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Abstract
Determining the temperature sensitivity of terrestrial C stores is an urgent priority for 

predicting future climate feedbacks. A key aspect to solve this long-standing research gap is to 

determine whether warmer temperatures will increase autotrophic activities leading to greater C 

storage or promote heterotrophic activities that will drive these systems to become C sources. We 

experimentally addressed this critical question by subjecting intact plant-soil systems in a UK 

upland ecosystem to simulated climate warming under natural field conditions. We report the 

results of a 13 year field-based climate manipulation experiment combining in situ respiration 

measurements with radiocarbon (14C) analyses of respired CO2, dissolved organic carbon (DOC), 

soil and the tissue contents of the dominant soil fauna (enchytraeids). We found that warming 

during the growing season produced the largely expected increases in ecosystem respiration (63%) 

and leaching of DOC (19%) with no evidence for thermal acclimation or substrate exhaustion over 

the whole 13 year experimental period. Contrary to expectations, we found no evidence to support 

an increased release of old soil C after more than a decade of simulated climatic change, and 

indeed, 14C analyses indicated that warming caused a significant shift towards mineralisation of 

more recent plant-derived C inputs. Further support came from the radiocarbon analyses of the 

enchytraeid tissues which showed a greater assimilation of the more recent (plant-derived) C 

sources following warming. Therefore, in contrast to sub-arctic ecosystems, our results suggest 

that changes in C storage in this UK upland soil are strongly coupled to plant activities and that 
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increasing temperatures will drive the turnover of organic material fixed only within recent years, 

without resulting in the loss of existing old carbon stores.

KEYWORDS bomb 14C, carbon stores, climate change, ecosystem respiration, dissolved 

organic carbon, enchytraeids, peatlands, soil fauna.
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1 INTRODUCTION
Concerns over the feedback responses of terrestrial ecosystems to elevated atmospheric 

temperatures, resulting from increasing atmospheric greenhouse gas concentrations, focused 

attention on the role of soils as a sink and potentially powerful source of CO2 (e.g. Cox et al., 

2000; Smith 2006; Oertel et al., 2016). These abiding concerns remain as key uncertainties in 

contemporary General Circulation Models (e.g. Friedlingstein, et al., 2014; Nishina et al., 2015; 

Shi et al., 2018; Bonan et al., 2019; Tharammal et al., 2019). Indeed, the estimated 3,000 Pg of 

carbon (C) stored in the world’s soils (down to 3 m depth; Lal, 2018) could represent a significant 

potential global positive feedback source of atmospheric carbon dioxide (CO2) under a changing 

climate (Crowther et al., 2016; Turesky et al., 2019). Organic soils from cold northern latitudes are 

of special concern because they show the strongest temperature sensitivity responses (Karhu et al., 

2014; Koven et al., 2017; Gallego-Sala et al., 2018; Turesky et al., 2019; Qiu et al., 2020). In 

relation to this, increasing global temperatures have been controversially linked to net losses of 

0.6% a-1 topsoil organic C (Bellamy et al., 2005) and to the estimated export of ca. 7 tonnes C km-

2 a-1 to rivers as dissolved organic carbon (DOC) in the UK (Worrall and Burt, 2007; Smith et al., 

2007). However, some models indicate that only 10-20% of these C losses could be attributed to 

warming (Smith et al., 2007).

As a result of the conflicts between observations and model calculations, the magnitude of the 

feedbacks between soils and climate remain uncertain and has become a hotly debated issue in the 

literature (e.g. Conant et al., 2011; Friedlingstein, et al., 2014; Shi et al., 2018). This led to an 

appeal by Schmidt et al. (2011) for the establishment of long-term experiments in which intact 

soil-plant systems should be subjected to climate manipulation, taking advantage of developing 

radiocarbon (14C) technologies to identify underpinning C transfers. Although 14C measurements 

of soil organic matter (SOM) have increased our understanding of the stability of the different C 

substrates present in the soils (Hopkins et al., 2012; Ahrens et al., 2015; Street et al., 2020), the 

relative contribution of different aged organic matter to C losses is still poorly quantified. For 

example, whilst a number of studies have concluded that most of the C respired and leached from 

soils is derived from recently-fixed plant matter (Evans et al., 2006; Marwick et al., 2015; Pries et 

al., 2015: Jia et al., 2019), others have demonstrated that older C contributions (fixed prior to 

AD1955) can constitute an important fraction of the total amount of C released from soils (Neff et 

al., 2006; Trumbore, 2009; Hartley et al., 2008, 2012; Hopkins et al., 2012; Cheng et al., 2017; 

Olid et al., 2020).A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Another alarming aspect of reviews and models of soil C (Schmidt et al., 2011; Conant et al., 

2011; Hopkins et al., 2012; Lehmann and Kleber, 2015; Shi et al., 2018; Luo et al., 2019; 

Wiesmeier et al., 2019; Woolf and Lehmann, 2019; Lehmann et al., 2020) is the total failure to 

consider the functional role of soil fauna, despite their critical and long-recognised role as major 

agents of soil C turnover. Besides the environmental and substrate quality constraints to SOM 

decomposition, biological activities (including plants, soil biota and their enzymatic systems) and 

their responses to climatic variations are key regulators of C dynamics (García-Palacios et al., 

2013; Crowther et al., 2019; Street et al., 2020). One specific group of Oligochaeta worms 

(Enchytraeidae), which frequently contribute up to 70% of the total animal biomass in organic 

soils (Coulson and Whittaker, 1978), have a strong sensitivity to climate change and a critical 

impact on the C sink/source function of C rich soils (e.g. Briones et al., 2004, 2007, 2014; Carrera 

et al., 2009). Unfortunately, whilst vegetation, microbial and biogeochemical activities are 

becoming increasingly recognised in climate change and global C cycle models (e.g. Manzoni et 

al., 2012; Todd-Brown et al., 2012; Liang et al., 2017; Woolf and Lehmann, 2019; Lehmann et al., 

2020; Guo et al., 2020), soil fauna are consistently excluded on the basis of the difficulties in 

assessing, and quantifying, their role at global scales (Wall et al., 2008). 

Quantifying the relative importance of the autotrophic and heterotrophic components to 

ecosystem respiration is central to making more accurate predictions of the vulnerability of these 

C stores to climate change. Indeed, partitioning studies have shown that in peatlands with mosses 

and in coniferous forests, heterotrophic respiration dominates soil efflux (Subke et al., 2006; 

Schuur and Trumbore, 2006; Pries et al., 2015), whereas in tundra and peatland systems 

dominated by graminoids, autotrophic respiration made the greatest contribution (Pries et al., 

2015; Gatis et al., 2019). However, changes in water tables could reduce photosynthesis and 

increase heterotrophic respiration under vascular plants (Gatis et al., 2019), and mosses have been 

seen to contribute recently synthesized carbon to the peatland dissolved organic carbon pool 

(Fenner et al., 2004; Bell et al., 2018). Therefore, although non-vascular plants have an important 

role in accumulating C in peatlands through decreasing the proportion of C lost in gaseous form, 

they could increase C losses through leaching. Consequently, accounting for the DOC exported by 

water could reduce the estimates of C accumulation based on gas fluxes alone (Kindler et al., 

2011; D’Acunha et al., 2019).

In this study, we addressed the critical question of whether long-term warming would result in 

sustained soil and ecosystem C losses by subjecting, under as natural conditions as possible, a UK A
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upland system to simulated long-term global warming. We first investigated the long-term 

stability (13-year study, 2005-2018) of organic C in the field by combining in situ CO2 respiration 

measurements and radiocarbon (14C) analysis of soil C respired from the soil, leached as DOC and 

assimilated by key soil fauna (Enchytraeidae) using an experimental transplant approach. This 

allowed insights into the C fluxes in these complex systems (including plants, intact soil profile 

and associated biota) and how these were influenced by temperature change, against a backdrop of 

the normal seasonal and diurnal-nocturnal cycles occurring in nature (Ineson et al., 1998). Second, 

we used natural abundance radiocarbon to partition ecosystem respiration into its auto- and 

heterotrophic components at both sites to determine the balance between autotrophic (plant root 

contribution) and heterotrophic (microorganisms and soil animals) contributions to ecosystem 

respiration (RECO) in response to long-term warming. 

2 MATERIALS AND METHODS
2.1 Transplant experiment

We used part of the long-term altitudinal transect of sites monitored during the NERC TIGER 

(Terrestrial Initiative in Global Environmental Research) project at the Moor House National 

Nature Reserve, Cumbria, UK (54º 68’ N, 2º 36’ W). Established in the 1990s, this site benefits 

from a considerable resource of background information (e.g. meteorological, plant and soil data) 

and meteorological measurements continue to be taken at the site (Environmental Change 

Network (ECN): http://www.ecn.ac.uk/measurements; Cosmic-ray Soil Moisture Monitoring 

Network (COSMOS-UK): https://cosmos.ceh.ac.uk/).

The soil selected for this study, typical for an upland soil in the UK, was a cambic stagnohumic 

gley, characterized by a high organic matter content (49% C and 2.5% N; Briones et al., 2014), 

clay loam soil texture (46% sand, 35% clay; Hornung, 1968) and low pH (<4.5; Adamson et al., 

1995). The formation of a peaty top soil (Of and Oh), which is commonly thicker than 10 cm 

overlies approximately 4 cm of dark organic-rich mineral (Ah) soil and below 16 cm the soil is 

frequently waterlogged where the acid gley mineral horizon is present (Bol et al., 1996). 

Preliminary radiocarbon analyses of this soil showed that the bomb-14C signal, when the 

experiment was established, was limited to the top 0-4 cm (Briones and Ineson, 2002). This 

allowed us to investigate, under field conditions, whether warming led to the release of old C over 

time, avoiding the large errors associated with following C mass balance changes which may only 

become apparent or detectable over longer time scales (Hopkins et al., 2012).A
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We collected 48 intact vegetated soil cores (PVC pipes, 10.3 cm internal diameter x 20.5 cm 

deep) from an area near the summit of Great Dun Fell (GDF) for transplanting on 23rd August, 

2005. The vegetation is dominated by Juncus squarrosus L., with Festuca ovina L., Deschampsia 

flexuosa (L.) Trin. and Polytrichum commune L. Half of the cores were placed back at GDF (845 

m; 54º 41' 03'' N, 2º 27' 08'' W) to act as controls, whilst the remaining half were transplanted to a 

lower altitude at Sink Beck (SNK, 480 m; 54º 39' 33'' N, 2º 28' 04'' W), resulting in an anticipated 

annual temperature increase at the SNK site, with the decreasing altitude raising air temperature 

by ca. +3°C (Ineson et al., 1998; see also Figs. S1 and S2). Despite these differences in 

temperature, the two sites are less than 3 km apart.

In contrast to temperature, total rainfall volumes at these sites have been found not to be 

linearly related to altitude due to strong seasonal and spatial variation (Ineson et al., 1998); 

however, the climatological observations during the investigated period support previous 

altitudinal rainfall gradients, with an overall mean annual total rainfall of 1470 mm at GDF and a 

reduction by ca. 350 mm (ca. 20%) of rain at SNK. Despite this difference in rainfall inputs, 

previous field rainfall manipulations across this transect have revealed no effect on soil processes 

and no significant relationships between rainfall and enchytraeid numbers for the GDF or SNK 

sites (Briones et al., 1997).

Care was taken in inserting the cores into freshly dug placement holes, with cores showing 

signs of horizon disturbance being rejected. Intact cores were rested directly on the underlying soil 

in the placement holes, allowing the ground water to circulate freely beneath them; the immediate 

surrounding area was infilled with soil and turf from the excavation area to the same level as that 

in each core. This comparison of the behaviour of intact vegetated cores, either placed back at the 

‘source’ site (control; GDF) or transplanted to the warmer site (warmed; SNK), meant that all the 

aspects of within-year seasonality and climatic factors on plant growth and soil activity of the sites 

were maintained.

2.2 Climatological data

Meteorological information for both sites was obtained from the available weather stations. The 

UK Met Office (https://www.metoffice.gov.uk/) provided information for Great Dun Fell (2005-

2018) while the Environmental Change Network (http://www.ecn.ac.uk/measurements) and the 

Cosmic-ray Soil Moisture Monitoring Network (https://cosmos.ceh.ac.uk) produced data for Sink 

Beck using automatic weather stations (2005-2010 and 2014-2018, respectively). A
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2.3 Sampling

Although there is no permafrost at either of the two sites (GDF or SNK), the soils were often 

covered by snow at either site for several months of the year. Because of the restricted growth 

season, we undertook two sampling campaigns per year, one at the peak of the growing season 

(Summer-S) and another at the end of the growing season (Autumn-A) during thirteen consecutive 

years from the initial establishment of the experiment, starting with the initial summer sampling in 

2005 (two weeks after establishment of the experiment) and ending with the final sampling in 

2018, also in the summer (August 2018). 

2.4 Ecosystem respiration

At both sites and on each sampling occasion CO2 production rate was measured in the field from 

all cores using a LI-8100 automated soil CO2 flux system (LI-COR Biosciences, Lincoln, 

Nebraska, USA) connected to a 10 cm survey chamber. Respiration fluxes were calculated using 

linear regression over the initial 180 seconds.

Samples of respired CO2 were taken in the field for 14CO2 analysis from three random replicate 

cores collected during the summer samplings of 2006, 2007, 2008, 2010 and 2018 (i.e. after 1, 2, 

3, 5 and 13 years since the start of the experiment; Fig. S1). This was achieved by using the 

molecular sieve sampling system developed at the NERC Radiocarbon Facility (Hardie et al., 

2005). In brief, the system was attached to a dark chamber (10.3 cm internal diameter x 20.5 cm 

deep) and the headspace air circulated (500 ml/min) through a cartridge containing soda lime to 

remove all atmospheric CO2 inside the chamber headspace. The chamber was then left for 

approximately 4-6 hours to allow respired CO2 to build up. The sampling system was then re-

attached to the chamber and this time the air circulated through a cartridge containing type 13X 

zeolite molecular sieve (1/16′′ pellets, BDH Laboratory supplies, UK) and then back to the 

chamber in a closed loop. As the air passed through the cartridge, CO2 was trapped onto the 

molecular sieve.

2.5 DOC concentrations 

On summer samplings (Fig. S1), after taking the 14CO2 samples, the three selected ‘destructive’ 

cores from both sites were collected and placed in separate plastic bags and then transported back A
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to the laboratory in a cool box. DOC was obtained by leaching the top 10 cm of the soil core with 

deionised water (Briones et al., 1998) and stored at 4ºC in acid-washed bottles prior to analysis.

DOC concentrations in the leachates were determined from a sub-sample (50 cm3) which was 

filtered through a 0.45 m filter before analysis. Samples were acidified with 3M HCl and sparged 

with zero grade air to remove inorganic carbon as CO2. The remaining organic carbon was 

determined using a high temperature combustion method with an infra-red detector (FormacsHT 

Skalar Analytical B.V. Breda, the Netherlands). Another subsample was acidified to pH 4, sparged 

using N2, neutralised to pH 7 or below and then dried to solids by rotary evaporation and freeze-

drying in preparation for radiocarbon analyses.

2.6 Enchytraeid population numbers

After DOC samples were collected, the three soil cores were vertically split into halves, with one 

half used for estimating the enchytraeid population sizes and the other half retained for subsequent 

soil analyses (see below; Fig. S1). Animals were extracted into deionised distilled water from five 

2-cm horizontal layers (approximately 40 cm2 each one) to a depth of 10 cm using a wet extractor 

(O’Connor, 1955) and then counted alive and their tissues freeze-dried in preparation for 

radiocarbon analyses (Briones and Ineson, 2002).
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2.7 Radiocarbon analyses
14CO2 samples trapped in the molecular sieves were recovered at the NERC Radiocarbon Facility 

by heating (500oC) and cryogenically purified (Hardie et al., 2005), whereas the dried DO14C 

samples were combusted in sealed quartz tubes or an elemental analyser and the pure CO2 

cryogenically recovered.

Soil samples for 14C analyses were obtained from the core halves resulting from destructive 

sampling (Fig. S1), freeze-dried and the living plant material and roots removed prior to analyses 

by sieving through a 4 mm mesh. Several grams of the soil were combusted in a high pressure 

combustion bomb in an atmosphere of pure O2, and the CO2 cryogenically recovered.

All recovered CO2 from respiration, DOC, soil and enchytraeid tissue samples were split into 

aliquots for 13C and 14C analysis. One aliquot of CO2 was used for 13C measurement using isotope 

ratio mass spectrometry (VG Optima, Micromass, UK or Delta V, Thermo-Fisher, Germany) with 

results expressed as δ13C (13C/12C ratio in ‰ units relative to the Vienna Pee Dee Belemnite 

standard). A second aliquot of recovered CO2 was converted to graphite by Fe/Zn reduction (Slota 

et al., 1987) and analysed for 14C at the Scottish Universities Environmental Research Centre 

Accelerator Mass Spectrometry Laboratory. Radiocarbon concentrations are expressed as 

%modern after normalisation of the measured 14C enrichment of each sample relative to 13C of -

25‰ (Stuiver and Polach, 1977). The average age of the respired CO2, DOC and enchytraeid 

carbon since fixation was determined by comparing the bomb-14C contents to an annual record of 

recent atmospheric 14C concentration (Levin and Kromer, 2004; see Fig. S3).
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2.8 Partitioning incubation experiment

Short-term incubations were used to measure the contribution of autotrophic (RAUTO) and 

heterotrophic respiration (RHETERO) to ecosystem respiration (RECO) following the methods 

outlined in Pries et al. (2013, 2015) using the final set of samples remaining at both sites (3 cores 

per site) that had been in the field for 13 years (2005-2018). Briefly, plant material (living roots 

and rhizomes, rinsed free of soil and shaken dry) and root-free soil were collected from each soil 

core (GDF-control and SNK-warm treatment), and placed in air-tight glass jars. The jar headspace 

was scrubbed to remove atmospheric CO2 using soda lime and then left in the dark to respire. 

When enough CO2 had accumulated for 14C analysis it was collected using the RCF molecular 

sieve sampling system, as described above.

We used the 14C concentration of the field-collected ecosystem respiration, and that of the auto- 

and heterotrophic components from the incubations, to partition ecosystem respiration using:

FRRECO x 14CRECO = FRAUTO x 14CRAUTO + FRHETERO x 14CRHETERO (1)

FRHETERO = (14CRECO – 14CRAUTO) / (14CRHETERO – 14CRAUTO) (2)

where F is the fractional contribution, and 14C the radiocarbon content (in %modern) of the 

autotrophic (RAUTO) and heterotrophic (RHETERO) components of ecosystem respiration (RRECO). 

2.9 Statistical analyses

Data were previously checked for normality and homogeneity of variances and transformed 

accordingly to ensure that the assumptions of ANOVA were met. Mean CO2 production rates from 

cores incubated in the field at each site on every sampling occasion (S and A campaigns during 13 

consecutive years) were compared by repeated-measures ANOVA, with the results being 

interpreted using the multivariate output of repeated measures ANOVA. One-way ANOVA was 

applied to test for significant differences in cumulative and averaged seasonal respiration values, 

DOC concentrations and enchytraeid numbers between sites. One-way ANOVA was also used to 

compare independent field measurements of 14C concentrations of the respired CO2, DOC, soils 

and enchytraeid tissues between sites and sampled years. Separation of means was determined 

using Tukey’s Studentized range (HSD) test ( = 0.05).

Linear correlations (Pearson correlation coefficient) were used to investigate the 

interdependence of CO2 and DOC values and their respective 14C signals (14CO2 and DO14C). In A
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addition, linear regressions were used to analyse the temporal variations in the 14C concentrations 

of the respired, leached and assimilated C observed in response to the treatments (control and 

warmed).

All statistical analyses were performed using the SAS system (version 9.0).

3 RESULTS
3.1 Effects of warming on the rate and age of ecosystem respiration

Over the thirteen investigated years, RECO flux was significantly higher at the warmer treatment 

than at the control site (repeated measures ANOVA: site, F1,353 = 36.58, P = 0.0263; time, F12,342 = 

14.73, P < 0.0001, time*site, F12,342 = 3.67, P = 0.0032; Fig. 1a), with an average increase of 63% 

in the summer and 49% in the autumn (Fig. 1b). Furthermore, despite the marked seasonal and 

inter-annual variation observed, the warming effect was found at the majority of samplings (Fig. 

1a) and resulted in 2.5 times more CO2 being emitted from the warmer site than from the control 

treatment (Fig. 1c).

All 14C analyses of the respired CO2 samples collected during the summer samplings of 2006, 

2007, 2008, 2010 and 2018 were slightly enriched relative to the contemporary atmosphere (Fig. 

2a), which indicates that the emitted CO2 resulted from a mix of contemporary plant-respired and 

older (post-bomb; Fig. S2) soil-respired C fixed from the atmosphere within the last few years. 

Although there was a significant decline of the 14C value over the sampled years at both sites 

(ANOVA: time, F4,24 = 76.72, P < 0.0001), it paralleled the atmospheric values (Fig. 2a; see also 

Fig. S2), suggesting that contemporary carbon fixation was a consistent and major component of 

the soil respiration flux. The positive relationship observed between the amount of CO2 being 

respired from these soils and the 14C enrichment of this C fraction (Pearson correlation coefficient 

r = 0.4828; P = 0.0080; n = 29) confirmed that during the growing season, increasing temperatures 

promoted higher plant metabolic rates and more recent plant-derived C was respired from these 

soils. 

The radiocarbon analyses used to estimate the proportional contributions of autotrophic and 

heterotrophic sources to RECO (equations 1 and 2 described in the material and methods section) 

corroborated that 13 years of warming did not significantly alter the average age of the C respired 

when compared with the control soil, and at both sites approximately two-thirds of CO2 emissions 

were autotrophic. Warming resulted in a slightly increased contribution from autotrophic sources, A
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with 68% of CO2 emissions being plant-derived at SNK, compared to 66% at the control, 

however, the differences were not statistically significant (Fig. 2b).
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3.2 Effects of warming on the age of soil C and DOC production

Bulk 14C analyses of the soil samples showed quite variable ages with no significant differences 

between bulk samples taken from the systems held at the two sites. Furthermore, with only few 

exceptions, 14C values were usually lower than the respective contemporary atmospheric value 

(Fig. 3a). Interestingly, the samples collected at the control site (GDF) showed a gradual decline in 
14C enrichment over time, confirming the presence of substantial amounts of pre-bomb C (Fig. 

3a).

Despite warming leading to a significant progressive increase in DOC production (Fig. 3b; 

ANOVA: time*site, F4,25 = 2.59, P = 0.0401), and representing an overall increase of 19.3% when 

compared to the equivalent amount leached from the control site, the overall averaged differences 

between sites were not significant (Fig. 3b inset). However, these observed increases in DOC 

concentrations at the warmed site (SNK) were positively correlated with the 14C content present in 

this soluble C fraction (Pearson correlation coefficient r = 0.5206; P = 0.0466; n = 15), resulting in 

the DO14C values at the warmed site becoming more 14C enriched and almost identical to the 

contemporary atmosphere (Fig. 3c). In contrast, at the control site, a significant decline in DO14C 

values was observed over time (Fig. 3c). This indicates that warming either reduced the amount of 

old (pre-bomb) carbon being lost as DOC, or that old DOC loss was extremely small compared to 

the production of modern DOC at the warmed site.

3.3 Effects of warming on the population size and the 14C age of the C assimilated by dominating 

enchytraeid populations

There was considerable inter-annual variation in enchytraeid abundances during the investigated 

period, and population differences between sites were significant in the summer of 2007 only 

(ANOVA: site, F1,28= 8.94, P = 0.0403), when 1.7 times more enchytraeids were recorded at 

SNK-warm treatment than at the control site (Fig. 4a). Despite the high temporal variability, on 

three sampling occasions, their numbers were higher at the warmed site than at the control site 

(Fig. 4a), which resulted in an overall difference of 23% between the two sites, albeit not 

significant (Fig. 4a inset). Furthermore, with the exception of year 2006, the enchytraeid 

populations were significantly concentrated in the upper soil layers at both sites (ANOVA: depth, 

F4,145 = 4.22, P = 0.0032; Fig. S4) and, on average, 72% and 65% of the total population remained 

in the top 0-4 cm at the control (GDF) and warm (SNK) sites, respectively (Fig. 4b), where they 

could access a wide range of C sources.A
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Indeed, the radiocarbon analyses of the enchytraeid tissues showed they were consistently 14C-

enriched relative to the contemporary atmosphere (Fig. 4c) and, during the first five years, the 

samples from SNK-warm treatment were slightly 14C-depleted relative to the GDF control (Fig. 

4c). But the situation reversed after 2010 and, by the end of the investigated period, the 14C 

content of the animal tissues was lower at the control site (Fig. 4c). Despite these temporal 

variations in the ages of the C assimilated by enchytraeids (ANOVA: year, F4,22 = 11.03, P < 

0.0001), on average, the 14C concentrations in the enchytraeids tissues were significantly lower at 

the warmed site than those from the control populations (ANOVA: site, F1,25 = 4.48, P = 0.0049). 

This indicates a greater assimilation of the more recent (plant-derived) C sources (on average ~9 

yrs old) at the warmer site than under control conditions (on average ~14 yrs old). 
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4 DISCUSSION
Over the thirteen years of the transplant study, CO2 flux showed a consistent positive response to 

transplantation to the warmer site, reflecting an apparent strong link between ambient 

temperatures and overall C mineralisation. Although the rainfall inputs at the two sites differ by 

20%, previous rainfall manipulation experiments across this climatic transect have shown that 

water is not a limiting factor, and that differences in thermal regimes dominate soil responses to 

transplantation (Ineson et al., 1998). Importantly, we did not find any evidence for microbial 

thermal acclimation (Crowther and Bradford, 2013; Ye et al., 2019; Guo et al., 2020) nor labile 

substrate depletion (Hartley et al., 2008, 2012; Chen et al., 2020), which are the main explanations 

for previously reported progressive declines of CO2 emissions with time after temperature 

increases. Unlike these previous experiments, we subjected, under natural conditions, plant-soil 

intact systems to simulated climatic warming over a long time period and thus, allowed for the 

natural variations in the amount and composition of C forms that the plants return to soil (De Deyn 

et al., 2008). Furthermore, the soil under study contained large amounts of C which can be 

gradually mobilized, with microorganisms and their extracellular enzymes remaining active even 

after readily available substrates are exhausted and other (more recalcitrant) C sources become 

available (Kuzyakov, 2010). Despite the marked seasonal and inter-annual variation observed 

during the investigated years, the warming effect on soil respiration was found at the majority of 

samplings, confirming this long-lasting stimulating effect of warming on CO2 release from these 

organic-rich systems, similar to those reported for sub-arctic systems (Dorrepaal et al., 2009; 

Koven et al., 2017). 

Radiocarbon analyses showed that, at both sites, as well as contemporary plant-respired C, 

older (post-bomb) soil-respired C was also emitted from these soils, although still resulting in 14C 

signals that were only slightly enriched relative to the contemporary atmosphere. Previous studies 

have also shown that, although most respired CO2 is derived from recently deposited plant matter 

(Evans et al., 2006; Marwick et al., 2015; Pries et al., 2015; Jia et al., 2019), pre-bomb 

contributions can occur (Neff et al., 2006; Trumbore, 2009; Hartley et al., 2008, 2012; Hopkins et 

al., 2012; Cheng et al., 2017; Olid et al., 2020). However, since at both sites the rate of 14C decline 

in the respired CO2 paralleled closely the rate of 14C decline in atmospheric CO2, we can conclude 

that warming did not stimulate the release of old C and the autotrophic component dominated the 

contributions to the CO2 efflux at both sites. In support of this, the radiocarbon partitioning results 

confirmed that the proportion of respiration coming from the younger plant-derived sources A
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increased relative to the proportion of respiration coming from the heterotrophic component in 

response to warming. A similar shift in RECO towards the autotrophic component has been reported 

previously for permafrost ecosystems, more noticeable if the dominant vegetation was composed 

of vascular plants (Pries et al., 2013, 2015; Peng et al., 2015). Since our transplanted intact cores 

initially contained identical soil and vegetation, the increased contribution of autotrophic 

respiration observed here can only be attributed to warming, but the dominance of a vascular plant 

community in our systems was probably responsible for the high contributions of root respiration 

(> 65%) compared to those systems dominated by non-vascular plants such as mosses (Pries et al., 

2013, 2015). Indeed, in these UK upland systems, the relationships between warming and net 

primary productivity have been well studied, with demonstrations of the importance of increased 

nutrient mineralisation in controlling plant productivity (Rawes and Welch, 1969); accelerated 

turnover of SOM due to warming causes increased release of nutrients and in turn, promotes plant 

growth (Ineson et al., 1998; Shaver et al., 2000). The peaty gley source site in this study is 

dominated by fast growing graminoids, including Juncus squarrosus which has been reported to 

be twice as productive as any other grasses present in the area (Rawes and Welch, 1969). This 

group of plants exhibit specific traits that not only allow them to promote C sequestration through 

high root and rhizome biomass, but also to stimulate C loss through high rates of root exudation, 

high litter quality and air channels in roots and stems (Cornelissen et al., 2007). 

Bulk 14C analyses of the soil samples, although showing great variability, indicated a trend 

towards a greater contribution of pre-bomb C over time at the control site when compared to the 

warmed site. This supports the suggestion that relatively less new C (e.g. root exudates, litter, etc.) 

was entering the soil and, consequently, the amount of young C being mineralised was not being 

replaced at the same rate at which it was being lost. This contrasted with the increase in the 

contemporary C contribution to C exports observed at the warmed site, which resulted, at the end 

of the experiment, in the age of the DOC from the warmed system overlapping with that of the 

atmosphere. These findings are also consistent with previous 14C data for the nearby Moor House 

site (Tipping et al., 2010). These authors showed that DOC in stream waters at Moor House was 

dominated by a ‘fast pool’ of around 5 years in age, but also included a contribution from a ‘slow 

pool’ with a mean residence time in the soil of ~20 years. Indeed, the progressive increase in DOC 

production rates at the warmed site with time, and its positive correlation with the evolution of the 
14C content present in this soluble C fraction at SNK-warm treatment, confirms previous results 

using the same altitudinal transect that DOC release in this area is strongly linked to contemporary A
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plant production (Harrison et al., 2008). This regulating effect of primary productivity on the age 

of the C mobilised from these soils also explains why at the control site less modern DOC was 

produced (due to lower biological activities), resulting in the observed decline of DO14C values 

over time.

Although plants play an important role in controlling C dynamics in peatlands, increases in 

SOM turnover in these soils as a response to warming have also been shown to be directly related 

to the activities and vertical distribution of enchytraeids (Briones et al., 2010). Here, the greater 

enchytraeid population sizes observed at the warmed site, when compared with the control, 

confirms the positive influence of warmer temperatures on enchytraeid reproduction rates (Briones 

et al., 1997). However, while warmer temperatures promote enchytraeid reproduction, decreases in 

soil water content force their downward migration through the soil profile (Briones et al., 1997). 

Nevertheless, on nearly all sampling occasions, the enchytraeid populations were significantly 

concentrated in the upper soil layers at both sites, and thus we can conclude that moisture 

conditions remained favourable for their activities at both sites during the whole investigated 

period (Briones et al., 1997). Critically, in the upper layers of this peaty gley soil, enchytraeids can 

access a wide range of C sources (ranging from recently fixed carbon to decades-old material; 

Huang et al., 1996) and the radiocarbon analyses of enchytraeid tissues showed a greater 

assimilation of C that had resided in the ecosystem for more than a decade (on average ~14 yrs 

old) at the control site. The results from the partitioning study showing a lower contribution of the 

autotrophic component to RECO at the control site confirmed that the more limited supply of fresh 

labile plant-derived C substrates entering the soil was also reflected in the animal feeding activities 

by showing a greater assimilation of older C sources. This feeding flexibility exhibited by 

enchytraeids in response to changes in resource availability and quality has been observed in 

previous plant-free laboratory incubations of this soil (Briones et al., 2010). This implies that, in 

stark contrast to some previous results with mineral soils (Fontaine et al., 2007), a reduced supply 

of fresh plant-derived C does not necessarily prevent biological access to more recalcitrant organic 

pools in soils but may, importantly, have the reverse effect when the feeding habits of the 

dominant soil fauna are taken into consideration.

In conclusion, our findings suggest that vegetation exerts a crucial control on ecosystem C 

turnover in these organic rich-soils, and despite 13 years of simulated warming of soils containing 

C aged up to hundreds of years old, warming did not lead to a significant release of old C. Indeed, 

C turnover did not acclimate to temperature, with warming resulting in higher CO2 emissions and A
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DOC release, which shows the sensitivity of contemporary C turnover to climate change. 

Therefore, as long as these autothrophic responses can be maintained in the long term these thick 

organic soils could be preserved. However, recent evidence indicates that changes in hydrology 

(Tiang et al., 2020) and/or in the composition of the plant (Street et al., 2020) and faunal 

communities (Juan-Ovejero et al., 2020) might compromise the C sink capacity of these northern 

peatlands. Clearly, the long-term temperature sensitivity of SOC turnover in these systems will 

strongly depend on the balance between the environmental constraints on SOM decomposition 

(soil physical and chemical characteristics), plant community composition and the biological 

accessibility of labile and recalcitrant pools, which is also driven by climatic variations 

(temperature and precipitation); these interactive effects need to be adequately incorporated into 

soil C models for them to make accurate predictions of future soil C stores. 
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Figure legends 
Figure 1. Effects of long-term climate change manipulations on CO2 emissions at GDF (control 

treatment) and SNK (warmed treatment). (a) Averaged ecosystem respiration (RECO) at GDF and 

SNK for every full sampled year (averaged values of the two seasonal samplings (2005-2017)) and 

the final summer values measured in August 2018. (b) Averaged seasonal RECO during the whole 

investigated period (2015-2018) at each site. (c) Cumulative RECO values during the whole 

investigated period (2005-2018) at each site. Error bars represent standard errors (SE) and 

asterisks show significant differences between treatments per sampling time (P < 0.05).

Figure 2. Effects of long-term climate change manipulations on the age of the respired CO2 at 

GDF (control treatment) and SNK (warmed treatment). (a) Linear regressions of the 14C 

concentrations (%modern) of respired CO2 for samples collected in August 2006, 2007, 2008, 

2010 and 2018 in the control and warmed treatments (n = 15) together with the atmospheric value 

at the time of the sampling. (b) RECO partitioning into autotrophs and heterotrophic contributions; 

error bars represent standard errors (SE) and asterisks show significant differences between sites 

(P < 0.05; n = 3). 

Fig. 3. Effects of long-term climate change manipulations on soil C and DOC leached at GDF 

(control treatment) and SNK (warmed treatment). (a) Linear regressions of the 14C concentrations 

(%modern) of soil samples collected in August 2006, 2007, 2008, 2010 and 2018 (n = 15) in the 

control and warmed treatments together with the atmospheric value at the time of the sampling.  

(b) DOC concentrations (mean +/- SE; n = 3) in the leachates collected in August 2006, 2007, 

2008, 2010 and 2018 in the control and warmed treatments together with the overall mean per site 

(inset). (c) Linear regressions of the 14C concentrations (%modern) of DOC collected in August 

2006, 2007, 2008, 2010 and 2018 in the control and warmed treatments (n = 15) together the 

atmospheric value at the time of the sampling. 

Fig. 4. Effects of long-term climate change manipulations on abundances, vertical distribution and 

C assimilation of enchytraeids collected at GDF (control treatment) and SNK (warmed treatment). 

(a) Averaged abundances of enchytraeids (individuals m-2) recorded in August 2006, 2007, 2008, 

2010 and 2018 (n = 3) together with the overall mean per site (inset). (b) Vertical distribution of 

enchytraeids (individuals m-2) along the soil profile (0-2, 2-4, 4-6, 6-8 and 8-10 cm) during the 

whole investigated period. Error bars represent standard errors (SE) and asterisks show significant 

differences between sites (insets) and between sites per sampling date (P < 0.05; n = 3). (c) Linear 

regressions of the 14C concentrations (%modern) of enchytraeid tissue samples collected in in A
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August 2006, 2007, 2008, 2010 and 2018 in the control and warmed treatments (n = 15) together 

the atmospheric value at the time of the sampling. 
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