

The spatial distribution of ammonia, methane and nitrous oxide emissions from agriculture in the UK 2018

Annual Report to Defra (Project SCF0107)

Carnell E.J., Thomas I.N., Tomlinson S.J., Leaver D. and Dragosits U.

- **Title** The spatial distribution of ammonia, methane and nitrous oxide emissions from agriculture in the UK 2018
- **Client** Rothamsted Research (North Wyke) Tom Misselbrook Defra – Tom Denbigh
- Client reference SCF0107
- UKCEH reference UKCEH reference / Issue number 1
 - UKCEH contact Ed Carnell details UKCEH, Bush Estate, Edinburgh, EH26 0QB

t: 0131 445 8563 e: edcarn@ceh.ac.uk

Author Ed Carnell

Approved by Ulli Dragosits

Date 20/05/2020

Contents

Exe	ecutive Summary	2
1.	Introduction	3
1.	.1 Background	3
1.	.2 Annual work schedule/deliverables	4
2. soui	Methods - Spatial distribution of NH ₃ , CH ₄ and N ₂ O emissions from agricultural rces	
3.	Results	6
3.	.1 Spatially distributed emissions of NH3, CH4 and N2O for 2018	6
3.	.2 Major changes and Consequences	10
	3.2.1 Changes in emissions from agricultural NH3 sources	10
	3.2.2 Changes in emissions from agricultural CH4 sources	11
	3.2.3 Changes in emissions from agricultural N2O sources	12
4.	Conclusions	13
5.	Acknowledgements	13
6.	References	13

Executive Summary

- Agricultural emissions of ammonia, methane and nitrous oxide for 2018 were spatially distributed across the UK, and maps produced.
- Holding-level agricultural statistics on livestock numbers and crop areas for 2018 were not available in sufficient time for a full inventory model run. Therefore emission estimates produced for the 2018 inventory were derived by scaling the 2017 emissions based on the changes to 2018 in DA-level livestock numbers and crop areas.
- Non-disclosive agricultural emission maps were produced at a grid resolution of 1 km by 1 km, using detailed agricultural census data, land cover data (Rowland *et al.*, 2017), agricultural practice information (e.g. fertiliser application rates, stocking densities) and emission source strength data from the UK emissions inventories for agriculture 2017 (Misselbrook and Gilhespy 2020 and Brown *et al.* 2020).
- All emission maps correspond to the totals reported by Rothamsted Research North Wyke (RResNW) for 2018.

1. Introduction

1.1 Background

Emission estimates of ammonia (NH₃), methane (CH₄) and nitrous oxide (N₂O) for the 2018 inventory are based on 2017 outputs from the UK agricultural emission model (jointly developed by Rothamsted Research, ADAS, UK CEH and Cranfield University). The model has been implemented in the C# programming language and is capable of generating UK agricultural emission estimates at a 10 km by 10 km grid resolution. The 10 km gridded estimates produced using the model have been spatially resolved to produce high-resolution 1 km grid emission maps using the redeveloped AENEID model (full details of which can be found in Carnell *et al.* 2018).

The agricultural emission estimates for NH₃, CH₄ and N₂O are derived annually under Defra project SCF0107 and reported to Ricardo Energy & Environment as part of the UK national inventory submissions (inventories by Misselbrook and Gilhespy 2020 and Brown *et al.* 2020; see Table 1). This report summarises UKCEH's contribution of high-resolution spatial distribution of emissions from agricultural sources to the UK NAEI, and complements the expertise of the wider project consortium in producing UK emission estimates from experimental data, peer-reviewed literature and agricultural management practices, including mitigation options.

Due to licensing restrictions in relation to data protection (GDPR), the detailed 1 km model output can only be shown as "emissions from livestock" and "emissions from fertiliser application to crops and grassland", rather than for individual livestock sectors or crop types.

Gas	Source	UK emission (kt) 2018
NH ₃	Livestock manure [†] Fertiliser application	183.9kt NH₃ 48.8 kt NH₃
	Total agriculture	232.7 kt NH ₃
CH ₄	Enteric fermentation	847.0 kt CH4
	Livestock manure	168.0 kt CH4
	Total agriculture*	1,015.0 kt CH4
N ₂ O	Crops & soils#	39.6 kt N2O
	Direct emissions from livestock manure	8.0 kt N2O
	Total agriculture *	47.6 kt N ₂ O

Table 1: UK emissions of ammonia (NH₃), methane (CH₄) and nitrous oxide (N₂O) for 2018, as submitted by RResNW and mapped by CEH (in kt yr⁻¹).

[†]Includes emissions from manure-digestate emissions (1.3 kt NH₃).

* The GHG maps also include emissions from non-agricultural horses (i.e. all horses present in the UK, rather than only those present on farms that are counted as part of the annual agricultural statistics); N.B. for NH₃, non-agricultural horses are reported separately and not included in the agricultural emissions total.

[#] includes all indirect N₂O emissions, including those related to livestock manures.

1.2 Annual work schedule/deliverables

- Task 1: To acquire source data (agricultural survey/census) from the devolved authorities for spatially distributing agricultural ammonia emissions from livestock manures and fertiliser application. This included acquiring data from the cattle tracing system for Great Britain (CTS, via Cranfield University).
- Task 2: To model NH₃, CH₄ and N₂O emissions from agricultural sources at a 1 km by 1 km grid resolution using the new version of the agricultural emission distribution model for the UK (AENEID). Due to delays in receiving the holding-level agricultural survey data, the 2018 maps have been scaled based on outputs for the year 2017.
- Task 3: To provide a short report describing the methodology and results, highlighting any changes and their consequences.
- Task 4: To streamline the inventory jointly between UKCEH and the consortium partners (Rothamsted Research North Wyke, ADAS, Cranfield University), as part of a continuing improvement process. For this year, this included updating the historic time series of livestock populations and crop areas and developing a method to scale the 2017 maps to the 2018 estimated emission totals.
- Task 5: To submit the spatial datasets to Ricardo Energy & Environment for inclusion in the National Atmospheric Emission Inventory (NAEI) and Greenhouse Gas Inventory (GHGI).

2. Methods - Spatial distribution of NH₃, CH₄ and N₂O emissions from agricultural sources

For the 2018 inventory cycle, a different methodology had to be developed, as holding level agricultural census/survey data were not available in sufficient time for a complete model run this year. This meant that model outputs for the year 2017 were rescaled, as follows: Livestock emission totals for 2018 were estimated to reflect changes in livestock populations from 2017 (agricultural management practices remain unchanged and are assumed to be the same as 2017). The distribution of livestock emissions was based on 2017 individual source maps (e.g. grazing, manure management, housing, storage) for each sector and was scaled to 2018 emissions totals for each UK devolved administration (i.e. England, Wales, Scotland, Northern Ireland). Fertiliser emissions were estimated based on changes in crop areas, which translated through to fertiliser use, assuming the same application rates as 2017. Fertiliser emissions, crop residues etc.) for arable and grassland emissions separately and were scaled to 2018 emission totals for each DA.

• 31 individual UK emission layers (individual sector/source combinations) were used to distribute agricultural NH₃ emissions and each layer was scaled to preserve 2018 DA totals.

• 16 individual UK emission layers (individual sector/source combinations) were used to distribute agricultural CH₄ emissions and each layer was scaled to preserve 2018 DA totals.

• 41 individual UK emission layers (individual sector/source combinations) were used to distribute agricultural N₂O emissions and each layer was scaled to preserve 2018 DA totals.

Emissions from 'non-agricultural' horses (i.e. horses that are not kept on agricultural holdings) are **not included** in the ammonia emissions maps shown in this report and are mapped and reported to the NAEI separately. Emissions from these horses are however, **included** in the CH₄ and N₂O emission maps, for reasons of compliance with the different sets of emission inventory guidelines for air pollutants and GHGs, respectively.

For information on how the outputs for 2017 (and earlier years) were derived please refer to Carnell *et al.* (2019).

3. Results

3.1 Spatially distributed emissions of NH_3 , CH_4 and N_2O for 2018

All UK maps were produced on the Ordnance Survey GB Grid at a resolution of 1 km x 1 km. The units for all GIS datasets submitted are kg ammonia (NH₃), methane (CH₄) and nitrous oxide (N₂O), respectively, per grid square. All spatial datasets were submitted to RResNW (Defra Contract SCF0107) and to Ricardo (for use in the National Atmospheric Emission Inventory (NAEI, see <u>http://naei.beis.gov.uk/</u>). Figures 1, 2 and 3 show the 2018 maps resulting from the spatial modelling of agricultural emissions (excluding non-agricultural horses) for NH₃, CH₄ and N₂O, respectively (units: kg ha⁻¹ year⁻¹).

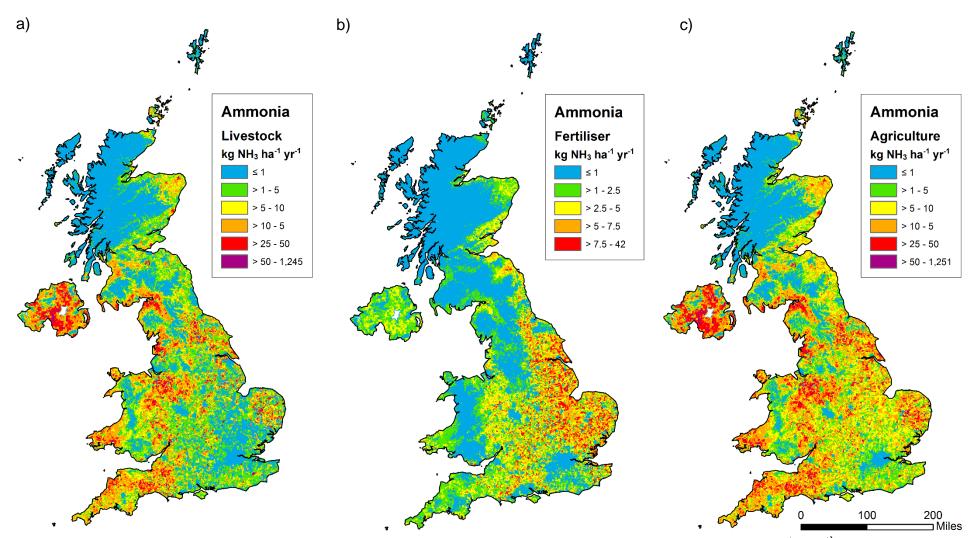


Figure 1: UK ammonia emissions from a) livestock manures, b) fertilisers and c) total agriculture (c = a + b) for 2018 (Units: kg NH₃ ha⁻¹ year⁻¹).

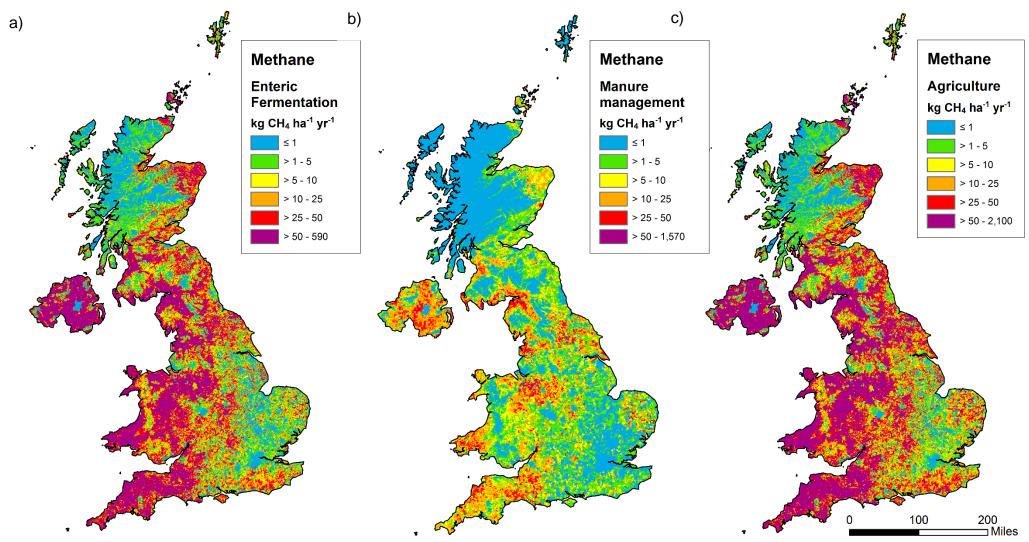


Figure 2: UK methane emissions from a) enteric fermentation, b) livestock manure management and c) total livestock (c = a + b) for 2018 (Units: kg CH₄ ha⁻¹ year⁻¹).

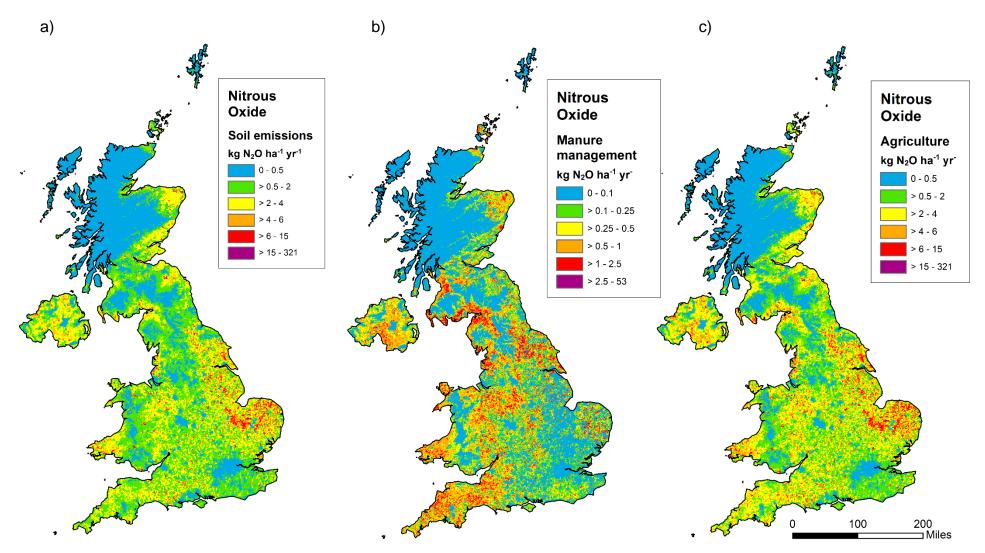


Figure 3: UK nitrous oxide emissions from a) soils, b) livestock manure management and c) total agriculture (c = a + b) for 2018 (Units: kg N₂O ha⁻¹ year⁻¹).

3.2 Major changes and Consequences

3.2.1 Changes in emissions from agricultural NH₃ sources

Overall, estimated NH₃ emissions from UK agricultural sources have decreased by 0.9 kt NH₃ between the reported 2017 and 2018 inventories, with 233.5 kt NH₃ and 232.7 kt NH₃ emitted, respectively (Table 2). No changes to methodology or assumptions regarding management practices and emission factors have been made this year and all changes between 2017 and 2018 were driven by the changes in livestock numbers and crop areas (which translated through to fertiliser use, assuming the same application rates as 2017).

Livestock emissions are estimated to have decreased by 0.4 kt NH₃ (~0.3 % increase), with fertiliser emissions decreasing by 0.5 kt NH₃ (1 % decrease). This decrease in emissions is associated with a decrease in total fertiliser N use by ~2% from 2017 to 2018.

The minor estimated decrease in livestock emissions between 2017 and 2018 is associated at UK level with a 0.5% reduction in dairy cow numbers, 1.3% reduction in all other cattle, 3% reduction in sheep and increases of 0.9 and 3.6% in pig and poultry numbers.

 Table 2: Differences between reported ammonia emissions from UK agriculture in 2017 (adapted from Misselbrook and Gilhespy 2020) and the scaled 2018 inventory estimates. Totals may not add up exactly due to rounding.

	Revised 2017 emissions	Revised 2018 emissions	Annual difference
	(kt NH₃)	(kt NH₃)	
All cattle	115.8	114.8	-1%
All sheep	9.6	9.3	-3%
All pigs	18.6	18.7	1%
All poultry	37.7	38.4	2%
Horses, Goats and Deer	1.4	1.4	-2%
Application of digestate	1.3	1.3	+2%
Application of fertilisers	44.9	44.4	-1%
Sewage sludge	4.3	4.3	0%
Livestock total	183.1	183.9	0%
N fertiliser total	49.2	48.8	-1%
Total agriculture	233.5.3	232.7	0%

3.2.2 Changes in emissions from agricultural CH₄ sources

Total agricultural CH₄ emissions from UK agricultural sources have decreased by 12.4 kt CH₄ between the published 2017 and 2018 inventories, with 1,027.4 kt CH₄ and 1,015.0 kt CH₄ emitted, respectively. As with the NH₃ emissions (Section 3.2.1), no methodological changes have been made and any changes to emissions are a reflection of changes to activity data.

Enteric emissions are estimated to have decreased marginally by 11.4 kt CH₄ (~1 % decrease) and emissions associated with livestock manures by 1.0 kt CH₄ (1% decrease), as a result of small changes in livestock numbers as detailed in Section 3.2.1.

Table 3: Differences between reported CH_4 emissions from UK agriculture in 2017 (adapted from Brownet al. 2019) and 2018 inventory estimates. Totals may not add up exactly due to rounding.

Sector	Grouping	Reported 2017 emissions (kt CH4)	Reported 2018 emissions (kt CH4)	Annual difference (%)
All cattle	Enteric emissions	670.8	663.9	-1%
Sheep	Enteric emissions	161.7	157.3	-3%
Pigs	Enteric emissions	7.5	7.5	1%
Horses, Goats & Deer	Enteric emissions	18.3	18.2	0%
All cattle	Livestock manure	133.5	132.4	-1%
Sheep	Livestock manure	4.3	4.2	-3%
Pigs	Livestock manure	25.8	26.1	1%
Poultry	Livestock manure	3.9	3.9	1%
Horses, Goats & Deer	Livestock manure	1.5	1.5	-1%
Total Enteric emissions		858.3	847.0	-1%
Total Livestock manure		169.1	168.0	-1%
Total Agriculture		1027.4	1015.0	-1%

3.2.3 Changes in emissions from agricultural N₂O sources

Total agricultural N₂O emissions from UK agricultural sources have decreased by 0.3 kt N₂O between the published 2017 and 2018 inventories, with 47.9 kt N₂O and 47.6 kt N₂O emitted, respectively. As with the NH₃ emissions (Section 3.2.1), no methodological changes have been made and any changes to emissions are a reflection of changes to activity data.

There was a slight decrease (0.04 kt N₂O) in N₂O emissions from manure management between 2017 and 2018, but almost unchanged. The minor decrease (-1 %) in nitrous oxide emissions from soils between 2017 and 2018 is largely due to changes in fertiliser use outlined above.

Table 4: Differences between reported N2O emissions from UK agriculture in 2017 (adapted from Brownet al. 2019) and 2018 inventory estimates. Totals may not add up exactly due to rounding.

Sector	Grouping	Reported 2017 emissions	Reported 2018 emissions	Method differences
		(kt N ₂ O)	(kt N ₂ O)	
All cattle	Manure management	5.6	5.5	-1%
All sheep	Manure management	0.1	0.1	-2%
All pigs	Manure management	0.9	0.9	1%
All poultry	Manure management	0.9	0.9	1%
Horses, Goats & Deer	Manure management	0.6	0.6	-1%
All cattle	Soil emissions*	6.1	6.1	-1%
All sheep	Soil emissions*	1.4	1.4	-3%
All pigs	Soil emissions*	0.8	0.8	0%
All poultry	Soil emissions*	1.2	1.2	2%
Horses, Goats & Deer	Soil emissions*	0.5	0.5	-1%
Application of fertilisers & crop residues	Soil emissions*	23.5	23.2	-1%
Sewage sludge, histosols and mineralisation	Soil emissions*	6.4	6.4	0%
Total direct manure management emissions		8.0	8.0	0%
Total soil	emissions	39.9	39.6	-1%
Total agricult	ural emissions	47.9	47.6	-1%

4. Conclusions

New high-resolution ammonia, methane and nitrous oxide emission maps were derived for the UK (Defra project SCF0107), and submitted for inclusion in the 2018 version of the NAEI and GHGI for agriculture in the UK. Agricultural emissions were derived using 2017 model outputs from the agricultural emission inventory model and the high-resolution spatial distribution model developed under Defra project AC0102. The 2018 maps have been submitted at a 1 km grid resolution (non-disclosive). Due to a delay with the availability of holding level input data to the modelling, the approach applied for 2018 differs from the previous years, with modelling based on detailed scaling of the 2017 model outputs.

5. Acknowledgements

The authors are grateful to Defra, who are funding this work under project SCF0107, as a contribution to the National Ammonia Emissions Inventory (NAEI) and Greenhouse Gas Inventory (GHGI), and the Devolved Authorities of the UK for providing agricultural census/survey data.

6. References

- Brown P., Cardenas L., Choudrie S., Jones L., Karagianni E., MacCarthy J., Passant N., Richmond B., Smith H., Thistlethwaite G., Thomson A., Turtle L., Wakeling D., Bradley S., Broomfield M., Buys G., Clilverd H., Gibbs M., Gilhespy S., Glendining M., Gluckman R., Henshall P., Hobson M., Lambert N., Malcolm H., Manning A., Matthews R., May K., Milne A., Misra A., Misselbrook T. (2020) UK Greenhouse Gas Inventory, 1990 to 2018: Annual Report for submission under the Framework Convention on Climate Change. Ricardo EE report.
- BSFP (2019): The British Survey of Fertiliser Practice. Fertiliser use on farm crops for crop year 2018. Defra, London. 117pp.
- Carnell E.J., Thomas I.N., Tomlinson S.J., Leaver D. and Dragosits U. (2019) The spatial distribution of ammonia, methane and nitrous oxide emissions from agriculture in the UK 2018. (Contribution to the UK National Atmospheric Emission Inventory and Greenhouse Gas Inventory). Annual Report on Defra Project SCF0107. CEH Report. 13pp. (April 2019)
- Dragosits U., Sutton M.A., Place C.J. and Bayley A.A. (1998) Modelling the spatial distribution of agricultural ammonia emissions in the UK. *Environmental Pollution* **102** (S1), 195-203
- Misselbrook T.H. and Gilhespy S.L (2020) Inventory of Ammonia Emissions from UK Agriculture 2018, Annual Report on Defra Project SCF0107, Rothamsted Research, North Wyke. 65pp.
- Rowland C.S., Morton R.D., Carrasco L., McShane G., O'Neil A.W. and Wood C.M. (2017). Land Cover Map 2015 (1km percentage target class, GB). NERC Environmental Information Data Centre. https://doi.org/10.5285/505d1e0c-ab60-4a60-b448-68c5bbae403e

BANGOR

UK Centre for Ecology & Hydrology Environment Centre Wales Deiniol Road Bangor Gwynedd LL57 2UW United Kingdom T: +44 (0)1248 374500 F: +44 (0)1248 362133

EDINBURGH

UK Centre for Ecology & Hydrology Bush Estate Penicuik Midlothian EH26 0QB United Kingdom T: +44 (0)131 4454343 F: +44 (0)131 4453943

LANCASTER

UK Centre for Ecology & Hydrology Lancaster Environment Centre Library Avenue Bailrigg Lancaster LA1 4AP United Kingdom T: +44 (0)1524 595800 F: +44 (0)1524 61536

WALLINGFORD (Headquarters)

UK Centre for Ecology & Hydrology Maclean Building Benson Lane Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB United Kingdom T: +44 (0)1491 838800 F: +44 (0)1491 692424

enquiries@ceh.ac.uk

