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The ocean’s mesopelagic zone is largely uncharacterized despite its vital role in
sustaining ocean ecosystems. The composition, cycling, and fate of particle fields
in the mesopelagic lacks an integrative multi-scale understanding of organism
migration patterns, distribution, and diversity. This problem is addressed by combining
complementary technologies with overlapping size spectra, including profiler mounted
optical scattering sensors, profiler, and ship mounted acoustic devices, and a custom
Unobtrusive Multi-Static Lidar Imager (UMSLI). This unique sensor suite can observe
distributions of particles including organisms over a six order of magnitude dynamic
size range, from microns to meters. Overlapping size ranges between different methods
allows for cross-validation. This work focuses on the lidar imaging measurements and
optical backscattering and attenuation, covering a combined particle size range of
0.1 mm to several cm. Particles at the small end of this range are sized using an
existing backscattering time series inversion method after Briggs et al. (2013). Larger
particles are resolved with UMSLI over an expanding volume using three-dimensional
photo-realistic laser serial imaging. UMSLI’s image rectifying ability over time allows for
derivation of particle concentration, size, and spatial distribution. Technical details on the
development and post-processing methods for the novel UMSLI system are provided.
Image resolved particle size distributions (PSDs) revealed a size shift from smaller to
larger particles (>0.5 mm) as indicated by flatter slopes from dawn (slope = 2.6) to dusk
(slope = 3.0). PSD trends are supported by an optical backscatter and transmissometer
time series inversion analysis. Size shifts in the particle field are largely attributed to
aggregation effects. Images support evidence of temporal variation between dusk and
dawn stations through statistical analysis of particle concentrations for particle sizes
0.50–5.41 mm. Spatial analysis of the particle field revealed a dominantly uniform
distributed marine snow background. The importance and potential of integrated
approaches to studying particle and organism dynamics in ocean environments
are discussed.
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INTRODUCTION

The Earth’s oceans are a reservoir for an estimated 31% of
anthropogenically produced CO2. Of the 100 Gt of organic
carbon taken up by ocean surface waters per year, up to 10%
is transferred to the mesopelagic (similar magnitude as fossil
fuel emissions) (Gardner et al., 2000; Giering et al., 2014,
2018). Without this carbon export mechanism, the concentration
of CO2 in the atmosphere would be an estimated 200 ppm
higher than present day levels (McDonnell, 2011; Davison et al.,
2013; Volk and Hoffert, 2013). This process, known as the
“biological pump” is controlled by the productivity of primary
producers in the surface ocean and active/passive downward
transport of organic and inorganic composite material. Current
estimates suggest, up to 90% of surface water detrital material
is recycled, consumed, and respired before reaching 1,000 m
(Stemmann et al., 2008; McDonnell, 2011; Davison et al.,
2013; Hansen and Visser, 2016). Understanding the role of the
mesopelagic zone (bottom of euphotic zone to 1,000 m) in
mediating remineralization and transport to the deep ocean is
currently a subject of intense research (Giering et al., 2019;
Briggs et al., 2020).

Much of our knowledge of particle dynamics and transport
through the water column has been gathered using sediment
traps (Martin et al., 1987; Buesseler et al., 2007). Sediment traps
function much like rain gauges, accumulating sinking particles
over a period of days to weeks at predetermined depths. This
allows for the collection and biological analysis of a wide size
range of particles (Chester, 2000; Stemmann et al., 2008; Hung
et al., 2010; Giering et al., 2018). While sediment traps have been
used extensively, their spatial coverage is limited, thus decreasing
the probability of capturing larger particles. Small sampling areas
on the order of m2 must also be extrapolated temporally and
across large regional areas and wide depth ranges. This may
be particularly problematic for resolving significant episodic,
localized sinking events associated with bloom crashes (Briggs
et al., 2020). Sediment traps also hydrodynamically disturb
suspended particles, inhibiting their efficiency and making
interpretation more complex (Yu et al., 2001).

To compensate for an imbalance between carbon export and
metabolic demands in the mesopelagic, many processes such
as mortality, defecation, fragmentation, and export from diel
vertical migrators require further investigation to accurately
gauge these contributions in carbon budget models (Burd et al.,
2010; Kelly et al., 2019; Briggs et al., 2020). Many studies have
shifted the view of the mesopelagic to a more dynamic transit
zone of the ocean that harbors organisms participating in massive
diel vertical migrations (DVM) (Passow and Alldredge, 1995;
Hiaka et al., 2001; Steinberg et al., 2002; Kaartvedt et al., 2012;
Taucher et al., 2018; Proud et al., 2019; Boswell et al., 2020).
Some of these animal’s form what is called the deep scattering
layer (DSL), named for its strong acoustic reflection. This layer
has long been observed to migrate upward to the surface at
dusk and back downward at dawn as motivated by predation
and feeding (Hays, 2003; Hansen and Visser, 2016; Calleja
et al., 2018; Taucher et al., 2018). Migration by zooplankton
and nekton are increasingly recognized as playing a significant

role in transport of carbon through the mesopelagic (Steinberg
et al., 2002; Burd et al., 2010; Kaartvedt et al., 2012; Klevjer
et al., 2012; Hansen and Visser, 2016; Calleja et al., 2018; Kelly
et al., 2019). Mesopelagic micronekton and zooplankton directly
affect the distribution and size of suspended particles through
feeding, migration and defecation. Similarly, gelatinous grazers
also directly affect the repackaging and vertical fluctuation of
sinking particles, through ingestion and release of larger fecal
pellets. These processes affect the rates of fragmentation and
remineralization of sinking particles and are often excluded
from carbon export budgets. Studies of DVM and other active
transport mechanisms in the mesopelagic suggest that these
missing export processes could explain apparent imbalances
between carbon supply and metabolic demands (Steinberg et al.,
2002; Burd et al., 2010; Kelly et al., 2019). New technologies which
feature in situ measurements using optical instrumentation and
autonomous platforms create new potential for characterizing
particle fields for size, shape, distribution, and concentration
(Nayak and Twardowski, 2020).

To investigate this potential and to better understand particle
dynamics in the mesopelagic ocean, acoustic, and optical
techniques are used to characterize distributions of particle fields
(including organisms) and spatial patchiness. The focus of this
work is on using optical backscattering and beam attenuation
instrumentation in combination with UMSLI to resolve particle
size distributions (including organisms) from about 0.1 to 50 mm.
UMSLI uses three-dimensional laser serial scanning to provide
traceable volumetric images of particle and organism fields down
to about 1 mm. Smaller particles are resolved from optical
backscattering and attenuation with a time series inversion
method (Briggs et al., 2013). Details of UMSLI data processing
are discussed and particle distribution results compared between
the two methods.

MATERIALS AND METHODS

Imaging Lidar
Lidar systems consist of two main components, a transmitter and
receiver. The transmitter consists of a highly collimated laser,
often directed by a mechanical mirror device. The receiver may
take many forms, but generally consist of a light receptor that
quantifies intensity per unit area. Just as a conventional camera
measures the reflection of light off objects with dependency on
source and receiver geometry, so does a lidar system. The basis of
a lidar’s function is to actively illuminate a volume of water with
an intense pulse of optical energy from a laser transmitter and
measure irradiance returned as a function of time with a receiver
coupled with a high-speed digitizer. The range (R) of a target is
described by McGill (2002):

R =
cl ×1t

2
, (1)

where cl is the speed of light. Time of arrival (TOA) is defined as
the time it takes for a laser pulse to leave the transmitter, reflect
from a specific volume of water, and return to the receiver. The
sampling capability of the receiver defines the gate time (1t) and
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temporal resolution of the system. Lasers are capable of emitting
light at very fast repetition rates with high energy levels and the
collimated monochromatic nature of the beam makes it ideal
for probing environments such as water. A complete physical
characterization of laser transmission for lidar is well summarized
in several studies (Mullen et al., 2009; Caimi and Dalgleish, 2013;
Dalgleish F.R. et al., 2013; De Dominicis, 2013).

The method of laser imaging for UMSLI uses serially scanned
pulsed lasers for extending imaging range in turbid seawater
(Dalgleish F. et al., 2013; Dalgleish F.R. et al., 2013). Traditional
optical cameras can be effective when significant ambient or
artificial light is present in low turbidity conditions. When using
artificial light in imaging, marine life can show a behavior
response, i.e., attraction or avoidance, to light within their visual
light frequency range (Zorn et al., 2000). Artificial light in
conventional imaging also introduces backscatter path radiance
effects that can obscure objects. However, unlike active acoustic
solutions, the primary advantage of using optical approaches is
high resolution contrasted scene descriptions essential for object
classification and detailed observations.

Red lasers can be configured below the wavelength range that
is visible to marine wildlife allowing for unobtrusive observation.
UMSLI uses a 638 nm red diode laser which is beyond the
photopic response for most marine organisms in the mesopelagic
(Zorn et al., 2000). The UMSLI system was originally built with
the intention of observing large marine species without affecting
behavior (Dalgleish et al., 2017). It features an alternating
field-of-view (FOV) that outputs time-resolved images capable
of extracting three-dimensional features. The quasi-monostatic
approach and dynamically expanding scan field make UMSLI
suitable for resolving organisms across discrete size classes due to
an adaptive resolution feature based on the angular control of the
laser scan field during operation. For this study, capabilities are
extended to observe relatively small particles, such as copepods,
krill, and flocs of marine snow.

UMSLI Components
UMSLI’s design concept was focused on surveying a large volume
of water for the use of observation and identification of targets
on a wide range of size scales (mm to m). Transmitters serially
illuminate a volume of water by scanning a grid of pulses
in a bi-directional raster pattern using an analog micromirror
device (AMD) and a scan angle expansion lens. The scan field
of the receiver can be instantly configured to operate in three
different modes, i.e., sparse, dense, or densest. Each different
scan mode features a different image resolution and scan volume
as controlled by the transmitter. The resolution is adjusted by
concentrating a lower density pulse grid through a wider range
of angles (sparse). Once an object is detected, a higher pulse
density scan can be conducted through a narrower range of
angles (dense/denser) using a digital Micro-Electro-Mechanical-
Systems (MEMS) scanning device. The volume scan field for each
channel is maximized by an overlapping FOV region between
the quasi-monostatic transmitters and receivers. The system
consists of three transmitter housings (each with a different total
scan field) and three receiver housings, the details of which are
described below.

The UMSLI transmitter (Figure 1A), features a 638 nm red
laser diode with a laser driver that controls the laser pulse
output energy. A separate transmitter controller uses RS-232
communication protocol with the MEMS driver that adjusts
the polar and azimuthal angle of a scanning two axis (tip-
tilt) MEMS mirror (or “micromirror”). The MEMS mirror is
mechanically responsible for the serial scan-like pattern of the
system (Dalgleish et al., 2018). The reflected beam from the
MEMS mirror is expanded using a small angle expansion lens
that outputs a full beam divergence of 2.80 mrad in water.
The beam radial intensity follows an azimuthally symmetric
Gaussian profile.

The total scan angle of the volume, post beam expansion, emits
over a polar angle of 0.9425 radians. For this setup, the geometry
of the fully illuminated plane is consistent for both polar and
azimuthal angles. The transmitter has a 4 ns Full-Width-at-Half-
Maximum (FWHM) pulse duration with an average power of 185
mW at a pulse rate of 80 kHz. The transmitter emits each pulse
in a raster-like fashion, such that the transmitter emits 200 lines
consisting of 200 pulses each. Individual lines take the transmitter
2.50 ms to complete, which allows the system to scan a full 200×
200 plane in 500 ms for a total of 40,000 pulses (Supplementary
Appendix A). The UMSLI system’s adaptive viewing mode emits
the same number of pulses at a smaller angle of 0.3142 radians
(dense) and 0.1047 radians (densest).

The receivers consist of a pair of bi-directional red sensitive
high-speed photomultiplier modules with focusing optics and
a spectral bandpass filter. Receivers are designed to collect
backscatter returns from the emitted laser pulses (Dalgleish et al.,
2018). To eliminate ambient light, the PMT is capped with a
rectangular light shield that allows for a 30◦ acceptance angle;
Figure 1B demonstrates a ray trace of the light shield rejection
pattern. A high-speed digitizer and digital signal processor are
used to reconstruct the illuminated volume and output imagery
waveforms. These waveforms are transformed and processed as
a volumetric scan, within a x–y spatial plane and a temporal
z-plane. A single element Photo-Multiplier Tube (PMT) is used
as a detector. The PMT used for this system is a Hamamatsu
R11265U series, type H11934-20 with a spectral response from
300 to 920 nm, a quantum efficiency of 19% and radiant efficiency
of 78 mA/W. The temporal response of the PMT is the dominant
restriction for the system response time. Figure 1C shows the rise
time of the impulse response to be 1.3 ns and the fall time 5.8
ns. The PMT and its components described above are housed
in a Vitrovex glass sphere from Nautilus which are paired as
two combined hemispheres. The 187 mm outside diameter glass
housing has a total glass thickness of 14 mm and is pressure rated
to a depth of 12,000 m.

Field Experiment
During March 25, 2018, the NOAA Okeanos Explorer navigated
the Gulf of Mexico to explore the mesopelagic region and
monitor biological migration patterns. A single deployment was
carried out at each station. The first deployment was in the
morning from 0430 to 0900 (local) at 28.66N, 87.86W and the
second deployment was in the evening at 1,600–2,100 (local)
at 28.66N, 87.46W (Figure 2A). The two sites were 57.92 km
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FIGURE 1 | (A) Inside components of the transmitter with DMD device for laser scanning array. (B) Represents a ray-trace of the PMT array with acceptance angle
shield. (C) Rise and fall time of PMT.

FIGURE 2 | (A) Map with yellow star showing locations of the two stations sampled. (B) Profiler set up with UMSLI transmitter and receiver configuration highlighted
(yellow arrows).

apart. For each station, an instrument cage was profiled from the
surface to 300 m. Immediately after reaching 300 m sampling
began and lasted 3 h. Periods for time series were aligned with
dusk ascents and dawn descents of the DSL. The dusk migration
was sampled at the first site, the dawn migration at the second.
Deployed instrumentation included UMSLI, Seabird Scientific

ac-9 and ECO-VSF, and a hull mounted and calibrated Simrad
EK-80 multifrequency echosounder. Deployment protocols and
post-processing for ac-9 and ECO-VSF followed Twardowski
et al. (2018) and Sullivan et al. (2013), respectively. These
sensors (excluding the EK-80) were mounted onto an aluminum
frame with dimensions of 1.8 × 1.2 × 1.7 (m3) as shown in
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Figure 2B. During deployment, the EK-80 measured profiles of
acoustic water column backscatter at 18 and 38 kHz to monitor
migration patterns from the surface to 600 m. The EK-80 was
configured to transmit narrowband signals with pulse duration
at 0.2 transmissions per second. Acoustic data were processed
following procedures outlined in Boswell et al. (2020). UMSLI’s
sampling period was programmed before deployments; for the
first station, it continuously sampled from 0515 to 0630 (local)
and at the second station it sampled from 1,745 to 1,900 (local).
UMSLI’s scan modes were sequenced, following the scan order
sparse, dense, densest (see Supplementary Appendix A).

RESULTS

Overview
Throughout this section, emphasis is on the dense and densest
lidar scan modes, which have the highest resolution for particle
sizes and the most overlap given their relatively close scan angles.
The sparse scan mode, while still valuable, is better adapted
toward identifying marine fish and larger organisms, which is
beyond the size range focus of this analysis. Densest scans for the
dawn station are unusable due to lack of quality.

EK-80
During deployments the EK-80 displayed the pattern of the
sound scattering layers in real-time. A persistent DSL was
observed between 300 and 400 m at both stations with
migrating filaments linking the surface layers during the upward
and downward migrations (Figure 3). Upward migration was
observed as coherent vertical layers of backscatter ascending
from 300 to 375 m to shallower surface layers < 100 m at
dusk. The layers detected in the 38 kHz data followed a similar
pattern and revealed persistent less dense backscatter return at
deeper depths (∼600 m). At dawn, multiple downward migrating
layers were detected beginning at 0600 (local) in both the 18
and 38 kHz data. In the 18 kHz data, the downward migration
was comprised of two main layers, splitting and settling at 300
and 450 ms, respectively. Similarly, the downward migration
recorded at 38 kHz displayed several coherent layers settling to
form a high-density scattering layer between 350 and 450 ms.

Lidar Derived Particle Size
Distributions (PSDs)
Particle size distributions (PSDs) include all particles, i.e., living
organisms as well as detrital flocs and fecal pellets. Analyzing
single image slices avoids alternating resolution capabilities
(Supplementary Appendix A). PSDs are reported as equivalent
spherical diameter D, derived from

√
4A/π where A is the

extracted filled particle area (Supplementary Appendix B.7).
Note that A is a measure of the image pixel count for a particle
and the calculated diameter was scaled in accordance with the
resolution of the image slice. All extracted particles were then
subcategorized into size bins based on calculated diameter. The
concentration levels of each size bin were normalized by dividing
the total number of particles counted per size bin, by the sample

volume, resolution of the size bin and the fractional volume
lost due to masking (Supplementary Appendix B.6). PSDs were
modeled as a power law also known as a Junge distribution:

n(D) = no(D/Do)
−γ, (2)

where Do is a reference diameter, no is the differential particle
concentration at Do (L−1 mm−1) and γ is the slope of the
distribution (Kitchen et al., 1982; Liley, 1992; Boss et al., 2001,
2009; Twardowski et al., 2001; Sullivan et al., 2005, 2013;
Buonassissi and Dierssen, 2010; Nayak et al., 2018).

Due to the path attenuation of the transmitted and returned
signals, an exponential loss was observed in extracted particles
for slices with increasing distance from the sensor. As a result,
only particle field data from the first slice, i.e., closest to the
sensor, are presented. Figure 4 shows resulting PSDs averaged
over the entire dusk and dawn time series. After applying
a correction for blurring (see Supplementary Appendix A),
reasonable agreement was observed between sparse, dense, and
densest scan modes. Power law slopes in corrected data were
approximately 3.0 and 2.6 for the dusk and dawn time series,
respectively, slopes were flatter at dawn for all scan modes.

For the dense scans, comparison of averaged PSDs revealed
elevated particle concentrations for the dusk time series in
comparison to the dawn time series below 5 mm (Figure 5), while
for particles > 5 mm higher concentrations were observed at
dawn relative to dusk. Above 10 mm, the dawn station recorded
much higher concentrations; these size bins most likely represent
swimming organisms periodically entering the sample volume.
A cumulative view of the particle concentrations for each size bin
revealed a non-normal distribution, this led to outlier selection
using nonparametric statistics, detailed in the next sub-section.

Outlier Scans With Enhanced
Particle Concentrations
Outlier scans record anomalously high particle concentrations
relative to the typical marine snow background and are labeled
“particle enhancements.” Outliers are identified as values greater
than the upper quartile whisker of a box plot for a size bin. The
upper whisker is calculated as Q3 + 2.5× (Q3 – Q1), where Q1 is
the lower quartile and Q3 is the upper quartile (Figure 6). Particle
enhancements were assessed for the first four size bins for the
dense and densest scans; beyond the first four size bins particle
abundance was too low to conduct statistical analysis. Images
from the dusk and dawn stations revealed particle enhancements
occurring for particle size bins 3.96 (Figures 6A,B) and 5.41 mm
(Figures 6C,D), respectively. For the densest scans, particle
enhancements were most observed for size bin 2.52 mm. This
particle enhancement analysis can be used as a metric to identify
images where organisms such as copepods may be entering image
volumes. The increasing trend in particle size is consistent with
trends found in Figure 4. The densest station had enhancement
events relatively evenly distributed across all size classes. The
most notable feature in many of the densest scans were long,
ellipsoid shaped organisms with enhancements for size bins 0.5,
0.96, 1.43, and 2.5 mm (Figure 6F).
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FIGURE 3 | Acoustic volume backscatter strength (SV , dB re 1 m−1) profiles derived from the shipboard EK-80 echosounder at 18 kHz (A,C) and 38 kHz (B,D).
Persistent backscatter at approximately 300 m is coincident with the position of the profiling package during full timeseries, while the white boxes represents the time
period for which data with the lidar imager is presented.

Large organisms were imaged in the sparse, dense and
densest scan modes for both dusk and dawn stations; these
occurrences are too few to represent statistically but this is a
notable result which indicates a population of larger organisms
present among the marine snow background (Figure 7). Size
and shape characteristics indicate these include siphonophores,
various cnidarians, tunicates, and micronekton.

Lidar Derived Particle Patchiness
For every particle extracted from the volume, its Euclidian
distance from all other particles was determined to assess
relative clustering or dispersion of particles. A two-tail z-test

was conducted for this distance metric (Malkiel et al., 2006).
This form of hypothesis testing determines the likelihood that
the sample distribution differs statistically from the population
distribution mean (Xp) and standard deviation (σp). Statistical
significance for this hypothesis test was determined by the
z-score, defined as,

z =
Xs − Xp

σ/
√

n
, (3)

where Xs is the mean distance between particles in the scan slice
and N is the combination of distances counted for each particle.
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FIGURE 4 | (A) PSD averages from sparse, dense and densest scan modes with and without blurring correction for dusk time-series. (B) PSD averages for sparse
and dense scan modes with and without blurring correction for dawn timeseries.

FIGURE 5 | Average particle concentrations for dense scan mode at dusk (blue stars) and dawn (red circles); error bars represent one positive standard deviation.
Large particles (>50 mm) are not shown due to insufficient numbers sampled. Dotted line represents the steady state slope of −4.

Z-score is an indicator of significance, where z<−3 corresponds
to significant (p < 0.001) particle clustering and z > 3 to
significant dispersion. The spatial distribution of particles in each
scan was compared to a random uniform distribution of particles.

The random distribution was simulated with similar particle
concentrations and the same geometric sample volume as all
scans from the dusk and dawn timeseries. The simulated uniform
distribution defined the population mean (Xp) and standard
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FIGURE 6 | Gray scale images containing anomalous particle enhancements taken in dense scan mode for dusk (A,B) and dawn (C,D) stations, similarly images
taken in densest scan mode for dusk station (E,F). Box and whisker plots per size bin for dense and densest scan modes on right with percentage of particle
enhancement events provided above box and whiskers (see text for details).

FIGURE 7 | Gray-scale images of large organisms with calculated spherical diameter in mm. Images (A–C) are imaged in dense mode, image (D) represents the
densest scan mode (E,F) are imaged in sparse scan mode.

deviation (σp) to allow for an unbiased description of particle
proximity when calculating the z-score. Figure 8 provides a
comparison of the particle spatial distribution of an image from
the dawn station with a simulated uniform distribution. The
z-score for the sample image (Figure 8A) was calculated as
−0.53, indicating agreement with uniformly distributed particles.

The rectangular (200 × 100) image skews the proximity of
uniform particles as exemplified by the simulated data line in
Figure 8B. Z-scores are calculated for every dense scan for
each station to test for closer particle proximity (clustering) or
more distant particle proximity (dispersion) than the average
simulated distribution. Scans which feature mostly marine

Frontiers in Marine Science | www.frontiersin.org 8 December 2020 | Volume 7 | Article 558745

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-558745 December 14, 2020 Time: 11:56 # 9

McKenzie et al. Imaging Lidar for Characterizing Meso-Organisms

FIGURE 8 | Sample dense image from dawn station (A). Probability density function of spatial distance of particles from sample image compared with simulated
data (B). Histogram of all calculated z-scores for dense scans at dusk (C) and dawn (D).

snows background are expected to demonstrate a particle field
with a uniform distribution. The dusk station scans strongly
favored clustering as indicated by the extended lower limit tail
and the peak in z-scores falling below 0 (Figure 8C). The
cumulative z-scores of the dawn station were centered around
0 (Figure 8D), indicating the majority of scans had particles
uniformly distributed in the scan volume. Visual inspection of
the images such as those shown in Figures 6, 7 confirms the
statistical interpretation of dusk and dawn differences in PSDs
and spatial patchiness. Generally, the dusk scans featured a
higher concentrations of particles less than 5 mm. The increased
population of small particles (<5 mm) created a higher likelihood
of clustering caused by smaller particles (Figure 5). At both
dusk and dawn, less than 4% of all scans featured images with
particle enhancements and clustering. There were select cases of
images with large organisms > 50 mm and clustering; examples
of these included Figures 7A,D with z-scores of −3.65 and
−12.5, respectively. Excluding scans with particle enhancements
and large organisms, the spatial distribution of the particle field
followed a uniform distribution.

The scarcity of larger particles in the relatively small volumes
sampled allows for interpretation of spiking in optical backscatter
and transmissometer time series data to be classified as individual
particles (Gardner et al., 2000; Briggs et al., 2013; Giering et al.,

2019). Briggs et al. (2013) present an inversion method which
uses the variance-to-mean ratio (VMR) of optical signal to
estimate mean particle size. Briefly, Briggs et al. (2013) used the
VMR of de-trended optical time series data to obtain a weighted
mean signal per particle. This per particle optical proxy was
then converted to a particle cross-sectional area using estimates
of sample volume, scattering efficiency Q, particle residence
time in the sample volume tres, and sample integration time
tsamp. This area was then converted to an equivalent circular
diameter. Here, we follow the same method, but replace the
VMR with the height of each optical parameter spike above
a running median background of smaller particles, effectively
deriving a diameter for each spike height, rather than a single
mean diameter for the time series. The window for the running
median was seven times either tres or tsamp, whichever was greater.
For attenuation, Qc = 2 and tsamp = 0.003 s were used (Briggs
et al., 2013). The sample volume was 12.5 ml, 2.5 times larger
than Briggs et al. (2013) due to the 25 cm path length and tres
was estimated following Briggs et al. (2013) to be 0.39 s (dusk)
and 0.61 s (dawn). Logarithmically spaced bins from 0.11 to
11 mm were derived for cp and divided by bin width and the
total volume sampled after correcting for water movement for
each time series to yield cp-derived PSDs for each station (Briggs
et al., 2013). The cp-derived PSD was calculated separately for
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each of the nine ac-9 wavelengths and all the resulting PSDs
were averaged. As in Briggs et al. (2013), the same method was
used to calculate PSDs from the bbp time series, substituting
bbp for cp and Qbb for Qc. A Qbb of 0.04 was chosen following
Briggs et al. (2013) based on the mean bbp/cp ratio of ∼1/50
observed during this study. The sample volume was estimated
at 0.62 ml, tsamp was 1 s, and tres was estimated continuously
from the estimated path length of a particle through the ECO-
VSF sample volume (∼1 cm) divided by the vertical velocity
of the sensor package calculated from the pressure sensor over
a 3 s interval. A bbp-derived PSD was estimated separately for
each of the three angles of the ECO-VSF, and the three PSDs
were averaged to create a final PSD. Figure 9 presents bbp
measurements recorded during the time series for dusk and
dawn, with the spikier dawn timeseries indicating enhanced
concentrations of large particles. Figure 10 shows combined
PSDs from ECO-VSF backscattering, ac-9 attenuation, and all
available lidar scan modes. PSD slopes from cp and bbp were about
4.7 and 4.5 from the dusk and dawn time series, respectively, both
significantly steeper than the slopes observed from lidar (also see
Figure 5). PSDs were also higher for the lidar measurements for
overlapping size bins.

DISCUSSION

The marine particle field and its variability in relation to the
mesopelagic ecosystem is of growing interest in the scientific
community, but still lacks understanding as it is deeply
connected through many processes which span a wide size
spectra (Stemmann et al., 2000b, 2004; Baird and Suthers, 2007;
Guidi et al., 2008; Boss et al., 2009; Burd and Jackson, 2009;
Stemmann and Boss, 2012; Burd, 2013; Giering et al., 2014;
St. John et al., 2016; Calleja et al., 2018; Cavan et al., 2019).

Imaging lidar is presented as a new tool with a unique niche
in capturing both non-living macroscopic aggregates (marine
snow) and living macro-zooplankton, crustaceans, decapods,
gelatinous taxon and other swimming fauna. Lidar allows in situ
imaging of large delicate aggregates such as larvacean houses,
mucous webs of pteropods, and other delicate organisms such
as salps and siphonophores which are otherwise destroyed by
nets, meshes and pumps. Figure 7 exemplifies the imaging
ability of UMSLI as it serves as a tool for observing a large
array of organisms but also shows the limits of identification
due to resolution. Image processing expands UMSLI’s abilities
beyond large organisms and into particle sizes down to
0.5 mm, allowing connectivity between intra-class organisms and
processes affecting mesopelagic marine snow.

Particle abundance and size are useful metrics for
biogeochemical models which describe the function of the
mesopelagic zone in the biological pump process. PSDs
presented here are consistent with other methods which use
imaging techniques to derive PSDs for living and non-living
particles ranging up to several mm (Jackson et al., 1997;
Checkley et al., 2008; Picheral et al., 2010; Slade et al., 2011;
Stemmann and Boss, 2012; Taucher et al., 2018). The PSD slopes
presented in Figure 5 were 3.0 for the dusk station and 2.6
for dawn, where a slope of 4 indicates equal particle volumes
in equal logarithmic size intervals that are representative of
oceanic environments without significant influence from active
biogeochemical processes (Twardowski et al., 2001; Sullivan
et al., 2005; Stemmann et al., 2008). Flatter slopes in this study
are likely due to aggregation of particles into larger flocs of
marine snow which has occurred through downward flux
from upper waters (Stemmann et al., 2004; Taucher et al.,
2018). For large aggregates, studies suggest that aggregation
through particle–particle interaction occurs through shear and
differential sedimentation, which greatly depend on collision

FIGURE 9 | Particle backscatter time series from the ECO-VSF for dusk (A) and dawn (B).
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FIGURE 10 | (A) Sparse, dense, and densest lidar derived PSDs with bbp and cp derived PSDs for dusk time series. (B) Sparse and dense lidar derived PSDs with
bbp and cp derived PSDs for dawn time series.

rates between particles, stickiness, and overall diffuse turbulence
of the water column (Hunt, 1980; Jackson, 1995; Stemmann et al.,
2004; Stemmann and Boss, 2012). The use of instrumentation
which measure aggregate sequestration processes are vital to
supplementing biogeochemical models. This study demonstrates
the potential of using lidar imaging to record large aggregates
within natural particle fields without causing particle breakup.
UMSLI shows potential for making distinctions between living
and non-living organisms based on target shape, size, and
perspective information from imagery. UMSLI’s high sampling
rate captures identifiable targets across multiple images, allowing
for multiple capture angles and positions. It is conceivable to use
this information with machine learning algorithms for organism
identification based on size and morphology if a representative
library could be constructed for algorithm training. This is a
current area of interest in our lab.

While our dataset includes only two stations, preventing
statistical inferences, results from this study reveal differences
between stations that were plausibly associated with temporal
dynamics of mesopelagic activity. Further such deployments to
verify patterns could therefore enable important insight. Night
time activity in the mesopelagic has been reported to shift
particles into larger size classes (Stemmann et al., 2000a,b).
Stemmann et al. (2000a); reported size shifts of increasing
particle abundance at night for particles > 0.5 mm and
showed that this pattern was reversed during the day. In
the northeast Atlantic, observations reported in Lampitt et al.
(1993) using time-lapse camera recordings showed evidence
for increasing concentrations of particulate matter at night,
linked specifically to the abundance in large particles. These
observations are consistent with results from the dawn station,
which recorded larger concentrations of particles greater than
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5 mm in comparison to the dusk station (Figure 5). Stemmann
et al. (2000a) suggest that, “diel vertical migration is the best
candidate to explain the diel transformation of PM (particulate
matter).” As DVMs hold a diverse array of organisms with
dynamic temporal migratory patterns, it is difficult to attribute
particle field changes to a single cause. There has been evidence
linking zooplankton including copepods with particulate matter
fluxes and migration activity (Stemmann and Boss, 2012).
However, it is difficult to discriminate particle flux contribution
between migratory consumers and residential nightly feeder
(Stemmann et al., 2000a,b, 2004; Guidi et al., 2008; Giering et al.,
2014; Archibald et al., 2019).

Resident and migratory mesopelagic fish are responsible
for up to 15% of the total export of carbon through the
mesopelagic zone, and the passive and active transport of carbon
is largely attributed to swimming organisms and their fecal
matter production (Davison et al., 2013; Cavan et al., 2019). It
is expected that if biological activity such as feeding was apparent
then resulting PSDs would demonstrate a bump at specific size
classes. Evidence of this type of activity was investigated through
the evaluation of outlier scans and patchiness. Overall, the
results showed limited cases of scans with particle concentration
enhancements for specific size classes (Figure 6). While PSD
slopes for all scan modes showed no major inconsistencies which
would indicate biological activity, it is obvious that the dawn
station featured a higher concentration of particles > 20 mm
(Figure 5). This is supported by images in Figure 7 which
feature evidence of nightly feeders or migratory species. During
the time periods of measurement, most observations showed
uniformly distributed particle fields largely composed of marine
snow (Figure 8). As mentioned, clustering in the dawn time
period resulted from increased particle concentrations, likely
associated with the nighttime migration. Clustering may also
be caused by groups of swimming organisms. Observations of
both particle enhancements and spatial clustering provided an
approach to identify swimming organisms moving through the
scan field in smaller size bins. The dense scan data for dawn and
dusk recorded limited association of particle enhancements with
clustering (<4%), this was only for smaller size bins dominated
by marine snow. For the dense scans, particle enhancements were
most common for the 3.96 and 5.41 mm size bins. This may
be evidence of macro-zooplankton such as copepods, or small
fish larvae swimming through the scan volume. The combination
of images with PSD calculation allows for observation across
broad size scales further connecting detritus remineralization,
fauna abundance, nightly migrators, and full-time residents
of the mesopelagic. Further expansion with complementary
instruments could supplement the goal of observing mesopelagic
dynamics in greater detail.

Despite significant differences in measurement approaches
for lidar, bbp, and cp, they all showed similar trends in particle
abundance, increasing for the dawn timeseries. Increases in
backscatter spiking for the dawn station associated with large
particles was consistent with PSD results from the lidar imager.
For overlapping size bins, bbp and cp approaches result in lower
PSD abundances, and overall steeper PSD slopes. Moreover,
the steeper slopes, much steeper than 4, may not be realistic

(Sullivan et al., 2005). Differences in derived PSDs may have
resulted from differences in sample volumes and the way the
bbp and cp inversions were formulated. While the lidar scans a
large undisturbed sample volume, the ECO-VSF has a sample
volume that is < 1 mL and only ∼1 cm away from the
sensor face. The cp measurement has an active pump rapidly
flowing samples through a cuvette. There is thus the potential
for turbulent disruption of relatively large, fragile aggregates
for bbp and cp measurements, shifting particle abundance from
larger to smaller particles (Slade et al., 2011). The greater
turbulence associated with the cp measurement may explain its
lower PSD relative to the PSD obtained from bbp inversion.
Additionally, the larger the particle the more rare its occurrence,
which may lead to an increasing level of under sampling with
increasing particles size for the relatively small sample volumes
associated with bbp and cp measurements. Indeed, this likely is the
cause of apparent rollovers in the log-log representation of size
distributions derived from bbp and cp that were clearly observed
for the dawn station.

The inversion of bbp and cp measurements is also sensitive
to the assumed efficiencies Qc and Qbb. While estimations used
here are expected to approximate the bulk optical signal, Qbb
and Qc differ with particle size and shape (Briggs et al., 2011,
2013). Briggs et al. (2013) showed an apparent decreasing bulk
Qc for clay aggregates measured using an ac-9 device leading
to an estimated mean size decrease in the inversion. Despite
these differences, results from all measurements showed similar
trends and magnitudes were comparable, particularly for lidar
and bbp inversion results, where PSDs could be nearly seamlessly
linked (Figure 10). Moreover, the comparison with cp and bbp
spike method provided a valuable check. Relative agreement
between independent approaches demonstrates the potential for
extending the range over which PSDs can be resolved using
multiple techniques, a key objective of this study.

In order to progress in the study of how organisms play a
role in the transport of carbon through the mesopelagic zone,
new technologies must be developed to both monitor particle
fields while observing organisms without effecting behavior.
UMSLI, as an instrument originally designed for imaging large
marine fish and mammals, has shown extended capabilities for
characterization of relatively small particles including marine
snow in this field experiment. UMSLI’s unobtrusive red laser
creates opportunity for observing larger swimming organisms
that otherwise practice avoidance behaviors from tow nets
and ROVs (Peña, 2019; Urmy et al., 2019; Robison et al.,
2020). With demonstrated capabilities of observing nekton
in situ simultaneously with particulate organic matter fields,
this technology shows potential for studying interactions of
aggregates with organisms and resulting transformations through
remote, undisturbed observation. The potential of UMSLI can
also be further enhanced. The possibility of calibrating lidar
returns in absolute units of backscattering would enable another
approach for quantifying particle abundance while providing a
measure of backscattering for a particle population that is not
included in current measurements made by the oceanographic
community with very small sample volumes. The contribution
of this large particle size class on ocean color remote sensing
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in surface waters is unknown. Coupling optical measurements
with multi-frequency acoustics may also allow seamless remote
monitoring of size distributions over the range of microns to
meters (Gruber et al., 2016). This is the focus of future work.
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