
1.  Introduction
Understanding the state and the future of shelf sea ecosystems is essential from the point of view of econ-
omy, conservation and the global carbon cycle (Borges et al., 2006; Friedlingstein et al., 2006; Jahnke, 2010; 
Pauly et al., 2002). Reanalysis provide our best estimate of the ocean state by optimally combining the state 
of the art knowledge from models with the most up to date observations. In marine biogeochemistry the 
prevailing approach is to assimilate satellite products into models, either for Ocean Color (OC) derived 
total chlorophyll (e.g., Carmillet et al., 2001; Ciavatta, Kay, Saux-Picart, et al., 2016; Ciavatta, Torres, Saux-
Picart, & Allen, 2011; Fontana et al., 2010; Ford & Barciela, 2017; Ford, Edwards, et al., 2012; Gregg, 2008; 
Hoteit, Triantafyllou, & Petihakis,  2005; Ishizaka,  1990; Kalaroni et  al.,  2016; Natvik & Evensen,  2003; 
Nerger & Gregg,  2007,  2008; Pradhan et  al.,  2019; Triantafyllou et  al.,  2007), phytoplankton functional 
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floats and gliders, some of which will provide three-dimensional maps of essential ecosystem variables on 
the North-West European (NWE) Shelf. In a foreseeable future operational centers will use multi-platform 
assimilation to integrate those valuable data into ecosystem reanalysis and forecast systems. Here we 
address some important questions related to glider biogeochemical data assimilation (DA) and introduce 
multi-platform DA in a preoperational model of the NWE Shelf sea ecosystem. We test the impact of 
the different multi-platform system components (glider vs. satellite, physical vs. biogeochemical) on the 
simulated biogeochemical variables. To characterize the model performance, we focus on the period 
around the phytoplankton spring bloom, since the bloom is a major ecosystem driver on the NWE Shelf. 
We found that the timing and magnitude of the phytoplankton bloom is insensitive to the physical DA, 
which is explained in the study. To correct the simulated phytoplankton bloom one needs to assimilate 
chlorophyll observations from glider or satellite Ocean Color (OC) into the model. Although outperformed 
by the glider chlorophyll assimilation, we show that OC assimilation has mostly desirable impact on the 
sub-surface chlorophyll. Since the OC assimilation updates chlorophyll only in the mixed layer, the impact 
on the sub-surface chlorophyll is the result of the model dynamical response to the assimilation. We 
demonstrate that the multi-platform assimilation combines the advantages of its components and always 
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Plain Language Summary  North-West European (NWE) Shelf is a region of major 
importance for both European economy and climate. Observational oceanography has entered an 
important era of new observing biogeochemical platforms, such as Biogeochemical-Argos and gliders. 
Gliders are being currently deployed to measure three-dimensional distributions of some essential 
biogeochemical variables on the NWE Shelf. This work establishes a multi-platform assimilative system 
on the NWE Shelf which will be used to combine multiple different types of observing platforms (e.g., 
satellite, gliders) with our up to date models in order to optimize our estimate and forecast of the NWE 
Shelf ecosystem state. We provide an understanding for how the different components of the system 
interact. We demonstrate that the assimilative system is skilled to combine physical data with satellite and 
glider data for chlorophyll, as well as the glider data for oxygen. The work establishes the foundations of a 
system that is planned to be used in the future operational oceanography on the NWE Shelf.
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type (PFT)-specific chlorophyll (Ciavatta, Brewin, et al., 2018; Ciavatta, Kay, Brewin, et al., 2019; Skákala, 
Bruggeman, et al., 2020; Skákala, Ford, et al., 2018), or surface radiances (Ciavatta, Torres, Martinez-Vi-
cente, et al., 2014; Gregg & Rousseaux, 2017; Jones et al., 2016; Shulman et al., 2013; Skákala, Bruggeman, 
et al., 2020). Additionally a number of studies have assimilated biogeochemical data from in situ meas-
urements, either using single location profiles (e.g., Allen et al., 2003; Hoteit, Triantafyllou, Petihakis, & 
Allen, 2003; Lenartz et al., 2007; Torres et al., 2006), or using surface data from ships, floats and buoys (e.g., 
Anderson et al., 2000; Cossarini, Lermusiaux, & Solidoro, 2009; Song et al., 2016). The typical disadvantage 
of the traditionally assimilated biogeochemical data-sets is that they are either constrained to the ocean 
surface (e.g., in the case of satellite data), or they are typically limited to a single location (in the case of 
vertically measured data). Assimilating such data into the model has either only local impact, or its impact 
on biogeochemical fields is typically constrained to the upper oceanic layer, with uncertain impact on the 
vertical profiles of biomass, or nutrients.

However, the situation on the data-front is rapidly changing, with new programs (e.g., AtlantOS, Visbeck 
et al., 2015) aiming at revolutionizing biogeochemical oceanography with novel observing platforms cov-
ering large parts of the ocean both horizontally and vertically, such as floats deployed in the Biogeochem-
ical-Argo program (e.g., Germineaud et al., 2019; Johnson, 2016; Johnson & Claustre, 2016), and gliders 
with optical and biogeochemical sensors (Telszewski et al., 2018). Some of the Argo float oxygen data were 
already assimilated to constrain the biogeochemistry in the Southern Ocean (Verdy & Mazloff, 2017) and 
Argo-measured chlorophyll was assimilated to improve phytoplankton dynamics in the Mediterranean Sea 
(Cossarini, Mariotti, et al., 2019). This new observational activity quite understandably focuses on regions 
of high importance for fisheries, economy and climate, such as the North-West European (NWE) Shelf (e.g., 
Legge et al., 2020), where a number of gliders have been deployed as a part of the Alternative Framework to 
Assess Marine Ecosystem Functioning in Shelf Seas (AlterECO) program (http://projects.noc.ac.uk/altere-
co/). The rapid development of these new autonomous observation systems opens up an entirely new range 
of possibilities on how to optimally integrate multi-platform observing networks with our present oceano-
graphic models (Bell et al., 2015; Lellouche et al., 2013). The observational work on the NWE Shelf from the 
AlterECO project is coupled to a sister program, the CAMPUS (Combining Autonomous observations and 
Models for Predicting and Understanding Shelf seas, https://www.campus-marine.org/) project, aiming to 
consistently combine the different sources of information, such as gliders, satellite OC data and models, in 
order to improve our capability to understand, represent and forecast the NWE Shelf biogeochemistry (e.g., 
spring bloom, carbon and nutrient cycle, oxygen depletion events). Future plans, based on CAMPUS and 
in line with the European Copernicus Marine Environment Monitoring Service (CMEMS), are to have a 
multi-platform assimilative system on the NWE Shelf, where the autonomous vehicles will navigate to spe-
cific locations using a combination of Artificial Intelligence (AI) and model forecast, to observe important 
processes such as the onset of the phytoplankton bloom, or hypoxic events.

Trying to establish glider data assimilation (DA) as part of such a multi-platform assimilative system often 
leads to two non-trivial problems: (1) how to consistently combine high resolution glider data with much 
coarser model resolution, (2) how to achieve reasonable consistency between the assimilation-corrected 
variables and the coupled physical-biogeochemical model dynamics. The problem of dynamical consistency 
needs special mention, since both physical and biogeochemical fields have typically much larger gradients 
in the vertical than in the horizontal dimension. The vertical correlation length scales have large spatio-
temporal variability and model dynamics can be quite sensitive to spurious vertical gradients (Doney, 1999; 
Doney et al., 2004; Oschlies & Garçon, 1999). Such model sensitivity is often noticed when physical data 
(such as sea surface height, or temperature and salinity) are assimilated into the model, as the spurious 
vertical mixing introduced by such assimilation is known to often degrade the skill of the biogeochemical 
model (e.g., Berline et al., 2007; El Moussaoui et al., 2011; Holt et al., 2014; Park et al., 2018; Raghukumar 
et al., 2015; While et al., 2010). However, similar issues can be easily overlooked when we assimilate surface 
biogeochemical data (except extreme regions with substantial small-scale horizontal variability, such as the 
Gulf Stream, Anderson et al., 2000), since the biogeochemical fields have smaller gradients in the horizontal 
direction than in the vertical, which means they are more dynamically stable in the horizontal than in the 
vertical direction. For the gliders, it is of vital interest to understand the potentially complex interaction 
between the physical and the biogeochemical DA, or the interplay between the different biogeochemical 
variables updated by the assimilative system.
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In this study we extend the operational assimilative system on the NWE Shelf to successfully produce a 
multi-platform reanalysis including both physical (satellite sea surface temperature, temperature and sa-
linity from in situ platforms and an AlterEco glider) and biogeochemical (total chlorophyll a and oxygen 
from an AlterECO glider, and chlorophyll a from a satellite OC product) variables. The main focus of the 
study is to assess the impact of the different multi-platform assimilative system components (satellite vs. 
glider, physical vs. biogeochemical) on the simulated ecosystem processes in relation to the phytoplankton 
spring bloom. Being able to estimate the impact of the different system components is important, since it 
indicates what the assimilation impact will be on the simulated biogeochemistry in regions where only a 
specific type of data (e.g., satellite OC, physical variables) is available. The focus on the processes around the 
spring bloom is a natural choice due to (1) the availability of high-quality chlorophyll glider data, and (2) 
because the spring bloom is a key driver of the ecosystem dynamics on the NWE Shelf (Henson et al., 2009; 
Lutz et al., 2007). The results of this study should form a basis for an integrated multi-platform assimilative 
system, that will optimize the available information from observations and models in order to improve our 
understanding of the NWE Shelf biogeochemistry. The assimilated biogeochemical glider variables were se-
lected based on the data availability, but both chlorophyll and oxygen are expected to play an important role 
in the future multi-platform operational assimilation: chlorophyll is a proxy for phytoplankton biomass, 
which forms the base of the marine food web, while oxygen needs to be monitored and forecast in order to 
identify oxygen depletion events (i.e., hypoxia, Vaquer-Sunyer & Duarte, 2008), which can have disastrous 
impacts on marine life.

2.  Methods
The study uses a hindcast version of the operational modeling system for the NWE Shelf run by the Met 
Office in the framework of the CMEMS, that is, the physical model Nucleus for European Modeling of the 
Ocean (NEMO, Madec et al., 2015) coupled through the Framework for Aquatic Biogeochemical Models 
(FABM, Bruggeman & Bolding, 2014) with the biogeochemical model European Regional Seas Ecosystem 
Model (ERSEM, Baretta et  al.,  1995; Blackford,  1997; Butenschön et  al.,  2016). We used measurements 
from an AlterEco glider that operated in the central North Sea between May and August 2018 providing 
data for temperature, salinity, chlorophyll (derived from fluorescence), and oxygen concentrations. In mul-
ti-platform assimilation the glider data were complemented with the Ocean Color-Climate Change Initi-
ative (OC-CCI) satellite product of the European Space Agency (ESA) for total chlorophyll (version 3.1, 
Sathyendranath et al.,  2019), sea surface temperature (SST) data from the GCOM-W1/AMSR-2, NOAA/
AVHRR, MetOp/AVHRR, MSG/SEVIRI, Sentinal-3/SLSTR, and Suomi-NPP/VIIRS satellite products, and 
the temperature and salinity in situ data from the EN4 data set (Good et al., 2013), which includes profiles 
from Argo floats, fixed moored arrays, XBTs, CTDs, gliders, and marine mammals. The physical and bioge-
ochemical data were assimilated on a daily basis into NEMO-FABM-ERSEM using NEMOVAR (the assimi-
lative system used operationally by the Met Office, King et al., 2018; Mogensen, Balmaseda, & Weaver 2012; 
Mogensen, Balmaseda, Weaver, et al., 2009; Waters et al., 2015).

The model free simulation was run from September 1, 2017 until the end of the year 2018 and was initialized 
from 2016–2018 run of a very similar model configuration presented in Skákala, Bruggeman, et al. (2020). 
The free run outputs have been analyzed for the period of the glider data availability (May 8–August 15, 
2018). The assimilative runs used identical model settings as the free run, only with the added assimilation 
components. The different assimilative runs compared in this study are (see also Table 1): (1) physical DA 
(satellite SST, temperature and salinity from EN4 data and the AlterEco glider), (2) satellite OC total chloro-
phyll a assimilation, (3) AlterEco glider chlorophyll a assimilation, (4) AlterEco glider oxygen assimilation, 
and (5) multi-platform assimilation combining all the data from (1) to (4). Note that wherever we mention 
the assimilation of specific data (e.g., glider chlorophyll) we mean a simulation where only those data have 
been assimilated (as opposed to multi-platform assimilation, which assimilates all the available data). All 
the assimilative runs were started from the initial value conditions produced by the free simulation for May 
8, 2018.

SKÁKALA ET AL.

10.1029/2020JC016649

3 of 23



Journal of Geophysical Research: Oceans

2.1.  The Physical Component: NEMO

The NEMO ocean physics component (OPA) is a finite difference, hydrostatic, primitive equation ocean 
general circulation model (Madec et al., 2015). The NEMO configuration used in this study is similar to the 
one used by Ford, van der Molen, et al. (2017), Skákala, Ford, et al. (2018), and almost identical to Skákala, 
Bruggeman, et al. (2020): we use the CO6 NEMO version, based on NEMOv3.6, a development of the CO5 
configuration explained in detail by O'Dea et al. (2017). The model has 7 km spatial resolution on the Atlan-
tic Margin Model (AMM7) domain using a terrain-following z* − σ coordinate system with 51 vertical levels 
(Siddorn & Furner, 2013). The lateral boundary conditions for physical variables at the Atlantic boundary 
were taken from the outputs of the Met Office operational 1/12° North Atlantic model (NATL12, Storkey 
et al., 2010); the Baltic boundary values were derived from a reanalysis produced by the Danish Meteorolog-
ical Institute for CMEMS. We use annually varying river discharge based on data from Lenhart et al. (2010). 
The model was forced at the surface by atmospheric fluxes provided by an hourly and 31 km resolution 
realization (HRES) of the ERA5 data set (https://www.ecmwf.int/).

2.2.  The Biogeochemical Component: ERSEM

ERSEM (Baretta et al., 1995; Butenschön et al., 2016) is a lower trophic level ecosystem model for marine 
biogeochemistry, pelagic plankton, and benthic fauna (Blackford, 1997). The model splits phytoplankton 
into four functional types largely based on their size (Baretta et al., 1995): picophytoplankton, nanophy-
toplankton, diatoms, and dinoflagellates. ERSEM uses variable stoichiometry for the simulated plankton 
groups (Baretta-Bekker et al., 1997; Geider et al., 1997) and each PFT biomass is represented in terms of 
chlorophyll, carbon, nitrogen, and phosphorus, with diatoms also represented by silicon. ERSEM preda-
tors are composed of three zooplankton types (mesozooplankton, microzooplankton, and heterotrophic 
nanoflagellates), with organic material being decomposed by one functional type of heterotrophic bacteria 
(Butenschön et al., 2016). The ERSEM inorganic component consists of nutrients (nitrate, phosphate, sil-
icate, ammonium, and carbon) and dissolved oxygen. The carbonate system is also included in the model 
(Artioli et al., 2012).

We used in this study a similar ERSEM configuration to Skákala, Bruggeman, et  al.  (2020), but unlike 
Skákala, Bruggeman, et al.  (2020) we implemented an updated ERSEM version (v20.10), with a notable 
upgrade to the benthic code. The ERSEM parametrization is identical to the one described in Butenschön 
et  al.  (2016). The Atlantic boundary values for nitrate, phosphate, silicate and oxygen were taken from 
World Ocean Atlas (Garcia et al., 2013) and dissolved inorganic carbon from the GLODAP gridded data 
set (Key et al., 2015; Lauvset et al., 2016), while plankton and detritus variables were set to have zero flux-
es at the Atlantic boundary. The ERSEM irradiance was calculated using a new bio-optical module im-
plemented in the NEMO-FABM-ERSEM AMM7 configuration by Skákala, Bruggeman, et al. (2020). The 
bio-optical module resolves light spectrally and distinguishes between downwelling direct and diffuse 
streams. The module is forced by ERA5 atmospheric inputs (https://www.ecmwf.int/) for total vertically 
integrated ozone, water vapor, cloud cover, cloud liquid water and sea-level air pressure, as well as by a 
satellite product for aerosol optical thickness (Moderate Resolution Imaging Spectroradiometer, MODIS, 
https://modis.gsfc.nasa.gov/data/dataprod).
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Experiment Satellite SST EN4 T&S Glider T&S Satellite OC Glider chl a Glider O2

Physical DA Yes Yes Yes No No No

Satellite OC DA No No No Yes No No

Glider chl a DA No No No No Yes No

Glider O2 DA No No No No No Yes

Multi-platform DA Yes Yes Yes Yes Yes Yes

Abbreviations: T, temperature; S, salinity; EN4, EN4 in situ data set.

Table 1 
The Observations Assimilated in the Different Data Assimilation (DA) Experiments
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2.3.  The Assimilative System: NEMOVAR

NEMOVAR is a variational DA system (Mogensen, Balmaseda, & Weaver  2012; Mogensen, Balmaseda, 
Weaver, et al., 2009; Waters et al., 2015) used for operational ocean DA at the Met Office via the assimilation 
of satellite OC derived (total, or PFT) chlorophyll concentrations, NEMOVAR has been demonstrated as be-
ing highly successful in improving the phytoplankton community structure (PFT chlorophyll assimilation), 
phytoplankton seasonal cycle, and the timing and magnitude of the spring bloom (Skákala, Bruggeman, 
et al., 2020; Skákala, Ford, et al., 2018). There are also indications that satellite OC assimilation can improve 
the carbon cycle (Skákala, Bruggeman, et al., 2020; Skákala, Ford, et al., 2018). When it comes to the non-as-
similated variables, satellite OC reanalysis typically has a comparable skill to the free run (Skákala, Brugge-
man, et al., 2020; Skákala, Ford, et al., 2018). The satellite OC chlorophyll assimilation using NEMOVAR on 
the NWE Shelf has been thoroughly validated on bi-decadal time-scales (Kay et al., 2019), showing a good 
overall skill and no spurious trends in biogeochemical tracer concentrations.

In this study the observations are assimilated on a daily basis. The model is first run for the day and back-
ground values are calculated in observation space by interpolating the model fields to the observation lo-
cations at the nearest model time step (300 s) to the observation time, an approach known as First Guess 
at Appropriate Time (FGAT). NEMOVAR is then run, calculating a set of increments for each updated 
variable on the model grid. After the assimilation step the model is re-run with the increments applied to 
the model variables gradually at each model time step using incremental analysis updates (IAU, Bloom 
et al., 1996). For the physical variables the increments are calculated for temperature, salinity, sea surface 
height and the horizontal velocity components, by accounting for their correlations by transforming those 
variables through a set of linear balancing equations into an independent set of variables that is assimilated 
separately. For biogeochemical variables, the increments are initially calculated for the observed variable. 
For total chlorophyll the assimilation is applied in log-space, since chlorophyll is typically log-normally 
distributed (Campbell, 1995). After calculating the total chlorophyll increments, we use a balancing mod-
ule to split those increments into the model state variables. The applied scheme (Skákala, Bruggeman, 
et al., 2020; Skákala, Ford, et al., 2018) redistributes total chlorophyll increments into the 4 ERSEM PFTs 
based on background PFT-to-total chlorophyll ratios. The PFT chlorophyll is used to update the remaining 
PFT components (carbon, phosphorus, nitrogen for all PFTs, silicon for diatoms) following the background 
stoichiometric ratios. In the case of oxygen assimilation, the only updated variable is the simulated oxygen 
concentration. There were attempts to extend the currently applied balancing scheme to other ERSEM 
variables (e.g., nutrients), but so-far this produced sub-optimal results degrading the biogeochemical model 
skill (see discussion in Skákala, Ford, et al. [2018]). Any combined physical-biogeochemical assimilation in 
NEMOVAR is weakly coupled, which means that the physical and the biogeochemical variables are assim-
ilated separately, with physical assimilation impacting biogeochemistry only through the model dynamics, 
and no feedback from biogeochemistry to physics.

The multi-platform assimilation is based on the development from Waters et al. (2015) extended to biogeo-
chemical variables by Ford (2020), that is, the combined assimilation of satellite OC and glider chlorophyll 
data is performed by following a scheme previously applied to temperature by Waters et al. (2015). The sat-
ellite and in situ glider data are combined to calculate a single set of 3D increments, while allowing for dif-
ferent observation errors to be specified for the different data sources (for the details see Waters et al. [2015] 
and Ford [2020]). Since each of the physical data, chlorophyll and oxygen assimilation provides increments 
for different variables, the multi-platform assimilation simply aggregates the increments from the physical, 
chlorophyll and oxygen assimilative components.

The background covariances are represented as a product of background variances and a diffusion opera-
tor (King et al., 2018; Mirouze & Weaver, 2010). Within the diffusion operator, the same length scales are 
set for all the assimilated (physical, biogeochemical) variables. The horizontal correlation length scales 
are specified a priori, and are based on two different length scales, a longer 100 km correlation scale and 
a shorter length scale based on the first baroclinic Rossby radius of deformation (King et al., 2018). The 
vertical length scales use the scheme from Waters et al. (2015), King et al. (2018), and Ford (2020), where 
NEMOVAR calculates directly the set of 3D increments (we call this scheme a “3D variant”) using flow-de-
pendent vertical length scales (ℓ), which are the following function of depth (d):
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where dml is the mixed layer depth (MLD) and G(d) is the vertical grid 
spacing as a function of depth. Equation 1 means the surface length scale 
is equal to half of the MLD, the length scale decreases linearly with depth 
until the MLD, while beneath MLD the length scales are two times the 
local vertical grid resolution. Such vertical correlation length scales are 
designed to minimize any spurious mixing of surface increments beneath 
the mixed layer (King et al., 2018). It should be noted that satellite OC DA 
in some previous studies (e.g., Skákala, Bruggeman, et al., 2020; Skákala, 
Ford, et al., 2018) used a “2D variant,” where surface chlorophyll incre-
ments were applied throughout the mixed layer. Both 2D and 3D variants 
were tested in this study and we have found that they produced almost 
identical results (not shown here). In this study we will present the out-
puts of the 3D variant, but these are representative of both methods.

NEMOVAR has two important drawbacks: (1) the background errors (square-root of background variances) 
have to be specified mostly a priori and those do not always capture how the reanalysis approximates the 
true state, (2) it does not account for the observational error correlations. Both (1 and 2) tend to artificially 
increase the impact of the assimilated observations (especially when there is high density of observations) 
and likely contribute to the fact that biogeochemical reanalysis on the NWE Shelf are relatively insensitive 
to the precise value of the background-to-observational error ratio (e.g., Skákala, Ford, et al., 2018). Then, 
provided that the reanalysis state is sufficiently internally consistent, NEMOVAR reanalysis on the NWE 
Shelf tend to converge for a wide interval of background-to-observational error ratios towards the assimi-
lated observations (Skákala, Bruggeman, et al., 2020; Skákala, Ford, et al., 2018). Improvements could be 
achieved by using hybrid methods (e.g., background errors calculated as a weighted combination of the 
parameterized component and a flow-dependent component calculated from an ensemble), or flow-de-
pendent iterative methods based on error diagnostics, such as the scheme of Hollingsworth and Lönn-
berg (1986), Andersson (2003), and Desroziers et al. (2005) (e.g., Cossarini, Mariotti, et al., 2019; Mattern 
et al., 2018). For physical assimilation (King et al., 2018) the background errors were estimated using the 
innovation method of Hollingsworth and Lönnberg (1986) applied to innovations from an existing reanal-
ysis by O'Dea et al. (2017), with background errors between 1 and 3.5 times larger than the observational 
errors (Table 2). For biogeochemical assimilation the background errors, Σ{Qbkg}, were estimated from the 
observational-to-free run differences and observational errors, Σ{Qo} (Qbkg, Qm, and Qo stand subsequently 
for the background, model free run and observed concentrations), along the scheme of Skákala, Brugge-
man, et al. (2020):

    2 2
bkg m o oΣ{ } [ ] Σ{ } ,Q Q Q Q� (2)

which assumes that for a suitable spatiotemporal binning the model and observational errors are uncorre-
lated (Skákala, Bruggeman, et al., 2020). In the case of the glider data the total observational errors (includ-
ing representation error) were estimated from the difference between variances of the observations, V{Qo}, 
and the variances of the true state, V{Qt}:

 o o tΣ{ } { } { },Q V Q V Q� (3)

where the variances of the true state were estimated from the model outputs. This scheme assumes that 
the observations have zero bias and that (for the limited spatiotemporal range of glider data) the observa-
tional errors and the true state deviations from the mean are uncorrelated. After estimating the observa-
tional errors for gliders, one proceeds with Equation 2 to estimate the corresponding background errors. 
The methods based on Equation  2 and Equation  3 produced background and observational errors with 
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Component Updated variables B-O error ratio

Satellite OC chl a PFT components 2.3

Glider chl a PFT components 1.4

Glider O2 Oxygen 0.77

Satellite T T, S, SSH, U,V 1.55

In situ T T, S, SSH, U,V 1.04

In situ S T, S, SSH, U,V 3.42

Abbreviations: T, temperature; S, salinity; SSH, sea surface height; U,V, 
horizontal velocity components.

Table 2 
Parts of the Multi-Platform Assimilative System With the List of the 
Updated Physical-Biogeochemical Variables and the Mean Values of the 
Background-to-Observational Error Ratio (B-O Error Ratio, With Error 
Understood as Standard Deviation
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comparable values, with background-to-observational error ratios on av-
erage between 0.77 and 2.3 (see Table 2). For the two different chlorophyll 
observational products, the estimate of glider chlorophyll error (using 
Equation 3) turned out to be on average 22% lower than the satellite OC 
chlorophyll error.

2.4.  Glider Data

The study used data from a Slocum glider (Teledyne Webb Research, Fal-
mouth, USA) named Cabot (Unit 345, National Oceanography Center, 
Southampton) deployed during the AlterEco mission (deployment 454). 
The glider sampling transect was situated in the Central North Sea (see 
Figure 1), between May and August 2018, collecting data for temperature 
and salinity (Seabird SBE42 CTD), colored dissolved organic matter, par-
ticulate backscattering, chlorophyll a fluorescence (WETLabs ECOpuck), 
and oxygen (Aanderaa AA4831 optode). After Quality Control (QC) the 
quenching-corrected chlorophyll (derived from fluorescence) and oxygen 
concentrations were available for slightly different periods: chlorophyll 
for May 8–August 15, 2018 and oxygen for a shorter period of May 8–June 
30, 2018. The Cabot glider was chosen because it provided high-quality 
data, but the period of the glider mission was also of special interest for 
assimilation, since it marks a known discrepancy between the timing of 
the spring bloom in the model and observations, with the model biased 
towards a late bloom (see Skákala, Bruggeman, et al., 2020). The QC glid-
er outputs contained a substantial number of data points (2  ×  106 for 
chlorophyll and 3 × 105 for oxygen) which were mapped to the model 
AMM7 grid (each observation to the nearest model grid point). The ob-
servations that were mapped on the same day into the same model grid 
point were then averaged into a single value. The grid-averaging of glider 
observations is a practice adopted in the physical DA to avoid assimilating 
many observations at higher resolution than the model can represent. 
However, our tests have shown that the impact of grid-averaging on the 
biogeochemical reanalysis was negligible. During each day the glider typ-
ically covered three model horizontal grid-cells and for each model hori-
zontal location the glider scanned nearly the full vertical water column.

The glider data (publicly available from www.bodc.ac.uk) were processed 
by the National Oceanography Center (NOC) AlterECO team using the 
GEOMAR glider toolbox for salinity and oxygen lag corrections (fol-
lowing Bittig et  al.  [2014]). The glider was fitted with a standard non-
pumped SBE CT sensor, a WETLabs ECOpuck to measure chlorophyll 
fluorescence, and an Aanderaa 4,330 oxygen optode. Oxygen data were 

corrected based on comparisons between Winkler samples and local crossings with the rest of the AlterEco 
glider fleet.

The fluorescence sensor on Cabot (454) was calibrated prior to deployment, and recovered data were con-
verted to chlorophyll concentration from raw voltages using the manufacturer supplied calibration routine. 
The derived chlorophyll record was filtered such that negative values were set to zero. Multiple quench-
ing corrections were tested, including: Hemsley et al. (2015), Swart et al. (2015), Biermann et al. (2015), 
and Xing et al. (2012). The former three methods rely on the use of algal particle scattering to correct for 
quenching. However, these approaches proved unsatisfactory for use in Case 2 waters (e.g., the North Sea). 
Consequently, the Xing et al. (2012) method was adopted. Under this approach the maximum value of chlo-
rophyll concentration above the mixed layer depth (MLD) is extrapolated to the surface for daytime profiles. 
Night-time chlorophyll profiles are not corrected. MLD is calculated from glider CTD profiles according to 
the method of Holte and Talley (2009).
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Figure 1.  The panels show the NEMO-FABM-ERSEM (AMM7) domain 
with the Cabot glider data locations (chlorophyll data locations for the 
full May 8–August 15, 2018 mission, oxygen data for a shorter period of 
May 8–June 29, 2018) marked by yellow dots, as well as glider horizontal 
area of impact on the reanalysis. The color scale in the two panels shows 
the weekly (June 23–29, 2018) mean percentage (%) difference between 
reanalysis and free run in the surface chlorophyll (upper panel) and 
surface oxygen (bottom panel) concentrations, and reveals the horizontal 
extent of the glider's impact on the assimilation. The percentage difference 
is calculated by dividing the absolute value of the difference between 
reanalysis and the free run, with the free run. The black lines show the 
boundary of the North-West European (NWE) Shelf (<200 m bathymetry).

http://www.bodc.ac.uk
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2.5.  Used Metrics (Definitions)

The study uses two metrics: (1) model-to-observation bias (ΔQmo) defined as

   mo m oΔ ,Q Q Q� (4)

where, as before, Qm are the model free run and Qo the observed concentrations (by the observations we 
will automatically mean the glider data), and (b) Bias-Corrected Root Mean Square Difference (BC RMSD, 
ΔRDQmo) defined as

    2
RD mo m o moΔ [ Δ ] .Q Q Q Q� (5)

The BC RMSD metric is applied in two different contexts: as a “spatial BC RMSD” and a “temporal BC 
RMSD.”

In the case of spatial BC RMSD, we calculate for each day (td) the difference between the model and the 
observed daily mean, which we call model-to-observation daily bias:

   mo m d o dΔ ( ) ( ) ( ) ,dQ t Q t Q t� (6)

where Qm (td) and Qo (td) are the model free run and the observation data from the day td, and the model free 
run is taken only from the spatial locations visited by the glider (about 150 model grid points per day). Then 
we calculate “daily BC RMSD,” ΔRDQmo (td), by applying Equation 5 on each day using the model and the 
observation daily data, as well as their daily biases:

    2
RD mo d m d o d mo dΔ ( ) [ ( ) ( ) Δ ( )] .Q t Q t Q t Q t� (7)

The spatial BC RMSD, S
RD moΔ Q , is then obtained as a time-average of the daily BC RMSD, that is, averaging 

ΔRDQmo (td) through the glider data availability period (100 days for chlorophyll and 53 days for oxygen):

  S
RD mo RD mo d dΔ Δ ( ) ,tQ Q t� (8)

where  dt  means averaging through the interval of td values. Since the glider moves on the model grid dom-
inantly in the vertical dimension, the spatial BC RMSD mostly measures how well the model simulation 
represents the vertical profile of the glider observations.

The temporal BC RMSD, T
RD moΔ Q , is based on calculating a time series, δ, of the daily mean values (for both 

model, δm, and the observations, δo), averaged through the spatial locations visited by the glider:

      m d d o d o d( ) ( ) , ( ) ( ) ,t Q t t Q t� (9)

then applying Equation 5 to those time series, with bias understood as the model-to-observation difference 
in the temporal mean of the time series data:

          T 2
RD mo m d o d m d o d

d
Δ [ ( ) ( ) ( ) ( ) ] .

t
Q t t t t� (10)

The temporal BC RMSD is designed to capture how the model represents the observed phytoplankton 
phenology.

It should be noted that the metrics discussed in this section are used to measure “the skill” of the assimila-
tive runs by comparing the simulation outputs to the assimilated glider data, rather than to an independent 
validation data set. There are two reasons for this: first, to get sufficient validation data for the limited spatio-
temporal region of this study is nearly impossible, however, most importantly, this study has no ambition to 
produce a skill-assessed reanalysis, its ambition is to test the impact of the assimilative system components 
on the simulated variables. Since the NEMOVAR reanalysis tend to converge under optimal conditions to 
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the assimilated observations (Skákala, Bruggeman, et  al.,  2020; Skáka-
la, Ford, et al., 2018), the performance of the assimilative system can be 
measured by comparing the model to the assimilated data.

3.  Results and Discussion
The model free run shows a late and intense spring bloom, with a timing 
about 1 month later than the bloom observed in the satellite OC and in 
situ data (Figure 2 and Skákala, Bruggeman, et al., 2020). The late timing 
of the model bloom is most likely influenced by the interplay between 
the model vertical mixing scheme and the simulated irradiance (see the 
discussion in Skákala, Bruggeman, et  al.  [2020]). The results from the 
study of Skákala, Bruggeman, et  al.  (2020) are confirmed by Figure  3, 
which shows the chlorophyll concentrations in the region measured by 
the glider between May and August 2018. When the assimilation starts in 
early May (Figure 3), the glider is in the post-bloom period showing some 
deep chlorophyll maxima, whereas the model free run has yet to see the 
onset of the bloom with chlorophyll concentrations predominantly in the 
mixed layer. Since the North Atlantic sees substantial seasonal patterns in 
primary productivity (e.g., Henson et al., 2009), the late and intense mod-
el bloom has a large impact on the biogeochemical model skill (Skákala, 
Bruggeman, et al., 2020).

The simulated surface chlorophyll on the NWE Shelf is typically cor-
rected by the assimilation of OC satellite data (Skákala, Bruggeman, 

et al., 2020; Skákala, Ford, et al., 2018) and the positive impact of satellite OC assimilation on the simulated 
NWE Shelf surface chlorophyll is shown in Figures 4a and 4b. Around the glider locations, it is shown that 
both satellite OC and glider chlorophyll assimilation remove the late simulated bloom and improve the 
surface phytoplankton phenology (Figures 5d, 5f, 6a, and 6b). However, unlike the satellite OC component, 
the glider chlorophyll assimilation has a limited impact on the model domain (Figure 4d). The horizontal 
spatial impact of glider assimilation varies with time (Figures 7a and 7b), but any substantial impact of 
glider assimilation on the simulated chlorophyll (on the level of >10%) is typically constrained to a 50 km 
radius around the glider location (Figure 7a).

Since glider chlorophyll a data were assimilated across the whole water column, the glider chlorophyll as-
similation is also able to substantially improve the sub-surface chlorophyll concentrations (Figure 5f). The 
three skill metrics (bias, spatial and temporal BC RMSD) capturing how the simulated chlorophyll a match-
es with the glider observations were all substantially improved by the glider chlorophyll assimilation: the 
model bias was reduced by almost 50% (Table 3 and Figure 6d), the spatial BC RMSD by 60% (Table 3) and 
the temporal BC RMSD by 70% (Table 3). Unlike glider chlorophyll assimilation, satellite OC assimilation 

SKÁKALA ET AL.

10.1029/2020JC016649

9 of 23

Figure 2.  The mean daily surface chlorophyll concentrations averaged 
across the NWE Shelf for the year 2018. We compare a model free run 
used in this study with the physical data assimilation (DA) (the physical 
DA started on September 1, 2017 from the model free run initial values), 
the satellite OC and the North Sea Biogeochemical Climatology (NSBC) in 
situ data set (Hinrichs et al., 2017). The satellite OC chlorophyll values are 
masked for the October to February period when there is sparsity of data 
due to the extensive cloud cover and the low solar zenith angle. The model 
is shown to have an intense and late spring bloom: the observed bloom is 
much less pronounced than the bloom in the model and the timing of the 
observed bloom is around the early April, as opposed to the early mid-May 
bloom simulated by the model.

Figure 3.  Hovmöller diagrams for the model free run and the observations. The left panel (a) shows the model free run outputs for total chlorophyll a (mg m−3) 
horizontally averaged through the area covered by the glider during each day (the plot is depth vs. time). The middle panel (b) shows the same for the glider-
observed chlorophyll concentrations and the right panel (c) shows the satellite OC chlorophyll observations at the glider locations. The yellow lines mark the 
mixed layer depth of the model free run (left-hand panel) and of the physics-assimilative run (the middle and right-hand panels). The satellite observations are 
plotted in the mixed layer, with the dotted black line broadly corresponding to the average satellite optical depth (Skákala, Bruggeman, et al., 2020). The several 
missing data in the right-hand plot are due to the cloud cover. The missing data at the bottom of panels (a and b) are due to the varying bathymetry along the 
horizontal glider trajectory.
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updates chlorophyll concentrations only in the mixed layer, but the model dynamics propagates the updates 
to chlorophyll beneath the mixed layer and gradually spreads the impact of assimilation across the whole 
water column (Figure 5c). It is encouraging to see that the model dynamics acting on the satellite OC as-
similation increments produces a qualitatively similar change to the sub-surface chlorophyll as the glider 
assimilation (Figures  5c and  5e). We propose a simple explanation based on chlorophyll dynamics: the 
satellite-only assimilative run removes the intense late model bloom in May, removing chlorophyll from the 
mixed layer and increasing the light penetrating into the water column. The increased irradiance combined 
with nutrient availability produces deep chlorophyll maxima around the pycnocline (Figure 5c). Further-
more, the removal of the late (mid-May) bloom in the satellite OC reanalysis means the assimilation also 
removes the gradually deepening chlorophyll maxima (the July to August period in Figures 3b and 4c), as 
the nutrients become confined deeper in the water column. The satellite OC assimilation improves both 
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Figure 4.  Comparison of the time median surface chlorophyll a distributions (mg m−3) for the simulation period 
(May 8–August 15, 2018) and the AMM7 domain. The upper two panels show differences in the mean concentrations 
between the free run (panel a), the multi-platform reanalysis (panel b) and the assimilated satellite OC product (the 
differences are simulated minus observed chlorophyll). The bottom two panels display the impact of the physical 
(panel c) and the glider chlorophyll (panel d) assimilation on the simulated surface chlorophyll a concentrations by 
showing the differences between the two reanalysis and the free run (reanalysis minus free run). The NWE Shelf-wide 
impact of the multi-platform assimilation on the surface chlorophyll a concentrations is dominated by the satellite 
OC assimilation component (not shown here). The multi-platform reanalysis (panel b) is therefore almost identical to 
satellite OC reanalysis.
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temporal BC RMSD (by 55%, Table 3) and spatial BC RMSD (by 15%, Table 3). Although the improvement 
of BC RMSD is in both cases outperformed by the glider chlorophyll assimilation, the substantial reduction 
of temporal BC RMSD by 55% in the satellite OC reanalysis is non-trivial, and it is only possible due to (1) 
a relative consistency between the satellite OC data and the glider surface measurements (Figures 3, 6a, 
and 6b), and (2) a realistic update to sub-surface chlorophyll driven by the model dynamics.

Whilst the physical DA improves the model representation of both temperature and salinity (Figure 6), it is 
unable to correct the late model spring bloom (Figure 2) and has a relatively modest impact on chlorophyll 
concentrations (Figures 3c, 5c, 5e, and 8e). This can be understood as follows: As the pycnocline is primarily 
controlled by temperature and salinity, we expect that assimilating the physical variables may improve ver-
tical gradients in water density and consequently vertical mixing. However, in the well-mixed nutrient-rich 
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Figure 5.  The left-hand panels (a, c, e, and g) demonstrate the spatiotemporal impact of the multi-platform system components on the simulated chlorophyll a 
concentrations (mg m−3) by comparing different simulations to the free run. One major advantage of the left-hand side panels is that they demonstrate how the 
changes introduced by the assimilation propagate vertically with the model dynamics, for example, for the satellite OC assimilation (panel c) that updates the 
model only in the mixed layer (the MLD is marked in panels c and d by a yellow line). The right-hand panels (b, d, f, and h) show the skill of each component 
by comparing the simulations to the glider observations. The first row shows the skill of the free run (panel b) and the required changes to the free run in 
order to better match the glider observations (panel a). The rows beneath the first row compare the chosen reference (free run or glider) with a range of system 
components: (1) the reanalysis assimilating satellite OC chlorophyll (panels c and d), (2) the reanalysis assimilating glider chlorophyll (panels e and f) and (3) 
the multi-platform assimilation (joint physical data, glider chlorophyll and oxygen, and satellite chlorophyll assimilation, panels g and h).
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waters the onset of the spring bloom depends on the interplay between vertical mixing in the upper oceanic 
layer and the irradiance (e.g., Huisman et al., 1999; Smyth et al., 2014; Waniek, 2003). Such interplay is 
closely related to the model atmospheric forcing product for the wind stress and the net incoming short-
wave radiation, but an even greater issue is the model response to the used atmospheric forcing product, 
which consists here mostly of the ERSEM underwater light attenuation, the phytoplankton response to 
specific light conditions and the model vertical mixing scheme. The ERSEM response to the atmospheric 
forcing is known to be sensitive to the forcing temporal resolution, leading to shifts of up to one week in the 
timing of the phytoplankton bloom (Powley et al., 2020). Since the assimilation does not alter the atmos-
pheric forcing, the model mixing scheme, or the phytoplankton response to light, assimilating physical data 
was found to have relatively modest impact on chlorophyll bias, as well as spatial and temporal BC RMSD 
(between 5% and 7%, Table 3). However, the impact of physical DA on the simulated phytoplankton could 
become more substantial within a strongly coupled system (Goodliff et al., 2019). In such system we would 
mutually update the biogeochemical and the physical increments within a balancing scheme, which could 
be ideally defined using a two-way coupled physical-biogeochemical model (e.g., Lengaigne et al., 2007). 
Such development is planned in the foreseeable future.

Finally, we have observed that assimilating glider oxygen into the model has a negligible impact on the sim-
ulated chlorophyll concentrations, with a change to the skill metrics of the order O (10−2) percent (Table 3, 
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Figure 6.  The impact of different multi-platform system components on the model chlorophyll concentrations. The panels (a and b) compare the daily 
chlorophyll values spatially averaged throughout the upper 10 m of the water column, within the part of the model domain visited by the glider. The panels 
(c and d) show the daily values spatially averaged throughout the whole water column, within the part of the model domain visited by the glider (the daily 
time series from Equation 9), and the remaining panels (e and f) show the daily BC RMSD (Equation 7) for the same part of the model domain as the panels 
(c and d). The panels display the skill of the following system components: physical DA (gray color), satellite OC chlorophyll assimilation (orange) and oxygen 
assimilation (brown). These components are compared with the multi-platform assimilative run (joint physical data, glider chlorophyll and oxygen, and 
satellite OC chlorophyll assimilation, green color), the free run (blue), the glider observations (red) and the satellite OC data (pink).
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see also Figures 5c and 5e). This is expected, as within ERSEM the oxygen variable influences phytoplank-
ton concentrations only indirectly through a complex chain of marine chemical and biological processes 
(e.g., through influencing remineralization, or nitrification rates, and through the impact of hypoxia on 
zooplankton).

There is a clear discrepancy between the oxygen time series of the glider and the model free run (Fig-
ures 9, 10a, and 10b), with glider oxygen concentrations steadily decreasing, while the simulated oxygen 
peaks in late May (Figures 10a and 10b). Furthermore, simulated oxygen concentrations have a substantial 
positive bias (25 mmol m−3, Table 3; Figures 10a and 10b) relative to the glider observations. Figure 9a clear-
ly shows that photosynthesis is an important driver of the simulated oxygen, producing a large oxygen surge 
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Figure 7.  The horizontal scales for the impact of the glider chlorophyll (panels a and b) and the glider oxygen (panels c and d) assimilation. The impact 
of glider assimilation is shown for a range of days (between May 8 and June 17, 2018). The impact is calculated by comparing the mean absolute value of 
the difference in chlorophyll (panels a and b), or oxygen (panels c and d) concentration between the reanalysis and the model free run. The mean absolute 
difference is shown relative to the free run values (in %, panels a and c), or in the absolute values (panels b and d). The absolute difference was averaged on 
the circles with 7–200 km radii (the spatial scales shown on the x-axis). The circles were centered around the glider daily mean location. The mean absolute 
differences (y-axis) are shown on a log-scale, a straight line therefore represents an exponential decrease of the assimilation impact as a function of spatial scale.

Variable Free run Phys DA Sat chl a DA Glid chl a DA O2 DA Multi DA

Chl a bias 0.31 mg m−3 +6.8% −80% −46.4% 0% −56.7%

Chl a temporal BC RMSD 0.77 mg m−3 +5.2% −54.6% −70.3% 0% −65.4%

Chl a spatial BC RMSD 1.14 mg m−3 −5.5% −15.3% −61.9% 0% −59%

O2 bias 25 mmol m−3 −3.8% +10.6% +0.7% −97% −98%

O2 temporal BC RMSD 13.5 mmol m−3 −4.3% +10.8% −5.4% −83.8% −83.7%

O2 spatial BC RMSD 29.8 mmol m−3 −7% −5.7% −14.6% −44.5% −47.4%

Note. The skill compares the model simulations with the glider data. The percentage changes in the columns for the assimilative runs are calculated relative to 
the free run skill. The negative percentage means that the bias, or (spatial, temporal) BC RMSD is reduced by the specific system component, whilst the positive 
percentages mean that bias, or (spatial, temporal) BC RMSD, increases.

Table 3 
The Table Demonstrates the Skill Measured by Bias ( 4), Spatial BC RMSD ( 8) and Temporal BC RMSD (Equation 10) of the Free Run and the Relative (%) 
Changes to the Skill Carried by the Different Assimilative System Components
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Figure 8.  Hovmöller diagrams to demonstrate the impact of physical (SST, in situ temperature and salinity, including Cabot glider data) assimilation on the 
model variables. The upper row (a and b) shows the difference between glider (“G” in the title) and free run (“F”) outputs for (a) temperature and (b) salinity. 
The middle row (c and (d shows differences for the same variables between physical reanalysis (“R”) and the free run. The bottom row (e and f) shows the same 
differences between physical reanalysis and the free run, but for the two biogeochemical variables addressed by this study: total chlorophyll and oxygen. The 
two lines in the panel c compare the mixed layer depth of the free run (yellow) and of the physical reanalysis (black). The mixed layer depth has been obtained 
in both cases from the model outputs.

Figure 9.  Hovmöller diagrams for the model free run and the glider observations. The left-hand panel (a) shows the 
model free run outputs for oxygen (mmol m−3) horizontally averaged through the area covered by the glider during 
each day (the plot is depth vs. time). The right-hand panel (b) shows the same for the glider-observed oxygen.
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in the mixed layer during the simulated late spring bloom. Some connection between oxygen and chloro-
phyll concentrations (a proxy for primary productivity) appears also in the glider observations (Figure 9b), 
with the peak in oxygen concentrations located in the neighborhood of the glider deep chlorophyll maxima 
(Figure 3b). As for chlorophyll, a simple way to improve simulated oxygen is to assimilate the glider oxygen 
data into the model (Figures 10d and 11h). Assimilating glider oxygen into the model reduces the oxygen 
bias by 97%, temporal BC RMSD by 84% and spatial BC RMSD by 45% (Table 3). However, as in the case of 
chlorophyll, such assimilation has a limited spatial impact on the NWE Shelf (Figures 7c, 7d, and 12c). Un-
like chlorophyll, the glider oxygen assimilation horizontal impact reduces with spatial scale at a rate largely 
independent of time (Figures 7c and 7d). Beyond the 50 km scale the assimilation horizontal impact decays 
approximately exponentially (a straight line in Figures 7c and 7d), with a halving scale of approximately 
40 km, which means the impact is reduced by an order of magnitude at a 130 km scale.

Since the modeled oxygen concentrations are largely driven by the phytoplankton seasonal cycle, it is not 
surprising that assimilation of either satellite OC, or glider chlorophyll, has a major influence on the sim-
ulated oxygen (Figures 11c, 11e, and 12b). The assimilated chlorophyll modifies the simulated oxygen af-
ter a necessary time-lag, removing the excess oxygen from the model spring bloom and generating some 
deep oxygen maxima in early to mid-June (Figures 11c and 11f). The chlorophyll assimilation consistently 
improves oxygen in the period up to the start of June, but typically degrades oxygen in early to mid-June 
(Figures 10b, 10d, 10f), mostly due to the surge in oxygen concentrations around the deep oxygen maxima 
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Figure 10.  The impact of different multi-platform system components on the model oxygen. The panels (a–d) compare the daily oxygen values spatially 
averaged throughout the whole water column, within the part of the model domain visited by the glider (the daily time series from Equation 9), and the 
panels (e and f) show the daily BC RMSD (Equation 7). The panels display the skill of the following system components: physical DA (gray color), satellite 
OC chlorophyll assimilation (orange), glider chlorophyll assimilation (light blue) and oxygen assimilation (brown). These components are compared with the 
multi-platform assimilative run (joint physical data, glider chlorophyll and oxygen, and satellite chlorophyll assimilation, green color), the free run (blue) and 
the glider observations (red).
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(Figures 11c and 11e). The oxygen surge is likely to be partly driven by the deep chlorophyll maxima, for ex-
ample, by the overestimated chlorophyll concentrations around the deep maxima in the satellite OC assim-
ilation (Figure 5d). However, other drivers such as zooplankton and bacteria respiration are likely to con-
tribute to the deep oxygen maxima. The mechanism for this is suggested by Figures 13c–13f: the chlorophyll 
assimilation removes phytoplankton biomass from the mixed layer, limiting the resources for the simulated 
zooplankton and bacteria, and reducing their concentrations. The reduced phytoplankton concentrations 

SKÁKALA ET AL.

10.1029/2020JC016649

16 of 23

Figure 11.  The left-hand panels (a, c, e, and g) demonstrate the impact of the multi-platform system components on 
the simulated oxygen concentrations (mmol m−3) by comparing different simulations to the free run. These panels are 
particularly well suited to see how chlorophyll assimilation dynamically influences the simulated oxygen. The right-
hand panels (b, d, f, and h) show the skill of each component by comparing the simulations to the glider observations. 
The first row shows the skill of the free run (panel b) and the required changes to the free run in order to better match 
the glider observations (panel a). The rows beneath the first row compare the chosen reference (free run or glider) 
with a range of system components: (1) the reanalysis assimilating satellite OC chlorophyll (panels c and d), (2) the 
reanalysis assimilating glider chlorophyll (panels e and f), and (3) the multi-platform assimilation (joint physical data, 
glider chlorophyll and oxygen, and satellite chlorophyll assimilation, panels g and h).
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seem to have much larger and more consistent impact on the zooplankton concentrations than on bacteria 
(Figures 13c–13f) and the reduced zooplankton concentration means less oxygen is removed through respi-
ration, which likely produces excess oxygen concentrations.

Compared to chlorophyll assimilation, the physical DA has a relatively modest impact on the simulated 
oxygen (Figures 8f, 12a, and 12b), but it tends to consistently improve both the oxygen bias, and the spatial 
and temporal BC RMSD (by 3%–7%, Table 3). The impact of physical DA on the oxygen concentrations can 
be explained by the lowered oxygen saturation concentrations under the increase in temperature within the 
reanalysis (Figure 8c).

Finally, we have combined all the assimilative system components (physical DA, satellite OC, glider chlo-
rophyll and oxygen) into a multi-platform assimilative run and we have shown that multi-platform assimi-
lation has the capability to optimally combine the skill of all its components (Figures 4b, 6d, 6f, 9d, and 9e; 
Table 3). The multi-platform chlorophyll reanalysis is dominated in the vicinity of the glider by the glider 
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Figure 12.  Comparison of the time median surface oxygen distributions (mmol m−3) for the oxygen glider data period 
(May 8, 2018–June 29, 2018). The panels show the impact of the different multi-platform system components on the 
modeled oxygen by comparing the differences between four reanalysis and the free run. The reanalysis presented in the 
panels are the physical DA (panel a), the OC satellite chlorophyll assimilation (panel b), the glider oxygen assimilation 
(panel c) and the multi-platform assimilation (panel d).
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chlorophyll assimilative component (Figures 5e and 5g), whilst further away from the glider it is dominated 
by the satellite OC assimilation (Figure 4d). The multi-platform oxygen reanalysis is dominated near the 
glider locations by the glider oxygen assimilation (Figure 10d), whilst further away from the glider locations 
it is dominantly shaped by the satellite OC assimilation (Figures 12b and 12d).

4.  Summary
Present and future glider missions on the NWE Shelf will provide us with three-dimensional (3D) data 
on some specific biogeochemical variables (presently mostly for chlorophyll and oxygen) combined with 
physical measurements (e.g., temperature and salinity). These data will be, together with satellite missions, 
integrated into our ecosystem models by means of a multi-platform assimilative system. It is of crucial im-
portance to understand what observed variables need to be assimilated in order to represent well a target 
ecosystem indicator, and what assimilation may need to be avoided because it can paradoxically degrade 
the model skill for the target indicator. Furthermore, different data will be available for different spatial 
and temporal regions on the NWE Shelf and it is essential to understand how the limitations imposed by 
the availability of the observational data impact on the quality of the multi-platform reanalysis. To address 
these questions, we explored the impact of different system components (physical data, satellite OC chloro-
phyll, glider chlorophyll and oxygen assimilation) on the simulated ecosystem state, using the operational 
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Figure 13.  The different panels help to interpret the impact of the simulated primary production and respiration on 
the modeled oxygen concentrations. We show the difference between the glider chlorophyll assimilation (left-hand side 
panels (a, c, and e), or OC chlorophyll assimilation (right-hand side panels (b, d, and f), and the model free run (always 
assimilative run minus free run). The difference is shown for (1) the total net primary production (mg C m−3 day−1, 
panels a and b), (2) total zooplankton carbon concentrations (mg C m−3, panels c and d), and (3) heterotrophic bacteria 
carbon concentrations (mg C m−3, panels e and f).
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set-up currently assimilating physical variables and satellite OC chlorophyll. This study has taught us sev-
eral important lessons:

�(1)	� Assimilating physical data (SST, in situ temperature, and salinity) has a negligible impact on the simu-
lated phytoplankton bloom. This is because the modeled phytoplankton bloom depends in the North 
Sea mostly on the model response to the atmospheric forcing (wind stress and solar radiance), which 
remains unchanged by the temperature and salinity assimilation. Since the phytoplankton bloom is an 
essential driver of the ecosystem dynamics on the NWE Shelf (Henson et al., 2009), it is quite likely 
that physical glider DA has a relatively minor importance for the simulated ecosystem dynamics on 
the NWE Shelf. This is quite different from some other global regions where physical assimilation is 
either desirable (Anderson et al., 2000; Yu et al., 2018), or can degrade the biogeochemical model skill 
(Berline et al., 2007; Holt et al., 2014; Park et al., 2018; Raghukumar et al., 2015). Based on this study 
we would suggest that, at least around the spring bloom in the North Sea, physical assimilation can be 
used to improve the physical model skill, whilst its impact on the coupled biogeochemical model can 
be relatively ignored

�(2)	� In terms of chlorophyll, the glider chlorophyll assimilation is the dominant and best performing com-
ponent of the multi-platform assimilative system within the 50 km horizontal proximity of the glider. 
Further away from the glider locations, assimilating satellite OC data substantially improves the surface 
chlorophyll concentrations, but it can also produce realistic updates to the sub-surface chlorophyll. 
Since satellite OC assimilation updates chlorophyll only within the mixed layer, the updates to the 
sub-surface chlorophyll are explained by the model dynamical response to the assimilation. The skill 
of satellite OC assimilation in sub-surface chlorophyll is important, as glider technology will be able to 
cover only limited parts of the NWE Shelf and future multi-platform assimilative system will have to 
rely heavily on satellite data

�(3)	� The modeled phytoplankton dynamics is impacted by the oxygen concentrations only indirectly, for 
example, through remineralization, or nitrification rates and the impact of hypoxia on zooplankton 
(Butenschön et al., 2016). It is therefore hardly surprising that univariate assimilation of oxygen has 
a negligible impact on the simulated phytoplankton chlorophyll concentrations. This also means that 
one can assimilate oxygen into ERSEM without worrying about its consequences for the modeled phy-
toplankton. Such an oxygen assimilation has an obvious advantage in that it outperforms any other run 
in the model simulation of oxygen

�(4)	� Two important drivers of the simulated oxygen concentrations are the primary production and respira-
tion. Consequently, assimilating (satellite OC, or glider) chlorophyll was found to have a major impact 
on the modeled oxygen. The removal of the late model bloom in the reanalysis improves the modeled 
oxygen, however it produces spurious deep oxygen maxima, partly due to the productivity at the deep 
chlorophyll maxima and partly due to the reduced respiration by the ERSEM zooplankton. Physical DA 
has a stronger impact on the oxygen than on chlorophyll (oxygen saturation levels depend substantially 
on temperature), but it had substantially less impact on the simulated oxygen than the chlorophyll 
assimilation

�(5)	� The multi-platform assimilation (joint physical data, glider chlorophyll and oxygen, satellite OC chlo-
rophyll assimilation) combines optimally the skill of its components and always performs comparably 
to, or better than its best performing component

�(6)	� Based on the results of this study we expect that the multi-platform system will provide us with im-
proved-quality operational products on the NWE Shelf.
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