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Abstract: Impervious surfaces have important effects on the natural environment, including pro-
moting hydrological run-off and impeding evapotranspiration, as well as increasing the urban heat
island effect. Obtaining accurate and timely information on the spatial distribution and dynamics
of urban surfaces is, thus, of paramount importance for socio-economic analysis, urban planning,
and environmental modeling and management. Previous studies have indicated that the fusion
of multi-source remotely sensed imagery can increase the accuracy of prediction for impervious
surface information across large areas. However, the majority of them are limited to the use of
specific data sources to construct a few features with which it can be challenging to characterize
adequately the variation in impervious surfaces over large areas. Thus, impervious surface maps
are often presented with high uncertainty. In response to this problem, we proposed the use of
multi-temporal MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data
to construct a more general and robust feature set for large-area artificial impervious surface per-
centage (AISP) prediction. Three fusion methods were proposed for application to multi-temporal
MODIS surface reflectance product (MOD09A1) and Visible Infrared Imaging Radiometer Suite
(NPP-VIIRS) Day/Night Band (DNB) data to construct three different types of features: spectral
features, index features (band calculations), and fusion features. These features were then used
as variables in a random-forest-based AISP prediction model. The model was fitted to China and
then applied to predict AISP across Asia. Fifteen typical cities from different regions of Asia were
selected to assess the accuracy of the prediction model. The use of multi-temporal MODIS and
VIIRS DNB data was found to significantly increase the accuracy of prediction for large-area AISP.
The feature set constructed in this research was demonstrated to be suitable for large-area AISP
prediction, and the random forest model based on optimization of the selected features achieved
the highest accuracy, amongst benchmarks, with testing R2 of 0.690, and testing RMSE of 0.044 in
2018, respectively. In addition, to further test the performance of the proposed method, three existing
impervious products (GAIA, HBASE, and NUACI) were used to compare quantitatively. The results
showed that the predicted AISP achieved superior performance in comparison with others in some
areas (e.g., arid areas and cloudy areas).

Keywords: impervious surface; random forest; feature selection; Asia; multi-temporal data

1. Introduction

Urbanization and urban sprawl are commonly associated with the transition from
natural vegetation, forest, bare soil, and agricultural land into urban land, which is charac-
terized by artificial construction materials and impervious surfaces (e.g., concrete buildings,
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asphalt roads, and parking lots) [1]. The artificial impervious surface percentage (AISP)
is an important indicator to quantify the level of urbanization and also a key factor that
influences the socio-ecological environment [2,3]. However, the expansion of impervious
surfaces can increase urban surface runoff and blocks evapotranspiration from vegetation
and the soil, thus causing a wide range of ecological and environmental issues [4]. An in-
crease in AISP can also lead to a change in the regional climate, decline in the quality of
the watershed, and exacerbation of the urban heat island effect [5–7]. Therefore, accurately
knowing the spatial distribution and dynamics of the AISP is crucial to solving these
issues in urban-related research, such as urban planning, ecological and environmental
conservation, and the assessment of human settlements [8–10]. Remote sensing technology
provides an effective data source for timely acquisition of large-area impervious surface
information. However, quickly and accurately extracting large-area impervious surface
information based on remote sensing images is still a challenge.

Remote sensing-based inversion methods for predicting impervious surfaces have
developed significantly over the past few decades. Early studies focused mostly on ex-
tracting impervious surface information at local or regional scales, using medium or fine
spatial resolution images [11,12]. For instance, Landsat time-series data are often used to
map the impervious surface change for analyzing the impacts of urbanization or urban ex-
pansion [13–15]. Moreover, these small-area data were used as an evidence base to support
urban planning, socio-economic, and environmental management in specific cities or local
administrations [16]. However, methods for large-area impervious surface extraction have
not been well developed, partly due to data quality issues and the general utility of the
impervious surface extraction methods [17]. Thus, accurate extraction of large-area AISP
is urgent and necessary. The general approaches used for impervious surface extraction
can be divided into four major categories: spectral mixture analysis, image classification,
index thresholding, and regression models. Amongst them, the spectral mixture analysis
method is a spectral decomposition method, which is applied widely for medium- or
coarse-spatial-resolution satellite sensor images [18,19]. For a given urban scene, pixels are
considered as a combination of various end element (member) features, and the impervious
surface information can be obtained by unmixing the ratio of the different components
within each pixel. Spectral mixture analysis can reduce the impact of mixed pixels effec-
tively in impervious surface information extraction [20]. However, due to uncertainties in
endmember selection [21] and the complexity of the urban environment, it is challenging to
apply to the extraction of impervious surfaces over large areas [22,23]. Image classification
methods can integrate multi-source and multi-platform remotely sensed data for decision
fusion applied to impervious surfaces mapping [24], as adopted in the recent years [25].
However, the majority of image classification methods rely on supervised machine learning
using training samples, which are difficult to obtain in sufficient quantities and effectively,
especially for large-area applications [26]. The index threshold is used widely to map
regional impervious surfaces due to its simplicity in operation [27]. However, there is no
uniform criterion to choose a suitable segmentation threshold to extract the impervious
surface from the background, and the method often involves trial-and-error procedures
that are subject to user expertise [28]. Compared with the above methods, the regression
model obtains the density distribution of the impervious surface by fitting a model to the
relationship between the real AISP and the variables that can characterize the impervious
surface information. It has the advantages of fast modeling, convenient operation and
presenting high accuracy in model prediction [29]. Such regression-based models have
been shown to be effective for extracting impervious surfaces on a regional or global
scale [30,31]. The key is to select suitable variables from coarse-spatial-resolution images
and high-quality impervious surface reference data from high or medium spatial resolu-
tion images [32]. The selection of a robust feature set that describes the characteristics of
impervious surfaces and is not influenced by regional and seasonal changes is fundamental
for extracting large-area impervious surface information [33]. Moreover, it is also crucial
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for the performance of model prediction and generalization to set strategies for model
training appropriately [34,35].

In terms of data sources, medium- and coarse-spatial-resolution satellite sensor images
(e.g., Landsat, MODIS) are currently used to extract large-area impervious surface informa-
tion. For example, Landsat data with a spatial resolution of 30 m and Sentinel-2 data with
a spatial resolution of 10 m [36,37] were used to extract land cover or impervious surface
information. Gong et al. used Landsat time-series satellite sensor images and proposed the
“Exclusion/Inclusion” algorithm to obtain information on impervious surface changes in
China in the past 40 years [38]. Based on Landsat and night light data, Liu et al. constructed
the normalized urban areas composite index (NUACI) for extracting impervious surface
information globally. The results showed that the index can effectively extract impervious
surface information [39]. Sun et al. used Sentinel-1 and Sentinel-2 data and a threshold-
based method to extract national-scale impervious surface information effectively [40].
The medium-resolution data offer details of the artificial impervious surface but also suffer
from data quality issues, such as cloud cover and image mosaic issues [41]. Moreover, spec-
tral confusion exists commonly in medium-resolution images due to similarities in the
spectral characteristics of different land cover types (bare soil and impervious surface).
Therefore, it is challenging to extract large-area impervious surfaces that are continuous
in space and time using medium-resolution images. MODIS products are considered
as an important data source for large-area land surface information extraction including
impervious surfaces. Yang et al. used the time-series MODIS NDVI product (MOD13Q1)
to extract impervious surface information in Japan based on time-mixed analysis technol-
ogy [42]. Recently, Nighttime light (NTL) data were applied widely for impervious surface
information extraction since they are related closely to human activities and socioeconomic
factors. Zhang et al. used multi-temporal DMSP/OLS nighttime light data for extract-
ing urbanization dynamics over large areas [43]. NTL data provide a new perspective
for discovering the distribution of impervious surface information, but they suffer from
problems due to light saturation and overflow. In addition, it is difficult to represent the real
situation in rural or poor areas, which can have a huge impact on the quality of large-area
information extraction, particularly in developing countries. To overcome such drawbacks,
some studies have attempted to reduce the effects of light saturation and overflow by
fusing vegetation or heat-related information, such as fusing MODIS NDVI and Nighttime
light data (DMSP/OLS). Zhang et al. constructed the vegetation-adjusted NTL urban index
(VANUI) to extract impervious surface information [44]. Guo et al. used MODIS NDVI
and DMSP-OLS data to develop normalized impervious surface index (NISI) for extracting
impervious surface over China [45]. Zhou et al. used MODIS EVI and DMSP-OLS data to
build an enhanced vegetation index (EVI)-adjusted NTL index (EANTLI) for extracting
impervious surface areas [46]. Liu et al. developed LST and EVI regulated NTL city index
(LERNCI) based on Visible Infrared Imaging Radiometer Suite (VIIRS) DNB, MODIS LST,
and EVI for extracting impervious surface over large areas [47]. Hao et al. used MODIS
vegetation, temperature product, and DMSP/OLS data to build a vegetation temperature
light index for extracting impervious surface areas [48]. Recently, Small et al. found that
multi-season spectral characteristics from Sentinel-2 with night light brightness from VIIRS
show better spatial agreement, and the combination of them can quantify urban morphol-
ogy. It provides an alternative idea for the integration of multi-season images and night
lights [49,50]. These studies have demonstrated the effectiveness of using multi-source
remotely sensed data, but the fusion method deserves further investigation. In addition,
such methods are sensitive to the choice of threshold, and different empirical threshold
settings can lead to various issues, such as the omission of small urban areas or incomplete
removal of background noise.

As mentioned earlier, due to their familiarity, simple operation, and high accuracy,
regression-based models are used widely for large-area impervious surface percentage
prediction [51]. For example, Guo et al. designed a linear regression method to estab-
lish a large-area impervious surface prediction model based on Landsat, nighttime light,
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and MODIS NDVI data [52]. However, the simple linear model cannot effectively reflect
the relationship between remote sensing information and impervious surface percent-
age. One effective way to solve this problem is to seek non-parametric machine learning
methods with strong discriminative capability. The random forest algorithm has been
applied widely in fitting classification and regression models thanks to its superior perfor-
mance [53,54]. Compared with other parametric regression methods, the random forest
model does not require normality and independence assumptions and does not need to
consider the commonality of multiple variables [55]. At the same time, the random forest
model can provide the importance score of the input feature variables, which is important
for extracting and identifying robust features to represent the characteristics of impervi-
ous surfaces. In addition, it is also critical for modeling prediction by using appropriate
methods to obtain a robust feature set. Anees et al. developed a robust non-parametric
algorithm by using Landsat images for detecting land/forest cover changes [56]. Further-
more, the triply modulated cosine model and FIR (finite impulse response) were applied
for detecting change by using MODIS time series data [57,58].

So far, most of the methods for large-area impervious surface extraction focused mainly
on using single remote sensing data or combining multi-source data to construct a limited
number of features. These specific features, however, cannot describe the impervious
surface information fully and accurately in a large-area application [59,60]. This research,
therefore, aims to close the gap in large-area impervious surface extraction by constructing
the most representative and discriminative features by considering fully the complementar-
ity of information within multi-source and multi-temporal data. Such a full set of features
consists of spectral, index, and fusion features derived from multi-temporal MODIS and
VIIRS DNB data. For this purpose, we used a minimum combination method to fuse
multi-temporal MODIS data and then proposed a method to construct normalized index
features using all spectral features of MODIS data. Finally, a fusion method was proposed
to construct multi-resource fusion features. In this study, on the basis of lower spatial reso-
lution data, we excavated feature variables that are suitable for large-area AISP prediction
and developed a set of simple and general algorithms that can realize large-area AISP
prediction quickly and accurately.

2. Materials and Methods
2.1. Study Area

Along with rapid economic development, Asia has seen unprecedented growth in
artificial impervious areas over the last few decades. The Asian continent has the largest
area and the largest population across the globe, covering latitudes from 10◦ S to 80◦ N
and longitudes from 170◦ W to 25◦ E. Asia spans a wide range of biogeographic regions
and climates, including complex and diverse ecosystems and types of terrain (Figure 1).
Therefore, Asia represents a highly suitable study area with which to explore the most
effective approach to characterize the spatial distribution and the dynamics of AISP. Typical
cities in different regions of Asia were selected to test the prediction model and evaluate
the robustness of the random forest regression model.

2.2. Data and Preprocessing

In this research, three kinds of remotely sensed imagery were used; multi-temporal
MODIS surface reflectance products (MOD09A1), nighttime light data (VIIRS DNB),
and Landsat-8 Operational Land Imager (OLI). Detailed information on data acquisition is
shown in Table 1.



Remote Sens. 2021, 13, 212 5 of 22
Remote Sens. 2021, 13, 212 5 of 23 
 

 

 

Figure 1. Location map of the study area in Asia with typical cities highlighted. 

2.2. Data and Preprocessing 
In this research, three kinds of remotely sensed imagery were used; multi-temporal 

MODIS surface reflectance products (MOD09A1), nighttime light data (VIIRS DNB), and 
Landsat-8 Operational Land Imager (OLI). Detailed information on data acquisition is 
shown in Table 1. 

VIIRS DNB data are produced in 15 arc-second geographic grids (approximately 500-
m spatial resolution). In order to facilitate the subsequent integration of these data, all 
satellite sensor data need to be preprocessed initially. The process included: (1) data were 
geometrically corrected and re-projected to the Albers Conical Equal Area projection and 
the WGS84 coordinate system; (2) VIIRS DNB data were resampled to the same spatial 
resolution as the MODIS data using the nearest neighbor method; (3) MOD09A1 time-
series products were used with the minimal composite algorithm to produce high-quality 
images presenting spectral features. Regarding the Landsat-8 OLI imagery, radiometric 
calibration and atmospheric correction were conducted as a preprocessing step. The pre-
processing of VIIRS DNB data includes the following: a threshold k ≤ 0.5 DN was used 
to remove the effects of background noise (e.g., stray light and transient light sources), 
while a threshold k ≥ 99 DN was used to remove the extremely bright pixel values. The 
mean DN values of the selected time-series DNB data were calculated and then normal-
ized to 0–99 [32]. 

  

Figure 1. Location map of the study area in Asia with typical cities highlighted.

VIIRS DNB data are produced in 15 arc-second geographic grids (approximately
500-m spatial resolution). In order to facilitate the subsequent integration of these data,
all satellite sensor data need to be preprocessed initially. The process included: (1) data
were geometrically corrected and re-projected to the Albers Conical Equal Area projection
and the WGS84 coordinate system; (2) VIIRS DNB data were resampled to the same spatial
resolution as the MODIS data using the nearest neighbor method; (3) MOD09A1 time-series
products were used with the minimal composite algorithm to produce high-quality images
presenting spectral features. Regarding the Landsat-8 OLI imagery, radiometric calibration
and atmospheric correction were conducted as a preprocessing step. The preprocessing of
VIIRS DNB data includes the following: a threshold k ≤ 0.5 DN was used to remove the
effects of background noise (e.g., stray light and transient light sources), while a threshold
k ≥ 99 DN was used to remove the extremely bright pixel values. The mean DN values of
the selected time-series DNB data were calculated and then normalized to 0–99 [32].
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Table 1. Details of remote sensing data.

Data Type Description Source

MOD09A1
MODIS Terra/Aqua Surface Reflectance 8-Day L3 Global
500 m; 46 periods in a year, the 8-day surface reflectance

composites in 2013 and 2018 covering 4232 scenes are used.

NASA Goddard Space Flight Center (Https:
//Ladsweb.Modaps.Eosdis.Nasa.Gov/Search/)

VIIRS DNB

VIIRS DNB Cloud Free Composites; Version 1 monthly
products covering the globe from 75 N to 65 S. Fifteen

arc-second geographic grids (approximately 500 m spatial
resolution); Date range: January, February, November and

December in 2013 and 2018.

National Centers for Environmental Information
(https://ngdc.noaa.gov/eog/viirs/download_

dnb_composites.htmL)

Landsat-8 OLI

Spatial resolution: 30 m.
Path/row: acquisition data

118/28: 24 June 2018, 30 September 2013; 118/30:
24 June 2018, 25 May 2013; 118/38: 23 May 2018,

29 August 2013; 123/32: 17 October 2018, 3 October 2013;
123/39: 15 September 2018, 31 July 2013; 129/43:

1 March 2018, 20 April 2013; 130/35: 12 June 2018,
4 October 2013; 143/29: 23 June 2018, 9 June 2013; 122/44:

12 February 2018, 29 November 2013; 124/36:
24 October 2018, 4 June 2013; 129/51: 13 February 2018,

20 April 2013; 146/40: 2 October 2018, 18 September 2013;
177/32: 18 April 2018, 23 June 2013; 155/24:

14 August 2018, 31 July 2013; 127/36: 11 September 2018,
13 September 2013.

United States Geological Survey
(http://earthexplorer.usgs.gov/)

High-quality reference data are essential for the assessment of the accuracy of pre-
dicting impervious surfaces and feature extraction, and typical and representative pixels
need to be collected as ground reference. In this research, the Landsat-8 OLI data were
preprocessed first, and the Biophysical Composition Index (BCI) was derived for use as
reference data on the impervious surface [61]. The production process includes water
body removal, tasseled cap transformation, and threshold segmentation. The first three
components derived from tasseled cap transformation were used to calculate the BCI.
The first component (TC1) is the brightness, the second (TC2) is the greenness, and the
third (TC3) is the wetness [62]. Finally, the extracted impervious surface data are coupled
with a small amount of manual rectification to achieve high-quality reference data at a
spatial resolution of 30 m. The reference data are divided into training data and testing data
for fitting the prediction model and evaluating accuracy, respectively. BCI is calculated
according to the following equations:

H =
TC1− TC1min

TC1max − TC1min
(1)

V =
TC2− TC2min

TC2max − TC2min
(2)

L =
TC3− TC3min

TC3max − TC3min
(3)

BCI =
(H+L)

2 −V
(H+L)

2 +V
(4)

where TCi (i = 1, 2, and 3) are the first three TC components calculated by TC transformation;
TCimin and TCimax are the minimum and maximum values of the corresponding TC
component, respectively.

Https://Ladsweb.Modaps.Eosdis.Nasa.Gov/Search/
Https://Ladsweb.Modaps.Eosdis.Nasa.Gov/Search/
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.htmL
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.htmL
http://earthexplorer.usgs.gov/
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2.3. Methodology
2.3.1. Feature Construction

To construct a robust feature set by making full use of multi-temporal MODIS and
VIIRS DNB data, multi-temporal MODIS spectral features, index features based on band
math, and the fusion of VIIRS DNB data were considered. These feature sets and their
expressions are shown in Table 2.

Table 2. Description of constructed feature set.

Feature Variable Feature Description Feature Number

Spectral feature set B1–B7, DNBnor 8
Index feature set NDSIi j, i, j ∈ 1, · · · , 7 i 6= j 21
Fusion feature set NLFIi j, i, j ∈ 1, · · · , 7 i 6= j 21

Note: DNB and DNBnor denote the DN value and normalized value of the VIIRS DNB after preprocessing,
respectively.

To achieve stable spectral features, MODIS spectral reflectance time-series data in 2018
were selected with 46 periods. The minimum value composite algorithm was developed
to integrate multi-temporal surface reflectance data. The minimum value of each pixel
was calculated based on the selected multi-temporal data to remove the impact of clouds,
resulting in a high-quality spectral image. The formal equation is expressed as follows,

Bi= Min
[

B1
i , B2

i , . . . , Bn
i

]
(5)

where Bi is the result derived from multi-temporal bands, i is the number of bands, and n
is the number of imaging periods.

According to the literature, NDBI and NDVI are used commonly to extract built-
up and vegetation information with high accuracy [63,64]. In general, NDVI is used to
extract vegetation information by setting an empirical threshold. Moreover, due to the
inverse correlation between vegetation indices and impervious surfaces, MODIS NDVI
has also been employed to extract impervious surfaces over large areas [65]. Although
these indices have certain advantages for extracting impervious surfaces, they are too
simple to represent heterogeneous impervious surfaces at large scales. In this research,
a set of newly derived indices, i.e., the normalized difference spectral index with several
spectral features, was designed, similar to the NDBI and NDVI, where spectral features are
captured comprehensively as

NDSIi j = (B i − Bj)/(B i + Bj
)

(6)

NDSIi j is the normalized difference spectral index derived from the band i and the
band j, i is natural numbers between 1 and 6, and j is natural numbers between i + 1 and 7.

Nighttime light data have become an important data source for the extraction of
large-area impervious surfaces [66]. However, the coarse spatial resolution and blooming
effects in the nighttime light data make it difficult to map impervious surfaces accurately
over large areas using nighttime light data alone [67]. Therefore, many studies have com-
bined nighttime light and vegetation indices for extracting impervious surface, where the
effectiveness has been demonstrated over urban landscapes [68]. However, the prediction
results of the above indices are still uncertain when mapping impervious surfaces due
to insufficient feature variables and lack of robustness. Therefore, a novel method of
fusing multi-temporal nighttime light data and spectral index features is proposed here to
consider both nighttime light and spectral indices comprehensively. For VIIRS DNB data,
it is important to reduce the impact of high-digit pixels as extreme values on impervious
surface estimation [52]. Logarithm was proposed to mitigate such impact [32]. The formal
equation is expressed as

NLFIi j = NDSIi j× log(DNB + 1) (7)
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where NLFIi j is the night light fusion index derived from fusing NDSIi j and VIIRS DNB,
and DNB is the DN value of nighttime lights data after the preprocessing step, with the
data range of 0–99.

2.3.2. Framework of the Proposed Method

Figure 2 illustrates the framework for the prediction of impervious surface percent-
age based on multi-source remotely sensed data. There are five steps in the framework:
(1) using the BCI index to extract impervious surface information from the preprocessed
Landsat-8 OLI imagery with manual rectification at a spatial resolution of 30 m; (2) con-
struction of feature sets based on MODIS spectral data and VIIRS DNB data; (3) random
forest regression to establish an impervious surface percentage prediction model; (4) gen-
eralizing the model to Asian regions other than China to predict the impervious surface
percentage; (5) accuracy assessment of the prediction.
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BCI: Biophysical Composition Index).

2.3.3. Development of AISP Prediction Models and Evaluation

The random forest regression model was employed for AISP prediction. First, 30,000 sam-
ples at pixel level were selected randomly in different regions of China. However, a small
part of these samples comes from the selected typical cities. Eighty percent of these samples
were used for training, and 20% were left for testing predictive performance. In addition, in
order to test the impact of different proportions of training samples on prediction accuracy
of the proposed method, another experiment was performed using 60% of the samples
as training samples, and the remaining samples were used for testing. Therefore, two
sets of prediction models were established in 2013 and 2018, respectively. There are two
important parameters in random forest model, which are the number of decision trees
in the forest (N) and the number of features extracted for each tree split (m). By default,
we selected one-third of the features in the TreeBagger package in Matlab as the number
of extracted features for different schemes of regression (m = 17). Based on the extracted
feature m, we identified that while the number of decision trees N ≥ 100, the out-of-bag
error of all schemes converged gradually and became stable. Therefore, we used N = 100
as the number of generated decision trees. The prediction outcome was the impervious
surface percentage. The variable importance was also tested to show the influence of
feature variables upon dependent variables [69]. The accuracy assessment for the AISP



Remote Sens. 2021, 13, 212 9 of 22

predictions was applied based on the coefficient of determination (R2) and root mean
squared error (RMSE). Moreover, the methods LISI (Large-scale Impervious Surface Index)
and MISI (Modified Impervious Surface Index) based on a single feature were employed
for comparative analysis. LISI and MISI are large-area impervious surface indices based on
MODIS NDVI and nighttime light data. They have achieved encouraging performance in
the estimation of impervious surfaces in a large area [32,52].

To further analyze the predictive capability of the proposed model, typical cities in
different regions of Asia were selected to evaluate the prediction model. These cities are
regional center cities of China and Asia. Between 2000 and 3000 sample points were
generated randomly from each typical city for accuracy assessment again. Using Landsat-8
OLI as the reference data, the predicted value was analyzed at each sample point. RMSE
and R2 (coefficient of determination) were used as indicators for evaluating the accuracy of
the AISP prediction in typical cities.

2.3.4. Experimental Scheme Description

Four different schemes were designed for benchmark comparison, including (1) spec-
tral feature, (2) spectral and index features, (3) spectral and fusion features, and (4) preferred
combination of all features as listed in Table 3. The purpose was to (1) study the influence
of different feature variables on the extraction of impervious surface information while
determining the variable importance, and (2) explore the best way to increase the accuracy
of impervious surface information extraction in different schemes.

Table 3. The information of experimental schemes.

Experimental Scheme Feature Combination

1 Spectral features
2 Spectral features + Index features
3 Spectral features + Fusion features

4 Preferred combination of all features

3. Results
3.1. The Results of Different Schemes

The random forest algorithm was used to test the importance of all features, and the
combination of feature variables with high scores was chosen to form scheme 4. All selected
feature variables were ranked based on variable importance as shown in Figure 3, and the
test R2 values were used to determine the selected features quantitatively (Figure 4).

The importance varied across variables in 2018. Amongst all features, DNBnor scored
the highest followed by B7, with scores of 3.05 and 2.12, respectively (Figure 3), and NLFI_36
produced the lowest score with the least influence on the prediction results. The prediction
accuracy of the previous surface model (top seven features) showed a rapid upward trend
with an increase in the input variables; the test R2 of a single feature rises from 0.45 to
0.67 when 80% of samples are used for training (Figure 4). This is mainly because the
importance score of the feature variables is high at the early stage, and the correlation be-
tween the features is small, enhancing the performance of the algorithm. When the number
of feature variables is between 7 and 15, the accuracy of the model shows a steady upward
trend along with the addition of characteristic variables. With the continuous addition of
variables, however, the accuracy of the model decreases slightly. This is due to the inclusion
of irrelevant variables and potential collinearity, which leads to a decline in prediction
accuracy. Figure 4 also shows that when the number of feature variables is 15, the model
accuracy is a maximum, and the test R2 is 0.69 in 2018. In addition, the importance of the
first 15 input features is similar in 2013 and 2018. Therefore, the first 15 feature variables
were chosen as scheme 4 to estimate the AISP.
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In order to obtain a robust estimation model, we developed two sets of prediction
models by using different proportions (60% and 80%) of training samples in 2013 and 2018,
respectively. From Table 4, compared with LISI and MISI methods, our proposed methods
show better performances using different proportions of training samples. Furthermore,
with the increased number of training samples, the estimation accuracy also increases,
but the increase is not significant. Moreover, as displayed in Table 4, our proposed method
can achieve more stable results compared with LISI and MISI. Within scheme 1, differ-
ent feature variables were added to estimate their effect on predicting impervious surface
percentage. When the spectral indices of each band were added, the accuracy of the model
increased slightly (test R2 is from 0.59 to 0.61 in 2018). When the fusion features were
included, the accuracy of the model increased significantly (test R2 is from 0.59 to 0.67
in 2018). This shows that the fusion features have a large contribution to the accuracy of
impervious surface percentage prediction. Compared with other methods, our proposed
scheme 4 is significantly better than models derived from LISI and MISI using different
proportions of training samples in 2013 and 2018, respectively (see in Table 4). Therefore,
our proposed method based on multi-temporal and multi-source features is more suitable
for estimating the impervious surface percentage in a large area.

Table 4. Model prediction accuracy of AISP based on different schemes.

Scheme
Test_R2 (60%) Test RMSE (60%) Test_R2 (80%) Test RMSE (80%)

(2018/2013) (2018/2013) (2018/2013) (2018/2013)

1 0.59/0.66 0.058/0.048 0.59/0.66 0.058/0.049
2 0.60/0.67 0.055/0.046 0.61/0.68 0.056/0.047
3 0.66/0.71 0.048/0.041 0.67/0.71 0.047/0.041
4 0.69/0.71 0.044/0.040 0.69/0.72 0.044/0.039

LISI 0.56/0.46 0.063/0.073 0.57/0.47 0.061/0.075
MISI 0.62/0.49 0.054/0.072 0.62/0.50 0.054/0.070

Note: 60%: 60% of the samples were used for training the model. 80%: 80% of the samples were used for training
the model.

3.2. Prediction of AISP in Asia

The total estimated area of artificial impervious surface in Asia was 352,490 km2 and
29,1280 km2 in 2018 and 2013, respectively, which accounted for 0.79% and 0.65% of the
land surface area in Asia, respectively. We also calculated the area of artificial impervious
surface in Asia using the existing global impervious surface products for the past two years.
The impervious surface area of Asia calculated by Gong’s product (GAIA) was 340,625 km2

and 280,325 km2 in 2018 and 2013, respectively [70]. Thus, in general, the results obtained
in this paper are consistent with Gong’s results, but the predicted area using the present
approach is slightly larger. The possible reason for this is that GAIA uses night lights data
as a mask to obtain potential impervious surface information and may have omitted some
rural settlements that do not have night lights.

The spatial distribution of the artificial impervious surface in Asia is illustrated in
Figure 5. The impervious surface in Asia presents three gradients from east to west. The first
gradient includes Japan, South Korea, and coastal cities in eastern China. The impervious
surface here is characterized mainly by a high density and concentrated distribution.
In addition, China has the most impervious surfaces in Asia, located mainly in the coastal
cities in the east. The second gradient includes countries in Central Asia, mainly five
countries including India. The impervious surface of this area is scattered from the city
center to the periphery. The third gradient encompasses the western part of Asia, mainly the
countries of the Arabian Peninsula. The impervious surface percentage of this gradient is
low, mainly because of the effects of topography and climate in the area.
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3.3. Analysis of Predicted Results of AISP in Typical Cities

To further compare the performance of these methods, typical cities in Asia were
selected for accuracy assessment. As shown in Table 5, the R2s based on our proposed
model are significantly higher than those of the LISI and MISI models in typical cities,
which implies that for AISP estimation in city area, our proposed method also can achieve
good performance. This is especially the case for cities located in northern and western
China such as Lanzhou, Urumqi, and Zhengzhou, where vegetation coverage is relatively
low and bare soil is widely distributed. In this case, the methods based on a single
feature cannot obtain good performance. In contrast, our proposed method based on
multiple features can effectively improve the estimation accuracy. This shows that the
proposed model has a good prediction ability. To further analyze the generalizability of
the model, some typical Asian cities outside of China were also selected, including cities
in Southeast Asia, South Asia, Central Asia, and West Asia. Amongst all these Asian
cities, Astana and New Delhi show the most accurate predictions (R2 is 0.72 and 0.66,
respectively, in 2018). This further demonstrates an enhanced ability for prediction as well
as generalizability, which can be applied to the prediction of the percentage of large-area
artificial impervious surface.

Scatterplots between referenced and predicted values using regression models are
shown in Figure 6 for accuracy assessment in some typical cities in 2018. Figure 6 implies
that there was a high agreement between these referenced and predicted values. This result
demonstrates that our proposed method has good performance in AISP prediction. Figure 7
further shows the robustness and effectiveness of the proposed model. The extracted AISP
could reflect the urban structure while reducing overprediction of urban areas, particularly
for those cities with relatively high percentage of urban greenspace (such as Shenzhen).

Table 5. Predicted accuracy of AISP in typical cities.

Cities
Our Method (2018/2013) LISI (2018/2013) MISI (2018/2013)

R2 RMSE R2 RMSE R2 RMSE

Beijing 0.86/0.87 0.146/0.123 0.52/0.58 0.271/0.217 0.59/0.63 0.250/0.206
Changchun 0.89/0.88 0.142/0.135 0.60/0.63 0.256/0.235 0.69/0.68 0.226/0.222

Harbin 0.86/0.87 0.125/0.128 0.59/0.60 0.193/0.221 0.67/0.65 0.175/0.209
Shanghai 0.87/0.88 0.137/0.132 0.59/0.38 0.237/0.296 0.67/0.39 0.213/0.295
Kunming 0.88/0.85 0.116/0.145 0.71/0.64 0.175/0.222 0.75/0.68 0.162/0.211
Lanzhou 0.88/0.85 0.138/0.128 0.47/0.47 0.283/0.231 0.55/0.49 0.263/0.227
Shenzhen 0.89/0.87 0.135/0.134 0.66/0.28 0.226/0.316 0.70/0.27 0.209/0.329

Wuhan 0.83/0.85 0.150/0.143 0.54/0.46 0.237/0.269 0.58/0.46 0.229/0.267
Zhengzhou 0.86/0.85 0.148/0.142 0.40/0.51 0.305/0.259 0.47/0.62 0.288/0.243

Urumqi 0.86/0.85 0.139/0.147 0.41/0.49 0.288/0.312 0.39/0.53 0.292/0.299
Bangkok 0.54/0.60 0.227/0.198 0.42/0.50 0.256/0.219 0.46/0.54 0.247/0.212
Astana 0.72/0.69 0.212/0.175 0.51/0.58 0.285/0.201 0.58/0.64 0.265/0.186

New Delhi 0.66/0.72 0.237/0.212 0.64/0.63 0.243/0.243 0.68/0.67 0.227/0.233
Ankara 0.52/0.54 0.255/0.237 0.39/0.40 0.288/0.270 0.38/0.41 0.289/0.265
Anshun 0.75/0.70 0.196/0.214 0.65/0.64 0.240/0.242 0.66/0.64 0.239/0.241

Note: The above models are all obtained by using 80% of these samples for training in 2018 and 2013, respectively.
Our method denotes the scheme 4 of the proposed methods.
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4. Discussion
4.1. Comparative Analysis of Different Product Results in a Typical Area

To further validate the proposed method, the predictions were analyzed and compared
with existing global impervious surface products (GAIA, NUACI, and HBASE). The GAIA
is a global artificial impervious surface product [70]. This dataset is based on multi-season
Landsat images and combined with auxiliary data to produce global impervious surface
products from 1985 to 2018. Liu et al. provided another multi-temporal global impervious
surface product (NUACI) using night light data and Landsat images [39]. The HBASE
dataset was the first impervious surface product at a spatial resolution of 30 m globally.
It is produced through the fusion of multi-source remotely sensed data and has a high
accuracy for extracting global impervious surfaces [71]. We considered the performance of
the current impervious surface inversion methods comprehensively in different regions.
Four case areas from 15 cities were selected as representative regions for quantitative
analysis. These include a bare-soil-prevalent region (Urumqi, China), a region with poor
data quality (Anshun, China), a region surrounded with rural settlements (Harbin, China),
and a megacity (Beijing, China). There are huge challenges for these regions to acquire
impervious surface information accurately.

As shown in Figure 8, in Anshun (a cloudy and rainy area), GAIA-2018 and NUACI-
2015 underpredicted significantly the impervious surface of the city and surrounding areas.
The reason for the underprediction of GAIA-2018 data may be the influence of Landsat
image data quality (e.g., cloud cover) and sample points. The underprediction of NUACI-



Remote Sens. 2021, 13, 212 17 of 22

2015 is due to the segmentation threshold, which leads to the omission of impervious
surfaces. However, HBASE-2010 and AISP-2018 were accurate in this area. There are a
large number of rural settlements surrounding the city of Harbin. The AISP-2018 and GAIA-
2018 not only reflect the impervious surface information of the core urban area but also
extract the scattered information of the rural settlements accurately. Although NUACI-2015
and HBASE-2010 characterize the impervious surface information of urban areas accurately,
they miss the surrounding rural settlements. In addition, HBASE-2010 overpredicts the
impervious surface information in the core area of the city. As a representative city in arid
regions, Urumqi has bare soil around and inside the city. As shown in the zoomed-in area
in Figure 8, GAIA-2018 mixed bare soil and impervious surfaces and misclassified the bare
soil as impervious surface, resulting in overprediction of impervious surfaces. AISP-2018
eliminated the bare soil information in this area. NUACI-2015 tends to underpredict the
impervious surface of the city. HBASE-2010 maintains the same effect as AISP-2018 for
impervious surface extraction.

To evaluate the performance of our results quantitatively and compare with other
global impervious surface datasets, four typical regions were selected. For each verification
region, 1000–2500 samples were randomly collected for evaluation. For other datasets,
they were converted into impervious surface percentage data with the same spatial res-
olution. The reference data are obtained based on Landsat 8 images. As shown in Table
6, compared with HBASE and NUACI products, our proposed method achieved better
performance. While compared with GAIA product, our method obtained lower accuracy
in some big and developed cities such as Harbin and Beijing but obtained significant im-
provement for some cities such as Urumqi and Anshun, which indicates that our proposed
method has better adaptability in some areas with less vegetation overage and difficult
data acquisition.

Table 6. Accuracy of the four impervious surface maps over 4 validation regions.

Cities
AISP-2018 GAIA-2018 HBASE-2010 NUACI-2015

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Urumqi 0.87 0.139 0.67 0.317 0.47 0.301 0.48 0.293
Anshun 0.75 0.196 0.20 0.420 0.31 0.373 0.49 0.299
Harbin 0.84 0.122 0.86 0.169 0.68 0.170 0.46 0.328
Beijing 0.86 0.155 0.95 0.081 0.62 0.238 0.70 0.232

In summary, compared with existing products, our proposed method of integrating
multi-temporal MODIS and VIIRS NTL data can achieve better results in the cloudy and
rainy areas, as well as in rural areas.

4.2. Feature Importance Analysis

From the above results, the effective increase of features can improve the accuracy
of prediction, and the contribution of various features to the prediction capability of the
model varies greatly. To evaluate the importance of input features, the feature importance
score was used to quantify the contribution of each feature to the model. The result is
illustrated in Figure 3, and the importance of different features is represented visually by
histograms for large-scale impervious surface prediction. The importance of DNBnor is
significantly higher than any other features, because the nighttime light is mainly derived
from artificial light sources that are closely related to human activities. Impervious surface
information can be obtained based on the position and intensity of nighttime light [72].
Since there is a positive correlation between the degree of impervious surface and the
intensity of nighttime light [73], a number of previous research has been carried out to
extract impervious surface information using nighttime light data [74,75]. In this study,
the advantage of nighttime light is taken into account, so it is introduced as a feature
variable in the prediction model.



Remote Sens. 2021, 13, 212 18 of 22

Remote Sens. 2021, 13, 212 18 of 23 
 

 

NUACI-2015 is due to the segmentation threshold, which leads to the omission of imper-
vious surfaces. However, HBASE-2010 and AISP-2018 were accurate in this area. There 
are a large number of rural settlements surrounding the city of Harbin. The AISP-2018 
and GAIA-2018 not only reflect the impervious surface information of the core urban area 
but also extract the scattered information of the rural settlements accurately. Although 
NUACI-2015 and HBASE-2010 characterize the impervious surface information of urban 
areas accurately, they miss the surrounding rural settlements. In addition, HBASE-2010 
overpredicts the impervious surface information in the core area of the city. As a repre-
sentative city in arid regions, Urumqi has bare soil around and inside the city. As shown 
in the zoomed-in area in Figure 8, GAIA-2018 mixed bare soil and impervious surfaces 
and misclassified the bare soil as impervious surface, resulting in overprediction of im-
pervious surfaces. AISP-2018 eliminated the bare soil information in this area. NUACI-
2015 tends to underpredict the impervious surface of the city. HBASE-2010 maintains the 
same effect as AISP-2018 for impervious surface extraction. 

 

Remote Sens. 2021, 13, 212 19 of 23 
 

 

 
Figure 8. Comparison of artificial impervious surface amongst four products over typical regions. 

To evaluate the performance of our results quantitatively and compare with other 
global impervious surface datasets, four typical regions were selected. For each verifica-
tion region, 1000–2500 samples were randomly collected for evaluation. For other da-
tasets, they were converted into impervious surface percentage data with the same spatial 
resolution. The reference data are obtained based on Landsat 8 images. As shown in Table 
6, compared with HBASE and NUACI products, our proposed method achieved better 
performance. While compared with GAIA product, our method obtained lower accuracy 
in some big and developed cities such as Harbin and Beijing but obtained significant im-
provement for some cities such as Urumqi and Anshun, which indicates that our pro-
posed method has better adaptability in some areas with less vegetation overage and dif-
ficult data acquisition. 

In summary, compared with existing products, our proposed method of integrating 
multi-temporal MODIS and VIIRS NTL data can achieve better results in the cloudy and 
rainy areas, as well as in rural areas. 

Table 6. Accuracy of the four impervious surface maps over 4 validation regions. 

 AISP-2018 GAIA-2018 HBASE-2010 NUACI-2015 
Cities R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Urumqi 0.87 0.139 0.67 0.317 0.47 0.301 0.48 0.293 
Anshun 0.75 0.196 0.20 0.420 0.31 0.373 0.49 0.299 
Harbin 0.84 0.122 0.86 0.169 0.68 0.170 0.46 0.328 
Beijing 0.86 0.155 0.95 0.081 0.62 0.238 0.70 0.232 

4.2. Feature Importance Analysis 
From the above results, the effective increase of features can improve the accuracy of 

prediction, and the contribution of various features to the prediction capability of the 
model varies greatly. To evaluate the importance of input features, the feature importance 
score was used to quantify the contribution of each feature to the model. The result is 
illustrated in Figure 3, and the importance of different features is represented visually by 
histograms for large-scale impervious surface prediction. The importance of DNBnor is 
significantly higher than any other features, because the nighttime light is mainly derived 
from artificial light sources that are closely related to human activities. Impervious surface 
information can be obtained based on the position and intensity of nighttime light [72]. 
Since there is a positive correlation between the degree of impervious surface and the in-
tensity of nighttime light [73], a number of previous research has been carried out to ex-
tract impervious surface information using nighttime light data [74,75]. In this study, the 
advantage of nighttime light is taken into account, so it is introduced as a feature variable 
in the prediction model. 

The features with high importance scores also include B7, NDSI_67, and NDSI_34. 
Amongst them, B7 denotes the spectral reflectance of multi-temporal fusion, which is the 
characteristic response of impervious surface on remotely sensed imagery and is related 
to urban identification. At the same time, band 6 and band 7 are commonly used bands in 
urban information extraction, so the combination of them can describe impervious surface 
information effectively. Meanwhile, band 3 and band 4 of MODIS are the narrow blue 
band and green band, respectively. The difference in spectral reflectance on blue band 
does not have much difference for various coverage types, and the green band is sensitive 
to the vegetation in the mixed pixels. Therefore, the combination of them can describe 
impervious surface information effectively. 

Figure 8. Comparison of artificial impervious surface amongst four products over typical regions.

The features with high importance scores also include B7, NDSI_67, and NDSI_34.
Amongst them, B7 denotes the spectral reflectance of multi-temporal fusion, which is the
characteristic response of impervious surface on remotely sensed imagery and is related to
urban identification. At the same time, band 6 and band 7 are commonly used bands in
urban information extraction, so the combination of them can describe impervious surface
information effectively. Meanwhile, band 3 and band 4 of MODIS are the narrow blue
band and green band, respectively. The difference in spectral reflectance on blue band
does not have much difference for various coverage types, and the green band is sensitive
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to the vegetation in the mixed pixels. Therefore, the combination of them can describe
impervious surface information effectively.

5. Conclusions

The overall aim of this paper was to solve the problem of insufficient features for
large-area impervious surface extraction using traditional approaches. Here, we develop a
robust feature set by fusing multi-temporal MODIS and VIIRS DNB data for the prediction
of large-area impervious surface percentage. First, based on multi-temporal MODIS and
VIIRS DNB data, three methods were proposed to extract multi-temporal spectral features,
index features, and fusion features of nighttime light data in four different experimental
schemes. Then, the random forest algorithm was applied for feature selection and the
prediction of large-area artificial impervious surface percentage. To validate the proposed
model, fifteen typical cities from different regions of Asia were selected, and a detailed accu-
racy assessment was undertaken for each. The results demonstrated the high accuracy and
robustness of the proposed model for each of these typical cities. Finally, several existing
global impervious surface datasets (GAIA, NUACI, HBASE) were considered to provide a
benchmark comparison. The results demonstrated that the total impervious surface area of
Asia predicted by the proposed method was similar to the area calculated by GAIA in 2013
and 2018, and, in some areas (e.g., arid areas and cloudy areas), showed advantages for
impervious surface extraction. Therefore, the use of the proposed multi-feature prediction
model by fusing multi-temporal MODIS and VIIRS DNB data can lead to high accuracy and
robustness in the prediction of AISP. In the future, we would like to develop the method
further through new fusion techniques and generalize the model into global impervious
surface estimation.
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