management practices are summarised

in Table B in S1 Appendix.

Table 2. (Continued)

Current management

recommendations for KFDV

Local

empirical

evidence

Evidence

from other

systems

Rationale for evidence

score

Effectiveness of

management

practice

Rationale for effectiveness

assessment

Recommendation

Tick surveillance: surveillance

is undertaken within 5 km of

areas where human cases were

recorded in the previous year

(for up to 5 years) or within 5

km of areas with current

monkey deaths. Surveillance is

not undertaken if current

human cases are recorded

Green Green Surveillance of ticks can

be an effective way of

monitoring past and

present spillover

Amber Effectiveness difficult to

judge without better

empirical knowledge of

KFDV infection–tick–

host–habitat associations

so that surveillance can be

effectively targeted.

Surveillance needs to be

undertaken strategically

across areas both within

and out with the historical

KFD regions with more

systematic sampling of

habitats and across seasons

Valuable management tool.

Needs better underpinning by

empirical evidence to enable

better targeting of habitats

and seasonality. Need

additional information on

hosts to be able to determine

best surveillance strategies in

terms of habitats and spatial

scale and hosts (e.g., rodents)

to target

Monkey disease surveillance:

testing of dead and dying

monkeys for KFDV infection

Green Green Monkeys are known to be

amplifying hosts for the

virus so are useful

sentinels that may give

warning of impending

human infections

Amber Stratified proactive

sampling of monkeys is not

undertaken, just reactive

sampling of dead or dying

monkeys

More stratified sampling of

monkey blood for both

antibodies and active

infection with KFDV at

sentinel sites. Better education

about reporting dying/dead

monkeys and faster response

and sampling of monkeys and

sampling for ticks around

carcasses and the broader

environment are

recommended

Empirical support underpinning each management recommendation are assessed based on a traffic light scale at both the local level (Western Ghats of India for KFD)

and also at a more global scale if evidence for this management being effective has been observed in other tick-borne disease systems (left blank if not applicable). Red

indicates no or poor support; amber indicates some support from observations and laboratory studies but lacking rigorous empirical data in a field setting; and green

indicates good support including rigorous empirical field data. Management effectiveness was also scored on a traffic light scale: Red indicates that the management

practice is unlikely to significantly reduce human cases of KFD; amber indicates that it is unknown whether the management practice will reduce human cases; and

green indicates that the management practice will reduce human cases of KFD.

DMP, dimethyl phthalate; KFD, Kyasanur Forest Disease; KFDV, Kyasanur Forest Disease Virus; PPM, personal protection measure.

https://doi.org/10.1371/journal.pntd.0009243.t002
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Table 3. Key research priorities under each of the barriers that could be targeted to prevent KFD spillover to humans (Fig 1) and how these would inform and

improve existing management strategies (a) and facilitate the development and future implementation of integrated, ecological interventions in the long term (b).

Research priority (a) Refines current management or

surveillance (short term)

(b) Facilitates future ecological

interventions (long term)

Barrier: Preventing tick bites on people through personal protective measures

1. Systematically review and test the efficacy of natural repellents being used against ticks

by people in the Western Ghats alongside chemical repellents recommended by the

Indian Government and by WHO

X

2. Develop standard assays, including in vivo and in vitro toxicity tests, to assess safety

and efficacy of repellents in the laboratory and under field conditions against local tick

vector species

X X

3. Determine whether ticks survive washing and drying of clothes and then pose a risk to

humans through rigorous experiments with different washing and drying regimes

X

Barrier: Vector density, distribution, habitats, and behaviour

4. Quantify abundance and infection rates of tick vector species across different habitats

within the agroforest mosaic (integrate into stratified tick surveillance)

X X

5. Determine whether cattle are amplifying and spreading tick species or acting to dilute

infection by comparing tick burdens and KFDV infection rates on cattle, wildlife hosts,

and people, in settings varying in host densities

X X

6. Quantify abundance and infection rates of ticks found in different types of dry leaf

litter, used for animal fodder and bedding, under different treatments in villages

X X

Barrier: Vector host associations: Contact rates with people

7. Quantify effectiveness of different acaricide formulations, doses, and frequencies of

application in reducing tick burdens on cattle, for those species involved in KFDV

transmission and for natural as well as chemical repellents

X

8. Determine whether acaricide resistance is widespread in tick populations in India, in

tick species involved in KFDV transmission, for acaricides applied both to animals and to

the habitat

X

Barrier: Human activities in ecosystems

9. Quantify rate of contact between people and ticks during different activities in and

around the forest

X X

Barrier: Pathogen prevalence, infection intensity in reservoirs, and pathogen availability to vectors

10. Determine role of dead and dying monkeys in generating hotspots of transmission:

quantify burdens, age structure, feeding history, and infection rates of ticks found on dead

and dying monkeys, small mammals, and nearby habitats and people at the same time as

measuring host infection levels

X X

11. Determine role of live monkeys in transmission through infection of larvae via

systemic circulation and/or supporting co-feeding between nymphs and larvae: quantify

burdens, age structure, feeding history (via blood meal analysis), and infection rates of

ticks found on live monkeys, small mammals, and nearby habitats and people at the same

time as measuring host infection levels

X

12. Determine role of small mammals in transmission through infection of larvae via

systemic circulation and/or supporting co-feeding between nymphs and larvae: quantify

burdens, age structure, feeding history, and infection rates of ticks found on live monkeys,

small mammals, and nearby habitats and people

X

13. Determine whether sequence data can be used to elucidate spatial and temporal

diversity in KFD, whether such diversity is linked to vector or hosts, and to infer spatial

movement of KFD in order to better understand transmission and spatial scale of risk

X

Barrier: Reservoir density, distribution, habitats, and behaviour

14. If monkeys are confirmed as important amplifying hosts for KFDV and contributing

to transmission risk via infected ticks to humans, quantify their habitat associations,

movement rates, and interactions with people across agroforest landscapes

X X

15. If small mammals are confirmed as important reservoirs for KFDV and contribute to

transmission to humans, quantify their habitat associations, movement rates, and

interactions with people across agroforest landscapes

X X

Barrier: Susceptibility of spillover host

(Continued)
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Discussion

Preventing tick bites on people through protective measures

Recommended protective measures, such as wearing long clothing during visits to the forest,

application of tick repellents to the body and clothing, and washing the body and clothing after

returning from the forest, are supported as being effective for preventing tick bites by robust

empirical data from other tick-borne disease systems (refs in Table A in S1 Appendix). These

measures are endorsed by health organisations such as WHO. However, there is limited empiri-

cal data for the KFD system, particularly around the effectiveness of locally available repellents,

leading to the identification of several short-term research priorities (Table 3). Indeed, there is

an urgent need to systematically review the natural repellents currently used by people in the

Western Ghats [58] and test their efficacy compared to repellents recommended and distributed

by the Indian Government (DHFWS), primarily dimethyl phthalate (DMP) oil, or those recom-

mended by the WHO (Priority 1, Table 3). Natural repellents such as Malabar catmint Anisome-
les malabarica have good efficacy againstHaemaphysalis bispinosa ticks [59] but have not been

tested robustly onH. spinigera and other known KFDV vectors. Numerous studies have

assessed repellence of natural remedies and report variation in efficacy between vector species

(reviewed in [60–62]), but comparisons between studies are hampered by a lack of robust stan-

dardised tests [60,63]. Standardised assays are needed (Priority 2), including toxicity tests (via in

vivo and in vitro methods [63,64]), to assess safety and tick repellent efficacy of substances in

laboratory and field conditions against tick species relevant to KFDV transmission. Such testing

would require development of a bioassay facility in which pathogen-free colonies of potential

tick vector species in the Western Ghats can be reared. Furthermore, rigorous experiments are

needed (Priority 3) to determine whether ticks survive washing of clothes, whether such ticks

pose a risk to humans if they then drop off clothes that are being dried in the environment

around houses, and for what length of time clothes need to be hung up outside under different

conditions before they are free of ticks and safe to be worn again.

Current management recommendations and surveillance strategies assume that people

only need to protect themselves from exposure to infected ticks within forests. There is some

empirical support that forests support tick species implicated in KFDV transmission [65].

However, evidence from other (sylvatic) tick-borne disease systems indicates that fragmented

and ecotonal habitats at the interface with human habitation may pose a risk of infection to

humans, due to such habitats supporting reservoir hosts or substantial densities of infected

vectors [66–69]. Other habitats featuring in the agroforest landscape mosaic of the Western

Ghats, such as fallow land, paddy, and plantation, may also pose a risk, but there is little

Table 3. (Continued)

Research priority (a) Refines current management or

surveillance (short term)

(b) Facilitates future ecological

interventions (long term)

16. Investigate social and cultural barriers to uptake of the current and potential future

improved vaccines across the range of affected communities in South India

17. Test the efficacy in inducing protective immunity and assess duration of

immunoprotection for the current vaccine

18. Investigate the potential efficacy of novel vaccines and alternative vaccines such as

those available for closely related viral infections

19. Develop correlative and mechanistic predictive models of social, environmental, and

ecological factors influencing spillover to better target vaccination and surveillance in the

landscape

KFD, Kyasanur Forest Disease; KFDV, Kyasanur Forest Disease Virus; WHO, World Health Organization.

https://doi.org/10.1371/journal.pntd.0009243.t003
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empirical evidence on comparative densities of vectors and hosts in these habitats. A key

research priority therefore (Priority 4, Table 3) is to quantify the abundance and infection

rates of different tick vector species across a broad spectrum of habitats within agroforest

mosaics, including human habitation, to understand how risk of exposure to infected ticks

extends out from forests. Results of such empirical research in 2 affected districts in the West-

ern Ghats is forthcoming from the MonkeyFeverRisk project of which this evaluation of man-

agement strategies is a part (https://www.monkeyfeverrisk.ceh.ac.uk/). Current tick

surveillance simply targets forests [65], but stratified tick surveillance sampling and analysis by

habitats and season could be integrated into the routine tick surveillance.

Overall, we recommend a new integrated approach at the local community level to prevent

KFDV infection from tick bites. For example, current guidance on the use of protective cloth-

ing fails to include the need to cover up the feet and does not give guidance on the importance

of regular full body checks for attached ticks or advice on how to promptly and effectively

remove these ticks (Table 3). Educational leaflets and videos should be developed jointly

between the health department and local communities that give guidance on best practice for

preventing tick bites and removing ticks (recent community guidance material has focused on

disease symptoms and vaccination and less on tick bite prevention) while also taking account

of potential trade-offs between recommendations and community livelihood and health prior-

ities (Tables A and B in S1 Appendix). Indeed, as part of our MonkeyFeverRisk project, we

have codeveloped such community guidance in local languages (Kannada and Malayalam;

education materials can be accessed here: https://www.monkeyfeverrisk.ceh.ac.uk/kfd).

Preventing tick spread by cattle through protective measures

Existing management guidance recommends the application of acaricides to reduce tick loads

on cattle and to prevent transportation of ticks from forests to areas of human habitation

(Table A in S1 Appendix, Table 2). Cattle do support high numbers of ticks, including adult

ticks andH. spinigera (the putative main vector species), although the tick species most com-

monly found on cattle have not yet been incriminated in the KFDV transmission cycle [44,45].

Hence, cattle may act both as an amplifier of tick numbers and as a disperser of ticks between

habitats. Moreover, correlative modelling found that the spatial risk of human KFD cases was

associated with the density of cattle in areas long-affected by KFD [70]. A human case–control

study from the 2011 to 2012 KFD outbreak also identified handling of cattle as a significant

risk factor for infection [35]. Conversely, cattle may act to dilute infection, since they do not

show systemic infection with KFDV [42,43]. There is evidence from other tick-borne disease

systems that increased density of ungulate hosts, which can amplify ticks but do not have sys-

temic infection, may dilute pathogen transmission by diverting tick bites from competent

hosts [71,72]. Although cattle grazing is small scale in the Western Ghats, with small numbers

of cattle owned by local households (mean 2.5 per household (range 0 to 15, n = 229) from our

MonkeyFeverRisk household survey data), there is also potential that cattle grazing may alter

habitat composition and reduce or increase habitat suitability for ticks. Resolving these con-

trasting potential roles of cattle in KFDV transmission, by comparing the abundance, compo-

sition, and infection rates of ticks between cattle, wildlife hosts, and people, in varying

ecological settings is therefore an urgent research priority (Priority 5, Table 3).

It is clear from the experiences of disease managers (Table A in S1 Appendix) that farmers

cannot always exclude cattle from forests to avoid tick exposure, since the resulting shortages

of fodder can lead to animal health and livelihood impacts. This highlights the imperative to

identify effective personal protective measures for animals and people that cannot avoid the

forests. Depending on resistance, acaricides are effective at reducing tick burdens on livestock,
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which may act as vectors for a range of diseases [73]. Such tick-borne infections have signifi-

cant impacts on the livelihoods of poor farming communities in tropical areas by decreasing

output of animal products, including manure which contributes to crop production loss [74–

76]. Therefore, although the role of cattle in KFD dynamics is unclear, current management

practices may prevent transmission of other significant mite- or tick-borne diseases of animals

and humans which are known to be present in KFD-affected areas, including scrub typhus,

Lyme disease, Indian tick typhus, babesiosis, theileriosis, and anaplasmosis [76–80]. Regard-

less, further testing of the effectiveness of different formulations of acaricides, including opti-

mal doses and frequency of application, is needed, including for natural repellents that may be

more readily available and commonly used within Western Ghats communities (Priority 7,

Table 3). It is also essential to ascertain whether resistance against acaricides that are com-

monly applied both to animals and to the habitat is widespread in tick populations in India,

particularly in tick species involved in KFDV transmission (see review in [81]; Priority 8).

Avoidance of human activities

Several of the current management recommendations for KFD seek to reduce human expo-

sure by setting out activities that should be avoided (Table A in S1 Appendix, Table 2). These

include avoiding visiting forests where monkeys have died (see next section), not sitting or

lying on the ground or in bushy areas of forest, and avoiding bringing dry leaves into villages.

Dry leaf litter is important not only for animal bedding and fodder but also for fertilising crops

where alternatives are not available [82], and the importance of this practice constituted a key

theme of questions from disease managers (Table D in S1 Appendix). Although correlative

modelling suggests that the presence of piles of dry leaves around the compounds of the house

was associated with human disease cases [35], empirical data are needed on the abundance,

infection rates, and survival of ticks found in different types of dry leaf litter, used for animal

fodder and bedding, and subject to different treatments in villages (Priority 6, Table 3). More

generally, the rate of contact between people and ticks during different activities in and around

the forest should be quantified (Priority 9, Table 3) to obtain a clearer picture of which activi-

ties cause highest exposure ([83]; https://www.monkeyfeverrisk.ceh.ac.uk/).

Measures to reduce density and distribution of infected ticks

The measures currently recommended to reduce the density and distribution of infected ticks

include controlled burning of dry leaves and bushes in forests and around houses; dusting of insec-

ticide (malathion) within 50 feet of a monkey carcass; and burning of monkey carcasses. There are

no studies of the impacts of controlled burning regimes on potential tick vectors of KFDV in

India. Evidence from other disease systems shows that burning can both reduce or increase tick

abundance and infection rates and that impacts may vary with burning regimes, time, and with

complex local responses of hosts, vectors, and vegetation [84,85]. Experimental investigations of

the impacts of burning regimes on densities of infected nymphal ticks and their contact rates with

people over short and long timescales should be conducted in the Western Ghats.

Although infected monkey carcasses may pose a risk to human health through potential

direct transmission of infections via contaminated bodily fluids, burning of monkey carcasses

and habitat to reduce infected tick densities are perhaps the least supported by empirical evi-

dence among all the recommendations for KFD management and are the least likely to be

effective at reducing human cases. The latter 2 measures are predicated on the assumption that

humans become exposed to infected nymphal ticks mainly at hotspots around monkey deaths.

Although it seems very unlikely that only the immediate area around a dead or dying infected

monkey supports high density of KFDV-infected partially fed ticks or fully fed larvae (which
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would then feed again as nymphs after moulting) that may pass infection to humans, this should

be confirmed empirically. The measures further assume that insecticide or burning will kill

these partially fed ticks before they bite people (Table A in S1 Appendix). KFDV-infected mon-

keys are known to have high titres of virus [86] and are likely to bear infected ticks. Although

partially fed nymphs have been found in areas around monkey carcasses [87] and engorged

ticks have been observed to move up to 30 cm [88], no empirical data exist showing that suc-

cessful interrupted feeding (intra-stadial feeding) occurs in tick species commonly found to

transmit KFDV in the wild. In other tick-borne disease systems, ticks generally feed on only 1

host in each of their life stages [89]. Interrupted feeding has very rarely been recorded and most

often under laboratory conditions and in Rhipicephalus spp. where male ticks actively seek

female ticks with which to mate [90,91]. Experimental transmission studies on partially fed ticks

collected from areas close to monkey deaths suggest that these have limited potential to transmit

virus by feeding on a second host [87]. Thus, although dead KFDV–positive monkeys undoubt-

edly indicate ongoing KFDV transmission in an area, there is no direct evidence that locations

of monkey deaths are hotspots of host-seeking infected ticks, compared to surrounding areas of

habitat where monkeys or small mammal hosts have spent time. Moreover, evidence is building

of malathion resistance in tick populations and off-target effects on human and animal health,

such as increased cancer risk, elsewhere in India (Priority 8, Table 2; [92–94]).

The confusion surrounding the role that monkeys play in KFDV transmission, compared

to alternative small mammal hosts, highlights the need for fundamental ecological research.

Priority should be given to quantifying the tick burden on dead and dying monkeys, assessing

the number, species composition, life stage, and KFDV infection rate of these attached ticks, as

well as determining the number, KFDV infection rate, and blood meal identity [95] of ticks

sampled from the habitat or off people near the monkey death site (Priority 10, Table 3). It also

needs to be ascertained whether and how quickly partially fed ticks begin to quest, the dis-

tances they can cover, and the survival rates of non-questing partially fed nymphs and larvae

that moult to the next life stage (Priority 10, Table 3).

Sampling of ticks from monkeys, small mammals, and people over a more diverse range of

habitats would indicate whether monkeys are sentinels of infection or whether they contribute

to KFDV transmission across broader spatial scales, by the systemic infection of large numbers

of larvae or via co-feeding (transmission between larvae and nymphs feeding in close proxim-

ity; Priority 11, Table 3). Although small mammals are neglected completely in current man-

agement recommendations, given their central role in amplifying transmission in other tick-

borne systems through processes such as co-feeding [96], it is equally important to clarify their

role in the KFDV transmission, by sampling them in similar ways alongside monkeys and

humans (Priority 12, Table 3). If small mammals and monkeys are confirmed as being impor-

tant reservoirs and amplifying hosts for KFDV, then empirical data on their movements and

habitat associations are required in order to quantify how far they tend to travel in the land-

scape (when healthy or sick for monkeys), in which habitats they interact with people and

ticks, and the predictability of their movements in time and space (Priority 14 and 15,

Table 3). This is vital for matching the scale of surveillance, awareness raising, and vaccination

to the scale over which spillover from monkeys or small mammals occurs.

Phylodynamic approaches may be particularly promising for improving the understanding

of KFD transmission. As an RNA virus, KFDV is characterised by rapid rates of molecular evo-

lution [97,98]. Nucleotide sequence data can be used to identify genetic variation between

virus population samples in time and space, infer transmission pathways, and identify dis-

persal and broad scale movements of pathogens between areas, offering new opportunities for

elucidating the scale of KFD risk and understanding human spillover (Priority 13, Table 2;

[99,100]). Moreover, assessment of the genetic diversity of KFDV strains would greatly
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facilitate the development of more effective vaccines (Priority 18, Table 3), as the existing vac-

cine, developed using virus isolates from the 1960s, may have reduced efficacy against more

modern strains, as has been shown for other viruses [101].

Measures to reduce susceptibility of people as the spillover host

A formalin-inactivated tissue culture vaccine has been used in Karnataka since 1990 [35]. The

strategy of vaccinating people within a certain radius of known cases or circulation of KFDV

in ticks or monkeys is well underpinned by evidence, and this vaccine is known to give protec-

tion against KFD if the correct dose procedure is followed [102,103]. However, duration of

immunity from the vaccine is short, requiring multiple repeated doses, and acceptance of the

vaccine and coverage rates has been poor in some areas [34,35,102], hampered by limited sea-

sonal vaccine availability and due to social and cultural factors that need to be further investi-

gated ([104,105]; Priority 15, Table 2). This highlights the importance and urgency in

developing complementary disease prevention measures alongside vaccination that follow the

new framework for disease prevention set out in Fig 1. In recent years, there is also some evi-

dence that vaccine efficacy was reduced compared to previously [34,102], necessitating robust

testing of efficacy and duration of protection offered by the current vaccine (Priority 17,

Table 3) and parallel development of novel or alternative vaccines for closely related viruses

which may offer cross-immunity [106] (Priority 18, Table 3).

Surveillance in people, ticks, and monkeys to inform interventions

Finally, the current human case surveillance that underpins KFD management is well justified

by empirical evidence. Human cases tend to be clustered, and surveillance of human fever

cases, recommended to take place between December and May with screening for both virus

(by reverse transcription PCR [RT-PCR]) and antibody presence (by ELISA), has been effec-

tive in directing vaccination campaigns [34]. Given the shifting pattern of KFD cases, with

new geographical hotspots identified each year [107], we additionally recommend that fever

case surveillance and serological surveys should be adopted in areas beyond the current

known range of KFD cases in order to map the distribution of KFD [40] and predict disease

spillover in new areas. However, serological surveys are likely to be more costly than those tar-

geting fever cases. Targeting of human surveillance can again be guided by predictive models

(Priority 19, Table 3), as is already happening in Karnataka [70] but also by detailed case–con-

trol surveys that can identify high risk livelihood groups and activities (cf. [35]).

Tick surveillance can be an effective way of predicting spillover, as demonstrated in other

systems [108,109], and is valuable locally to monitor persistence of KFDV transmission over

time. However, as mentioned above, tick surveillance methods could be more standardised,

rigorous, and stratified by habitat (extending beyond forests) to build knowledge of tick vector

habitat associations (Priority 4, Table 3) to improve targeting of subsequent interventions and

surveillance. As with human surveillance, it should routinely encompass areas beyond the cur-

rent front of human KFD cases. Similarly, monkey surveillance is currently implemented

through passive sampling of dead and dying monkeys, and it is restricted to areas where

resources are available and awareness of KFD is high (Table A in S1 Appendix). The coverage

and value of this passive sampling could be extended by improving education on the impor-

tance of reporting dead and dying monkeys (perhaps providing smartphone-based app tech-

nology to facilitate such reporting), allowing standardised postmortems and tick sampling

around monkey death sites to be carried out more rapidly than is current practice. Addition-

ally, consideration could also be given to targeting small mammal maintenance hosts in future

surveillance programmes. However, small mammal surveillance is likely to be time-
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consuming, infection duration is short lived, and high effort is needed to sample enough indi-

viduals to robustly estimate infection prevalence. Such surveillance programmes may be more

achievable with improved empirical understanding of maintenance host species in order to

hone selection of target species and habitats.

Overall conclusions

Using the tick-borne KFD in India as a case study, we demonstrate how a novel barriers frame-

work ([10,14], Fig 1) can be applied to evaluate the evidence base for current management

practices for reducing zoonotic disease spillover. This approach is particularly powerful for

KFD, and indeed for other neglected zoonoses such as scrub typhus and leptospirosis in India

and other lower middle-income countries, where ecological and social evidence underpinning

management strategies is outdated or lacking altogether. We show how this framework can be

used to critically evaluate existing disease mitigation measures and focus recommendations for

their improvement, identify knowledge gaps and priority areas for research, and highlight

potential opportunities for new interventions.

Current management guidance for reducing the risk of human KFD primarily focuses on

conventional practices to reduce human exposure and susceptibility to infection, mainly tar-

geting the final, human barriers to spillover (Fig 1). Primary recommendations are for the use

of repellents in conjunction with advice for avoiding potentially risky habitats and activities

and a targeted vaccination strategy. However, our review clearly highlights the lack of robust,

current empirical knowledge on the ecological and social factors leading to human cases of

KFD, thus precluding the future development of a broader suite of management interventions,

such as ecological interventions. This lack of empirical evidence also means that the effective-

ness of current management recommendations is questionable. In particular, the role of cattle

and primates in KFDV dynamics is not well understood (Table 2, Table B in S1 Appendix).

Thus, management practices such as burning monkey carcasses, malathion spraying, and con-

trolled burning of vegetation around the sites of monkey deaths are particularly unfounded.

Such practices are predicated on the untested assumption that monkey deaths reflect localised

hotspots of transmission, as opposed to monkeys being sentinels that indicate KFDV preva-

lence in the area and more widespread transmission in a range of alternative hosts. Some of

the current guidance can be improved based on available evidence, and we suggest detailed

ways of doing this in Table A in S1 Appendix. Improved ecological understanding of KFD dis-

ease dynamics has the potential to lead to a broader and more economical suite of potential

interventions that target vector or reservoir hosts and which are more effective in the longer

term at reducing human spillover [10]. Indeed, even in similarly complex, but well-studied

multi-host tick-borne infections such as Lyme disease, interventions that target nonhuman

hosts are possible: There is evidence that oral bait vaccines that target rodent reservoir hosts

are effective at reducing the density of infected nymphs [110–112]. Entomopathogenic fungi

such as Beauveria bassiana andMetarhizium anisopliae have also shown potential as biological

control of tick vectors involved in Lyme disease transmission [113]. Other novel interventions

are currently being developed, and much may be learned from the testing of such interventions

in tick-borne disease systems where transmission dynamics are well elucidated. Vaccines are

being developed, for example, against tick saliva or salivary gland proteins, in order to decrease

the ability of ticks to feed on reservoir hosts, thus disrupting pathogen transmission [114–116],

and self-disseminating, transmissible vaccines that are capable of spreading through wild ani-

mal reservoirs [117,118].

The new framework developed here illustrates the significant number of hierarchical barri-

ers (Fig 1) that must be overcome in order for humans to become infected by KFDV. This
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further emphasises the need for a cross-disciplinary approach to provide an evidence base and

implement appropriate management interventions for tick-borne diseases. Focusing research

on a single barrier or barrier type within the hierarchy, within a particular scientific discipline,

will not be sufficient for understanding spillover risk or implementing effective interventions

[14,119]. For KFD, the ecological processes that underpin seasonal transmission dynamics,

such as vector and host activity and habitat associations, seasonal resource use, and movement,

need to be quantified alongside the social and cultural processes that influence ecosystem use,

livelihoods, and exposure of people. For example, the majority of disease managers inter-

viewed highlighted complex trade-offs between restricting forest access to minimise risk of

exposure and safeguarding local livelihoods that need to be further investigated, as well as

diverse social, cultural, and techno-administrative barriers to uptake of vaccines, tick personal

protection, and surveillance measures, e.g., post mortems (Table B in S1 Appendix). Aligning

with the One Health initiative, interdisciplinary approaches require collaboration across

diverse disciplines including ecology, epidemiology, animal and public health, health systems,

and social sciences and would enable predictive models of pathogen spillover to be refined,

new interventions to be developed, and vaccination strategies and surveillance to be targeted

more effectively [70].

In order to sustainably and effectively refine management interventions for neglected zoo-

notic diseases in the face of changing empirical knowledge and environmental and policy

shifts, it is vital that strategies and research are codeveloped iteratively and reflexively across

disciplines, targeting knowledge gaps and prioritising interventions identified by cross-sectoral

stakeholders and involving beneficiaries alongside researchers [70,120]. Within the Monkey-

FeverRisk project, empirical research and models were co-created using a coproduction

approach, which placed stakeholder engagement at the heart of the research, from joint fram-

ing of the problem to knowledge integration and experimentation with resulting knowledge

and tools [121–123]. In practice, active science–policy–practice interfaces between a diverse

range of stakeholders, researchers, and beneficiaries were established and maintained through

multi-stakeholder workshops and focus groups, inclusion of decision-makers as active

research partners, researcher membership of government technical advisory committees on

KFD, and through cross-sectoral WhatsApp groups setup following a direct request from

stakeholders at our first workshop (https://www.monkeyfeverrisk.ceh.ac.uk/sites/default/files/

Stakeholder_workshop_report_MonkeyFeverRisk_16012019.pdf). An illustration of the valu-

able framing of empirical research and subsequent knowledge exchange that can arise through

such science–policy–practice interfaces is provided in Table D in S1 Appendix, which shows

key ecological questions posed to researchers by practitioners through the 2 recent KFDV

transmission seasons. The trade-offs between livelihood benefits and disease disbenefits from

forests, the poor uptake of some interventions for KFD (Table B in S1 Appendix), and the

wide range of traditional coping methods in use by local communities highlight the impor-

tance of meaningful involvement of local communities in the design of management strategies

[123], and this is a key priority for effective management of KFD.

Key Learning Points

• Most zoonotic diseases have complex transmission dynamics involving communities

of vector and animal hosts yet understanding of transmission is generally poor, espe-

cially for neglected tropical zoonoses.
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Supporting information

S1 Appendix. Table A: Details of the current management practices recommended for pre-

venting human cases of KFD in the Western Ghats area of India. Current management prac-

tices undertaken to prevent human cases of KFD were identified based on a number of

guidance documents and sources originating from the National Centre for Disease Control

and the Department of Health and Family Welfare Services: a guidance bulletin (32) and a

manual of KFD (33). The management type indicates whether the measure targets reservoir

• Better ecological understanding of transmission would facilitate the development of a

broader suite of management interventions to prevent human disease spillover by

strengthening barriers to transmission, including ecological interventions which rely

on good knowledge of transmission ecology.

• One Health approaches that bring together disease managers and policy makers across

the public health, animal health, and environmental sectors are vital for designing and

implementing effective disease management.

• Kyasanur Forest Disease (KFD) is a tick-borne zoonotic disease in India and a useful

model example of how frameworks identifying barriers to human spillover can be

used to identify key knowledge gaps in our understanding of transmission dynamics.

• For KFD, ecological understanding of the role of small mammals, cattle, and monkeys

in transmission will be critical for the development of improved management

strategies.
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hosts, vectors, or human hosts and which barrier to human spillover the management

addresses (see Fig 1 in the main paper). We detail the main assumptions underpinning the

management advice in terms of how such practice would reduce human transmission via

infected tick bites and review the empirical support for the assumptions made. We detail

responses from key informant interviews undertaken within the KFD endemic area, relating

to how the current management recommendations for preventing human cases of KFD are

being applied in the field in order to illustrate challenges or misconceptions associated with

management practices. Finally, based on the balance of supporting empirical evidence, we rec-

ommend whether the current management practice is justified or could be improved. Table B:

Main thematic analysis results summaries based on interviews with district and taluka manag-

ers regarding their experiences and perceptions about current KFD management in the West-

ern Ghats area of India. Table C: Details of the designation of participants in the key

informant interviews used to provide key quotes on the current application of management

practices for KFD in the field. Table D: Examples of key ecological questions posed to

researchers by practitioners in the 2018–2019 and 2019–2020 seasons for human KFD cases.

We highlight the current knowledge gap that needs to be addressed in order to address each

question and whether empirical data are currently being collected as part of the MonkeyFever-

Risk project to provide evidence to fill this knowledge gap. KFD, Kyasanur Forest Disease.
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