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Selenium (Se) is an essential element for human health. However, our knowledge of the
prevalence of Se deficiency is less than for other micronutrients of public health concern
such as iodine, iron and zinc, especially in sub-Saharan Africa (SSA). Studies of food
systems in SSA, in particular in Malawi, have revealed that human Se deficiency risks are
widespread and influenced strongly by geography. Direct evidence of Se deficiency risks
includes nationally representative data of Se concentrations in blood plasma and urine as
population biomarkers of Se status. Long-range geospatial variation in Se deficiency risks
has been linked to soil characteristics and their effects on the Se concentration of food
crops. Selenium deficiency risks are also linked to socio-economic status including access to
animal source foods. This review highlights the need for geospatially-resolved data on the
movement of Se and other micronutrients in food systems which span agriculture–nutri-
tion–health disciplinary domains (defined as a GeoNutrition approach). Given that similar dri-
vers of deficiency risks for Se, and other micronutrients, are likely to occur in other countries
in SSA and elsewhere, micronutrient surveillance programmes should be designed accordingly.

Hidden hunger: Malnutrition: Micronutrient surveillance

Biological role of selenium

Selenium (Se) is an essential trace element with many roles
in human health. An important group of Se-containing

compounds which are required for optimal health are the
selenoproteins(1). There are twenty-five genes expressing
selenoproteins in the human genome, including iodothyro-
nine deiodinases, thioredoxin reductases, glutathione
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peroxidases and other selenoproteins such as selenoprotein
P(1). These selenoproteins play important roles in thyroid
function, redox homeostasis and antioxidant defence. Se
deficiency has been linked with a range of negative health
outcomes including reduced immune responses and lower
CD4+ T cell counts, increased disease progression and
increased mortality among individuals infected with
HIV-1(1–4).

Establishing optimal dietary selenium requirements from
biomarkers of selenium status

Establishing optimal dietary Se requirements is challen-
ging; these can vary according to age and physiological
status of individuals(1). Furthermore, only small amounts
of Se are required at an individual level and the corre-
sponding low concentrations of Se in tissues, used as bio-
markers of Se status, are technically challenging to
measure accurately. Approximately 50 % of an indivi-
dual’s Se circulates in the blood system and this Se
pool is responsive to short-to-medium term Se intake
(days-to-weeks). Whole-blood or plasma/serum Se con-
centration is therefore an informative biomarker of Se
status at individual and population levels(1). Plasma Se
concentrations of 87 and 65 μg/l are typically used as
thresholds for the optimal activities of the selenoproteins
glutathione peroxidase 3 and iodothyronine deiodinase,
respectively, in adults(5).

A plasma Se concentration of about 100 μg/l corre-
sponds to a habitual Se intake of about 1 μg/kg body
mass/d(1). Notably, the optimal plasma activity of other
selenoproteins (e.g. selenoprotein P) occurs at greater
plasma Se concentrations (>120 μg/l) than for glutathi-
one peroxidase 3 and iodothyronine deiodinase; how-
ever, the significance of this for human health has not
yet been established(6). The tolerable upper limit for Se
has been defined for adults and adolescents as 400 μg/
capita/d based on potential adverse effects(7).

The use of blood Se concentration as a biomarker of
Se status requires invasive sampling; there can be sensi-
tivities regarding the use of blood samples (e.g. for
HIV testing) and suspicions about blood sampling ori-
ginating in cultural beliefs, e.g. vampirism or ‘blood
sucking’ and witchcraft in some countries(8). Urine Se
concentration is an alternative potential biomarker of
Se status(1,8,9). Most excreted Se is in a urinary seleno-
sugar(10); however, the concentration of Se in urine is
strongly influenced by intra- and inter-individual vari-
ation in hydration and urinary flow rates, amongst
many other factors(10). Toenail and hair Se concentra-
tions are other potential biomarkers of Se status, which
are potentially less invasive than blood Se concentration,
and can indicate longer-term Se status(1,11). However,
toenails and hair are prone to contamination from extrin-
sic sources of Se (e.g. dust, hair cleaning products) as well
as having their own potential cultural sensitivities. Thus,
whilst measurements of urine, toenail and hair Se con-
centrations can provide useful information, these are
less useful than blood Se concentration for assessing
population-level Se status.

Evidence of widespread dietary selenium deficiency risks
in Africa

Data on the concentration of Se in blood as reported for
populations in African countries were obtained from a
literature review. Search terms were individual African
country names, together with selenium and plasma or
serum or blood (conducted August 2017, Web of
Science, Clarivate Analytics). There were fifty-four pub-
lications in which the Se concentration of whole-blood
(n 4), plasma (n 21) or serum (n 29) was reported
(Supplementary Table 1). Whilst plasma Se concentra-
tion has been reported to represent 81 % of whole-blood
Se concentration and 94 % of serum Se concentration(12),
the original data values were used in this summary with-
out adjustments. This search was not considered to be
exhaustive, but likely to be representative.

Studies from nineteen countries are represented in this
literature summary: Algeria (n 2 studies), Côte d’Ivoire
(n 2), Democratic Republic of Congo (n 8), Egypt
(n 6), Ethiopia (n 6), Ghana (n 2), Kenya (n 1), Malawi
(n 8), Morocco (n 2), Mozambique (n 1), Niger (n 1),
Nigeria (n 4), Rwanda (n 1), Senegal (n 1), South
Africa (n 3), Sudan (n 3), Tanzania (n 2), Uganda (n 1)
and Zambia (n 1). From across these studies, we were
able to identify blood Se concentration data for a total
of 131 distinct groups of people for which an average
(mean and/or median) and a dispersion measure of
blood Se concentration was reported. Many of the
cited studies presented data for case and control groups,
the former comprising individuals presenting clinical
symptoms (e.g. tuberculosis, HIV), typically in a hospital
setting, the latter being drawn from apparently healthy
individuals often living or working in the vicinity of the
hospital.

The average blood Se concentration data for these 131
groups, and citation details, are provided in Supplementary
Table 1. Among these studies, eighty-four of the 131 groups
have average blood Se concentrations below the threshold
for optimal glutathione peroxidase 3 activity (87 μg/l); sixty-
four groups are also below the threshold for optimal
iodothyronine deiodinase activity (65 μg/l). These data indi-
cate that Se deficiency risks are potentially high for groups in
many settings in Africa. Strong caveats are needed to avoid
these summary data being over-interpreted. These include
(1) the small number of studies included, (2) not using
analytical quality control as inclusion criteria, (3) biases in
the original study designs (i.e. explicit case–control compar-
isons of people experiencing ill-healthwith healthy controls).

Evidence of geospatial variation in selenium deficiency
risks in sub-Saharan Africa

Geospatial variation in Se status has not been studied
widely in sub-Saharan Africa (SSA). We identified stud-
ies from four countries, in which groups of people were
selected according to explicit geospatial criteria:
Democratic Republic of Congo(13–20), Ethiopia(21–24),
Côte d’Ivoire(25,26) and Malawi(27). In all four countries,
there is evidence of geospatial variation in Se status.
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In the Democratic Republic of Congo, Ngo et al. com-
pared the Se status of groups of pregnant women (about
20 weeks’ gestation, n 505 in total), from seven discrete
locations(18). Serum Se concentration varied from 40 to
111 μg/l between these groups with evidence of geospatial
determinants of Se status. This is one of several studies in
the Democratic Republic of Congo to have explored geo-
spatial links between Se and iodine nutrition and poten-
tially associated health disorders(13–20). In Côte d’Ivoire,
adult plasma Se concentration was reported to be 3–5-
fold greater among adults in Abidjan, than in the moun-
tainous Glanlé Region of west Côte d’Ivoire(25,26).

In Ethiopia, Gashu and coworkers have reported geo-
spatial variation in Se deficiency, based on surveys of the
serum Se status of about 600 children aged about 5 years
in the Amhara Region(21–24). Serum Se concentration
ranged from 11 to 291 μg/l; 49 % were below 70 μg/l.
Plasma Se concentration was lower in rural villages in
the west of Amhara (West Gojjam, East Gojjam, South
Gonder zones) than in the east of Amhara Region
(North Wollo, South Wollo and Waghemera zones).
Given that the consumption of animal-source foods
was limited across the region, Gashu and coworkers
hypothesised that Se deficiency risks were likely to be
due to soil and/or landscape features influencing the Se
concentration of the crop(21). Based on dietary assess-
ments, Gashu and coworkers concluded that the
grain Se concentration of the two dominant cereal
crops, teff and wheat, would likely be the primary drivers
of differences in Se status; for example, teff had been
eaten by 76% of children in the 24 h prior to the dietary
assessments(22).

Evidence of widespread dietary selenium deficiency risks
and geospatial linkages in Malawi

The most comprehensive geospatial data on the Se status
of a population in SSA are from Malawi. A high preva-
lence of Se deficiency was predicted in Malawi, based on
plasma Se concentration ranges of <54 μg/l among a
population of adults (n 779) living in rural areas of
Zomba District(27,28). These data were consistent with
an earlier report of small dietary Se intakes (15–21 μg/
capita/daily) among children living in Zomba(29).
Subsequent national-scale estimates of Se intake, based
on predicted maize grain Se concentrations arising due
to variation in soil properties(30), strengthened the case
that Se deficiency was likely to be widespread.

In a cross-sectional study, designed explicitly to com-
pare the Se status of women living in two locations
with contrasting soil types and maize grain Se concentra-
tions, marked differences in the Se status of blood plasma
and casual urine were observed(31). Plasma Se concentra-
tion in Zombwe extension planning area (EPA) (median
53⋅7 μg/l, SD 9⋅7, range 32⋅3–78⋅4, n 60) was less than half
that seen in Mikalango EPA (median 117 μg/l, SD 22⋅5,
range 82⋅6–204, n 60) which had been selected as a site
because of the local Vertisol soil types used for local
crop production, which had previously been linked with
much higher grain Se concentrations(30). Casual (spot)

urine Se concentration in Zombwe EPA (median 7⋅3
μg/l, SD 2⋅0, range 4⋅1–13⋅3, n 59) was one-third that of
Mikalango EPA (median 25⋅3 μg/l, SD 18⋅9, range 12⋅4–
106, n 56). These data strengthened the case that Se defic-
iency was likely to be very widespread in Malawi based
upon the relative extent of corresponding soil types in
Malawi(30,31). The higher plasma Se concentration of
people living in areas where Vertisols are prevalent in
Malawi (Chikwawa District, which includes Mikalango
EPA) has been shown to be consistent with a high
erythrocyte Se concentration(32). Erythrocyte Se concen-
tration is unlikely to be affected by the systemic
inflammatory response, which can cause a decrease in
plasma Se concentration that is independent of Se
status(32).

To the authors’ knowledge, Malawi is the only country
in Africa to have reported Se status using a nationally
representative survey of the population(33). Blood plasma
Se concentration was used as a population-level bio-
marker, from samples collected during the Malawi
Micronutrient Survey and Demographic and Health
Survey of 2015–16. The study comprised 2761 people,
including preschool children (aged 6–59 months),
women of reproductive age (aged 15–49 years), school-
aged children (aged 5–14 years) and men (aged 20–54
years). Across all demographic groups, the mean and
median plasma Se concentrations were 73⋅2 and 68⋅2
μg/l, respectively (SD 33⋅9 μg/l; range 9⋅9–374 μg/l).
Plasma Se concentration increased with age, ranging
from a median of 57⋅7 μg/l in preschool children to
78⋅4 and 81⋅9 μg/l in adult women and men,
respectively(33).

As predicted from the earlier, localised studies(27,28,31),
widespread Se deficiency risks and geospatial linkages
were evident(33). For example, 62⋅5 and 29⋅6 % of
women of reproductive age (n 802) had plasma Se
concentrations below the thresholds for the optimal
activity of the glutathione peroxidase 3 (87 μg/l) and
iodothyronine deiodinase (65 μg/l), respectively (Fig. 1).
Geostatistical modelling and prediction showed that Se
status of people shows marked spatial variation, with
higher blood concentrations in areas where particular
soils are commonly found (Vertisols) and near Lake
Malawi where more fish is likely to be consumed(33).

Phiri et al. reported similar geospatial patterns in urine
Se concentration, based on casual (spot) urine samples
(n 1406) taken from the same sample of women of repro-
ductive age (n 741) and school-aged children (n 665) dur-
ing the 2015–16 Malawi Demographic and Health
Survey(8). Thus, between-cluster (enumeration area) vari-
ation in urine Se concentration corresponded with vari-
ation in plasma Se concentration (Fig. 1). There was a
stronger geospatial correlation between urine and plasma
Se concentrations, at the enumeration area scale, when
urine Se concentration data were adjusted for individual
hydration status (e.g. using specific gravity) than when
uncorrected urine Se concentration data were used. The
limitations of urine Se concentration as an individual-
level biomarker of Se status were evident in that urine
Se concentration was not associated with variation in
plasma Se concentration between households within a
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cluster, nor between individuals within a household.
Nevertheless, Phiri et al. concluded that urine Se concen-
tration has potential value as a non-intrusive method for
population-level surveillance of Se status, especially if
urine samples are already being collected for other pur-
poses, e.g. iodine surveillance(8).

Variation in dietary selenium supply and intake in
sub-Saharan Africa

Selenium status correlates strongly with the intake of Se
from dietary sources(1). Selenium intakes ranging from 3
to 7000 μg/capita/d have been reported globally due to
differing dietary preferences and the levels of
plant-available Se in the soil on which crops are
grown(1,34–36). Intake of Se from water and air is usually
insignificant, except where local natural or anthropo-
genic factors arise(34). Assessments of dietary Se intake
can therefore be made from the direct compositional ana-
lysis of duplicate portions of diets, or by secondary ana-
lysis of food composition data multiplied by food
consumption/expenditure/supply data which are avail-
able from various sources(37–39).

Among forty-six countries across all of Africa, Joy
et al. reported mean and median national Se supplies
of 50 and 55 μg/capita/d, using FAO food supply and
regional food composition tables and population-
weighted data(37) (Fig. 2). National Se supply ranged
from 23 (Liberia) to 93 μg/capita/d (Burkina Faso).
These data represent a single data point for each country
with an assumed normal distribution, which was then
used to estimate the prevalence of Se deficiency(37). The

estimated risk of Se deficiency was 28 % across Africa.
Greater risks of Se deficiency were estimated to occur
in Eastern (52 %) and Middle (49 %) regions, followed
by Southern (26 %), Northern (12 %) and Western
(6 %) regions. The critical importance of secondary
data quality, and inferred Se supply data for individual
countries, is discussed in Joy et al. For example, such
analyses are highly sensitive to food Se concentration
data, especially for frequently consumed food items,
and such concentration data often do not have support-
ing information on analytical quality control(37).

In the continental-scale analysis of Joy et al.(37), diet-
ary Se supply in Malawi was estimated to be 34 μg/
capita/d compared to a population-weighted estimated
average requirement for Se of 37 μg/capita/d. The esti-
mated average requirement is defined as the quantity of
intake that meets the requirements of 50 % of an age-
and sex-specific population group. A Se deficiency risk
of 64 % was estimated based on the estimated average
requirement cut-point method(40). Data from Joy
et al.(37) were consistent with a subsequent secondary
data analysis, by Joy et al., in which median dietary Se
supply in Malawi was estimated to be 21 μg Se/capita/d
(25 μg Se/d per adult male equivalent)(39). An estimated
74% of households had inadequate dietary Se supply
to meet the sum of household members’ estimated average
requirements(39). Joy et al. assessed dietary Se supply in
Malawi using food composition data, derived from
national-scale convenience sampling(30,38,39), which were
combined with household food consumption data (and
socio-economic data) from the Third Malawi Integrated
Household Survey. The Third Malawi Integrated
Household Survey was a nationally-representative sample

Fig. 1. (a) Enumeration area cluster locations from the nationally representative micronutrient survey
of Malawi, (b) predicted plasma selenium (Se) concentration (adapted from Phiri et al.(33)), and (c)
urine Se concentration unadjusted for hydration status. Data are for women of reproductive age (15-
49 years). Reproduced with minor changes from Phiri et al.(8); https://doi.org/10.1016/j.envint.2019.
105218; Attribution-Non Commercial-No Derivatives 4⋅0 International (CC BY-NC-ND 4⋅0) License
(https://creativecommons.org/licenses/by-nc-nd/4.0/).
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of >12 000 households interviewed from March 2010 to
March 2011. In the Third Malawi Integrated Household
Survey food consumption module, participants were
asked to recall the types and amounts of food consumed
in the household during the past 7 d, from a list of 112
food items, and also whether this was sourced from
home production, purchased or gifted(39). Data were inte-
grated at an EPA level to provide information for 179 dis-
aggregated spatial units.

In Malawi, >50 % of dietary energy was derived from
maize(39). Other cereals, including rice, sorghum, pearl
millet and finger millet, each contributed <5% of energy
intake, whilst legumes and root and tuber crops such as
cassava and sweet potato each contributed about 10 %
of national energy supply(39). All animal source foods
combined, including meat, milk and eggs, represented
<10% of overall energy intake.

At an EPA level, the median Se supply per adult male
equivalent ranged from 7 μg/d in Kavukuku in northern
Malawi (n 64 households) to 44 μg/d in Nampeya in
southern Malawi (n 47 households; Fig. 3). The food
groups, fish, cereals and legumes contributed 47, 21
and 13%, respectively, of national annual dietary Se sup-
ply, with all of the other food groups each contributing
<9%. Se supply was positively correlated with household
socio-economic status, with the risk of Se deficiency sub-
stantially greater in lower-expenditure households(39).

Outside of Malawi, there are few reports of geospatial
variation in dietary Se supply or intake within countries
in SSA, either from food consumption/composition sur-
veys or from duplicate dietary analyses. In Burundi,
using duplicate diet analyses and questionnaires, mean
intakes of 17 μg/capita/d were reported among adults

living in rural areas, compared to 82 and 38 μg/capita/d
among urban middle-class men and mothers, respect-
ively, and 67 and 64 μg/capita/d in hospital and univer-
sity institutional settings, respectively(41). Access to fish,
based on increased purchasing power, was associated
with increased Se intake in urban settings. These

Fig. 2. (a) Dietary selenium supply and (b) deficiency risk for forty-six African countries. Inset: sub-regions of Africa (http://
unstats.un.org/unsd/methods/m49/m49regin.htm). Reproduced unchanged from Joy et al.(37); https://doi.org/10.1111/ppl.
12144; Creative Commons Attribution 4⋅0 International License (http://creativecommons.org/licenses/by/4.0/).

Fig. 3. (a) Dietary selenium (Se) supply and (b) deficiency risk by
extension planning area for Malawi. Median household Se supply
(μg/AME/d; AME = adult male equivalent) and the proportion (%) of
households with inadequate dietary Se supply to meet the sum of
member estimated average requirements. Reproduced unchanged
from Joy et al.(39); https://doi.org/10.1186/s40795-015-0036-4;
Creative Commons Attribution 4⋅0 International License (http://
creativecommons.org/licenses/by/4.0/).
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observations are consistent with small Se intakes (15–21
μg/capita/d) reported among children living in Zomba
District, in rural southern Malawi(29), as compared to
larger intakes (44–46 μg/capita/d) in Mangochi District,
adjacent to the southern end of Lake Malawi, where
fish consumption was greater(42).

Linkages between dietary selenium supply and intake,
food crop composition and soil type in Malawi

Geospatially-resolved food composition data from
Malawi(30,38,39) provide strong evidence of links between
soil type and food crop Se composition, consistent with
observations from an earlier analysis of soils and maize
grain(30). Chilimba et al. sampled seventy-three sites in
2009 and reported a median maize grain Se concentration
of 16 μg/kg(30). This value was less than reported in earlier
food composition data from Malawi(29). However, a sin-
gle large maize grain Se concentration of 533 μg/kg was
noted from a crop growing on a Vertisol soil (pH 7⋅9),
in Mikalango EPA, in the south of Malawi(30). This
observation led to the additional sampling of Vertisol
sites in 2010, with large maize grain Se concentrations
173–413 μg/kg reported subsequently at thirteen sites in
Mangoti, Dolo and Mikalango EPA, where soil pH
values ranged from 7⋅0 to 8⋅0(30).

Across the full data set of Chilimba et al., there was a
weak positive correlation between grain Se concentration
and potentially plant-available soil Se concentration, but
no correlation between grain Se concentration and total
soil Se concentration(30). There was a stronger positive
correlation between grain Se concentration and soil pH
above pH 6⋅5. Inorganic Se, selenate (Se6+) and selenite
(Se4+), is usually categorised into three soil fractions:
fixed, adsorbed (phosphate-extractable) and soluble Se.
Fixed Se, which is bonded to soil minerals and soil
organic matter, is likely to be unavailable for plant
uptake. Chilimba et al.(30) proposed that the correlation
between grain Se concentration and soil pH was linked
to decreasing adsorption of inorganic selenate and selen-
ite on iron/manganese oxides at increasing pH. Chilimba
et al.(30) also noted that the chemical stability of selenate,
which is taken up more rapidly than selenite by plants
under most soil conditions, is greater in the soil solution
at higher soil pH values. Recent studies have similarly
shown that fertiliser-applied selenate is more bioavailable
in Vertisols than in acidic soils such as Oxisols and
Alfisols(43).

Vertisols represent about 0⋅5% of the total land area of
Malawi(30,43) although they are agriculturally significant,
e.g. they represent about 11% of the cultivated arable
soils of Blantyre agricultural development division,
which is one of the eight agricultural development divi-
sions covering Malawi(44). Vertisols form from Ca- and
Mg-rich parent materials, such as limestones and basalts,
and in topographic depressions where leached elements
collect from higher elevations(43). Vertisols have a pre-
dominantly 2:1 clay mineralogy, whereas the acidic
Oxisols and moderately acidic Alfisols, which dominate
most arable systems in Malawi, are characterised by

larger concentrations of hydrous oxides of aluminium,
iron and manganese, which can adsorb inorganic Se
anions much more strongly than the Vertisols(43). The
cycling of Se between organic and inorganic forms is
also likely to have a strong influence on crop Se uptake
and it is noteworthy that Vertisols have a variable, but
generally much larger, soil organic matter content than
the Alfisols and Oxisols.

Beyond these studies in Malawi, there are only limited
data on linkages between soil type and food crop com-
position elsewhere in SSA. However, there is circumstan-
tial evidence to support the hypotheses: (1) that many
soils in SSA will provide inadequate Se to food crops
for optimal human health, especially where access to ani-
mal source foods is limited, and (2) that soil factors
including pH, organic matter content and soil mineral-
ogy directly influence crop Se concentration.

In South Africa, Courtman et al. reported evidence of
longer-range geospatial variation in the Se concentration
of maize grain, sampled from maize silos, in the context
of poor livestock-feed quality linked to a (widely-
recognised) high prevalence of Se deficiency among live-
stock(45). Of the 896 grain samples taken from 231 silos,
46 % had <12 μg/kg, 76 % had <25 μg/kg and 88% of
samples had <40 μg/kg. Courtman et al. discussed these
data in the context of previously published maps of
total soil Se concentration and soil pH for South
Africa; however, they were not able to identify a direct
link between soil and grain properties in their study(45).

In the central Kenya Highlands, Ngigi et al. reported
low Se concentrations in maize grain (range 11–48 μg/
kg) and bean (range 18–48 μg/kg) from three sites of
moderately acidic soils (pH 5⋅8–6⋅2)(46). These data con-
trast with larger Se concentrations reported in maize
grain (median 182 μg/kg; seventeen sites) and bean
(median 150 μg/kg; four sites) from more alkaline soils
(median pH 7⋅9) in a separate study in the south of
Kenya(47).

In western Kenya and north-eastern Tanzania, maize
grain and bean seed Se concentrations were greater in
calcareous than non-calcareous soils in both coun-
tries(48). In Kenya, median maize grain Se concentrations
were 37 and 27 μg/kg and median bean seed Se concen-
trations were 63 and 34 μg/kg, in the calcareous (median
pH 7⋅1) and non-calcareous (median pH 5⋅3) soils,
respectively(48). In Tanzania, median maize grain Se con-
centrations were 223 and 159 μg/kg and median bean
seed Se concentrations were 256 and 138 μg/kg, in the
calcareous (median pH 7⋅0) and non-calcareous (median
pH 5⋅8) soils, respectively(48).

Knowledge gaps in selenium in sub-Saharan African food
systems

Evidence of Se or other micronutrient deficiency linkages
across the agriculture–nutrition–health domains remains
scarce in SSA. Elsewhere, case studies of linkages
between soil, crop, livestock and human Se status have
been reviewed extensively(1–4,34–36). For example, in
China, a detailed geochemical analysis of areas with a
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high incidence of Keshan disease in the late 1990s
showed that the incidence was negatively correlated
with water-soluble soil Se(36). In New Zealand, increased
Se intake and status correlated with the imports of
Australian wheat that contained a larger concentration
of Se(5,49,50). In the UK and other countries in northern
Europe, decreased Se intake and status is likely to have
occurred since the mid-1970s as a consequence of altered
trade leading to reductions in the imports of wheat from
the USA and Canada(1–4,34–36). This is because the grain
Se concentration of wheat grown in the USA and
Canada is more than ten times greater than that grown
in the UK, due to the prevalence of soils containing
large concentrations of plant-available Se in North
American wheat-growing areas. There is no evidence of
soil Se depletion due to more intensive cropping over
the past century in the UK(51). From nationally-
aggregated data, polished rice from the USA and India
had grain Se concentration >30 times greater than the
rice sourced from Egypt(52). In Algeria, wheat grain Se
concentration from eight different areas ranged from 21
to 153 μg/kg, and correlated positively with total soil Se
concentration(53). In Finland, linkages between the sup-
ply of Se into the soil via Se-enriched fertilisers, its sub-
sequent uptake into crops, and the Se intake and status
among populations are conclusive(34,54).

In a global-scale modelling study, Jones et al. projected
that total soil Se concentration, and thereby crop Se con-
centration and dietary Se intakes, will likely decrease
under moderate climate-change scenarios by the years
2080–2099(55). Decreases in total soil Se concentration,
driven by complex climate–soil interactions, have been
estimated to be especially pronounced in areas currently
under agricultural production in southern Africa(55).
This model was developed from a compilation of fifteen
data sets of total soil Se concentration (n 33 241). Soil
data for Africa comprised: data from Chilimba et al.(30)

and Joy et al.(38) for Malawi (n 276); data reproduced
by Courtman et al.(45) for the South Africa maize study
described earlier (n 148); and data from Maskall and
Thornton(56) from a soil micronutrient survey of Lake
Nakuru National Park, Kenya, characterised by a low
total soil Se concentration (n 123).

In a global-scale surveillance study, Sillanpää and
Jansson reported the Se status of soils and co-located
plants in thirty countries, including eight in Africa(57).
Soil and plant samples were collected during an earlier
survey of micronutrients which, unlike Se, are essential
for plant growth, such as zinc(58,59). Topsoil Se concen-
tration was reported using an acid ammonium
acetate-EDTA universal extraction(60). The Se concen-
tration of the leaf tissues of maize and wheat was
used as an indicator tissue, rather than edible crop por-
tions. Given that Se is translocated efficiently by
plants, leaf Se concentration is expected to be a good
proxy for relative grain Se concentration and for
other food crops, including roots, tubers, leaves, fruit
and therefore dietary Se intake(61). The data are also
expected to be a good proxy for Se concentrations in
livestock forages. Across the global dataset (n 3644),
a positive correlation between soil pH and plant Se
concentration, and a negative correlation between soil
organic carbon and plant Se concentration were
reported(57).

Six countries in SSA had data represented which could
be georeferenced digitally, based on original hard copy
maps(57–59). These were Ethiopia (n 126 locations),
Malawi (n 100), Nigeria (n 145), Sierra Leone (n 50),
Tanzania (n 179) and Zambia (n 46). Data for Ghana
were not georeferenced. Egypt (n 200) was represented
from North Africa. Summary soil and plant Se concen-
tration data for these countries are illustrated in Figs. 4
and 5. All data, including georeferenced locations, are
reproduced in Supplementary Table 2.

Fig. 4. Summary selenium (Se) concentration data from Sillanpää and Jansson(57) for (a) maize (white boxes) and wheat (grey boxes)
leaves, (b) topsoil using acid ammonium acetate-EDTA universal extraction: Egypt (EGY), Ethiopia (ETH), Ghana (GHA), Malawi (MWI),
Nigeria (NGA), Sierra Leone (SLE), Tanzania (TZA), Zambia (ZMB). Boxes represent upper and lower quartiles; whiskers are the
95%-iles; medians are indicated within the boxes.
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A GeoNutrition perspective

There is clear scope for increasing the quality of geospa-
tially defined information on the Se status of soil, crop,
livestock and human subjects in SSA. Soil maps from
the Africa Soil Information Service include continental-
scale elemental maps which are based on various data
sources including spectral (e.g. X-ray fluorescence, mid
infra-red) analysis techniques(62). Unfortunately, it is
not possible to quantify soil/crop Se concentration or

human (or livestock) biomarkers of Se status, using spec-
tral methods. Sensitive ‘wet chemistry’ preparation meth-
ods and instrumental analysis, e.g. using inductively
coupled plasma-MS, together with good quality control
procedures, is needed to measure Se accurately and
rapidly.

The GeoNutrition project, funded by the Bill &
Melinda Gates Foundation, began in 2018 with the expli-
cit aim of mapping soil–crop–human micronutrient

Fig. 5. Georeferenced selenium (Se) concentration data from Sillanpää and Jansson(57) for leaf maize (blue circles) and wheat
(green squares): Egypt (EGY), Ethiopia (ETH), Malawi (MWI), Nigeria (NGA), Sierra Leone (SLE), Tanzania (TZA), Zambia (ZMB).
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linkages and their uncertainties, including for Se. The
primary locations for the project are cropland areas of
Malawi and Ethiopia, in which co-located topsoils and
mature cereal grains are being sampled and analysed.
The project is also testing the effectiveness of increasing
the Se concentration of cereal starch using Se fertilisers
(agro-fortification)(63). The study areas are in Malawi
and Ethiopia, respectively, where previous studies have
indicated that a high prevalence of Se deficiency is likely.

The protocol for the Addressing Hidden Hunger with
Agronomy, Malawi trial (Registered March 2019;
ISCRTN85899451) was published recently(64).
A double-blind, randomised controlled trial is being con-
ducted in rural villages in Kasungu District, Central
Region, Malawi. In this two-arm trial, 180 women
(aged 20–45 years) and 180 children (aged 5–10 years)
are randomised at the household level so that partici-
pants receive maize starch (330 g/capita/d) that is either
enriched with Se through agro-fortification, or a control
starch not enriched with Se. The primary trial outcome is
serum Se concentration. The hypothesis is that the con-
sumption of maize starch agro-fortified with Se will
increase serum Se concentration in a Se-deficient popula-
tion. A subsequent trial in Ethiopia will use a similar
design with teff instead of maize(64). The GeoNutrition
project is also exploring wider socio-economic and eth-
ical dimensions of agro-fortification and alternative
interventions to address micronutrient deficiencies.

Anticipated outcomes of the GeoNutrition project
include the stimulation of discussions on how best to
use geospatial information to support policies to alleviate
Se and other micronutrient deficiencies. Thus, new base-
line maps and evidence (and uncertainties therein) will
help to integrate evidence across the agriculture–nutri-
tion–health domains to support policy decisions that are
cost-effective and most expedient. For example, national
micronutrient surveys, which currently focus solely on
biomarkers and proxy outcomes of micronutrient status,
could be integrated with geospatially-resolved food com-
position/consumption surveys. Such data could then be
viewed in the context of current and future agricultural
production and trade which, in turn, will be affected by
demographic, socio-economic and environmental change
at multiple scales(65).

Supplementary material

The supplementary material for this article can be found
at https://doi.org/10.1017/S0029665120006904
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