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Abstract 8 

Characterization of riverbed sediments is important for understanding groundwater (GW) and 9 

surface water (SW) interactions, and their consequent implications for ecological and environmental 10 

health. There have been numerous studies using geoelectrical methods for GW-SW interaction 11 

studies; however, most applications have not focused on obtaining quantitative information. For 12 

instance, although numerous laboratory studies highlight the relationship between geoelectrical 13 

properties and relevant parameters (e.g. specific surface area, hydraulic conductivity, and cation 14 

exchange capacity), such relationships are not commonly applied to field-scale studies. 15 

Furthermore, in addition to the spatial resolution obstacles typically present when applying 16 

petrophysical models to field data, geoelectrical data from aquatic environments have additional 17 

complications arising from the presence of a conductive water column overlying a resistive bed. 18 

Inadequate consideration of these complications may further preclude the reliable use of such 19 

petrophysical models. In this work, laboratory measurements, synthetic modeling, and field 20 

measurements were conducted in a third-order river where the riverbed comprises alluvial gravel 21 

and underlying red sand. A strong relationship (R2 = 0.72) between imaginary conductivity and 22 

specific surface area was observed, and laboratory results were comparable to previous studies. It 23 

was demonstrated through synthetic modeling that river stage and channel width, regularization 24 

across the river-riverbed interface, and incorrect constraints of both the river conductivity and river 25 

stage can have varying influence on inverted geoelectrical images. Reliable geoelectrical images 26 

require a priori definition of river stage and conductivity, however inversion constraints using 27 

incorrect a priori values result in misleading artifacts. The conductivity image obtained from the field 28 

data in this work appeared to reflect the geoelectrical structure anticipated from the laboratory 29 

data; however, the phase angle image did not. Application of the petrophysical model to field data 30 

resulted in a model of the riverbed comprising three-layers, however, given the prevalence of 31 



artifacts in aquatic applications caution is required when making interpretations. Although this study 32 

focused on riverbed characterization, findings here demonstrate common pitfalls of inversion of 33 

aquatic-based geoelectrical data. Primarily, they highlight that synthetic modeling ought to be used 34 

to alleviate any uncertainty in the interpretation of geoelectrical models before predictions about 35 

GW-SW interactions can be made. 36 

1. Introduction 37 

Riverbed sediments play an active role in solute transfer between groundwater (GW) and surface 38 

water (SW); consequently, they have implications for catchment-scale ecological health. Zones 39 

where GW and SW mix are of interest as they are characterized by unique biogeochemical conditions 40 

that permit the transformation of nutrients and pollutants (Harvey and Gooseff, 2015). Properties 41 

of riverbeds such as specific surface area, cation exchange capacity (CEC), and hydraulic conductivity 42 

are important to characterize as they influence residence times of nutrients and pollutants, and the 43 

potential for their biogeochemical transformation. For instance, sediments with a large specific 44 

surface area and high CEC values have a higher potential for attenuation of nutrients and pollutants 45 

(Harvey and Fuller, 1998). Furthermore, the significance of such riverbed parameters has been 46 

recognized for several decades (e.g. Bencala et al., 1984; Triska et al., 1993; Lansdown et al., 2015). 47 

In the past 15 years, there has been numerous electrical resistivity imaging (ERI) and induced 48 

polarization (IP) applications to target properties relevant to GW-SW interactions (see review by 49 

McLachlan et al., 2017). For example, ERI methods have been used to reveal the extent of the 50 

hyporheic zone (e.g. Ward et al. 2010; Toran et al., 2013), characterize the underlying structure of 51 

rivers and lakes (e.g. Clifford and Binley, 2010; Crook et al., 2008; Colombero et al., 2014), and locate 52 

zones of GW up-welling (e.g. Mitchell et al., 2008; Gagliano et al., 2009). Additionally, IP methods 53 

have been used to characterize structure (e.g. Slater et al., 2010) and hydraulic conductivity (Benoit 54 

et al., 2019). There has also been substantial laboratory work using spectral IP (SIP) methods 55 

whereby electrical conductivity and phase angle are measured across broad frequency ranges, e.g. 56 

from 1 mHz to 1000 Hz. Much of this work has demonstrated the sensitivity of SIP to specific surface 57 

area, often expressed as pore normalized surface area (Spor), hydraulic conductivity, and CEC (e.g. 58 

Slater, 2007; Leroy, 2009; Revil, 2012). Despite these concurrent applications, there have been 59 

limited studies where laboratory-derived petrophysical relationships are used to interpret field data 60 

in GW-SW interaction studies (e.g. Slater et al., 2010). 61 

Aquatic applications of ERI and IP are more challenging than terrestrial applications due to the 62 

presence of a conductive water column overlying a more resistive bed. Several publications have 63 



addressed issues associated with aquatic ERI surveys and their sensitivity, e.g. Snyder et al. (2002), 64 

Day-Lewis et al. (2006), Orlando (2013). For instance, although floating arrays are more efficient in 65 

towed surveys, they have poorer investigation depths than submerged arrays (Day-Lewis et al., 2006) 66 

and whilst bottom-towed arrays have been used to improve investigation depth (e.g. Wynn 1988; 67 

Kelly et al., 2009); equipment can become snagged on rough bedforms or vegetation. Consequently, 68 

most studies using submerged arrays have adopted fixed (anchored) arrays; this has the added 69 

benefit that reciprocal measurements can be obtained to allow for appropriate data weighting in 70 

inverse modeling. Additionally, although studies have used different materials for electrodes, e.g. 71 

graphite (Slater et al., 2010) or lead (e.g. Clifford and Binley, 2010), most aquatic electrical imaging 72 

work has used stainless-steel electrodes (e.g. Ward et al., 2010; Benoit et al., 2019).  73 

Several authors have also explored the reliability of inversion of aquatic data, such as the effect of 74 

the erroneous constraint of water column properties has on ERI inversions (e.g. Day-Lewis et al., 75 

2006). Because the conductivity and stage of aquatic bodies can often be measured conveniently, 76 

e.g. stage can be measured using meter sticks or acoustic sensors; it can be supplied as a priori 77 

knowledge to inversions to improve the reliability of the results. Although the inclusion of such 78 

knowledge has been investigated for ERI using synthetic studies, similar studies have not been 79 

conducted for IP, and the rationale behind, or details of, inversion decisions are often not discussed 80 

in aquatic ERI and IP applications. 81 

The principal aim of this work is to determine if relationships derived in the laboratory could be 82 

applied to the field and to understand the limitations of aquatic IP imaging. This included laboratory-83 

based SIP, specific surface area, and CEC measurements of intrusively obtained riverbed samples, 84 

several synthetic modeling cases, and collection and inversion of field IP data. Specifically, synthetic 85 

modeling cases were used to investigate: (1) the sensitivity of geoelectrical measurements to the 86 

riverbed and the riverbank; (2) the influence of constraining river properties on the inversion 87 

process, and (3) the influence of errors in both geoelectrical data and measurements of river 88 

properties on the inversion process. In doing so challenges and limitations of ERI and IP in aquatic 89 

environments were explored and several important considerations for future work were highlighted. 90 

Within the study, geoelectrical properties are represented in terms of complex conductivity: real 91 

electrical conductivity, σ’; quadrature (or imaginary) electrical conductivity, σ”; and phase angle, φ. 92 

The convention of positive phase angles, to signify polarization (positive IP effect), is used 93 

throughout. 94 

2. Materials and methods 95 



2.1. Study site 96 

Fieldwork was conducted on the River Leith; see Fig. 1, a tributary of the River Eden (Cumbria, UK). 97 

The River Eden catchment is a fault-bound basin 50 km long and 5 to 15 km wide with Permian and 98 

Triassic sandstone bedrock (Allen et al., 2010). The catchment contains extensive Quaternary 99 

deposits comprising till, glacial-fluvial out-wash, and alluvial deposits. Much of the work conducted 100 

at the field site, and across the catchment, has been concerned with the direction of GW flow paths 101 

and biogeochemical processes occurring at the GW-SW interface concerning river loading of legacy 102 

nitrate from agriculture (Heppell et al., 2014; Lansdown et al., 2015). 103 

 

Figure 1: Location of study site within a 200 m meander of the River Leith. The inset shows the 
position of the field site in the north of England, the flow direction is from site A to site I.  The 
circular symbols indicate the position of the riverbed and riparian piezometers used in the study 
of Binley et al. (2013), see this work for additional analysis of site characteristics. 

 104 

At the field site, the riverbed comprises a mixture of alluvial pebbles, gravels, and sands overlying 105 

unconsolidated red sands and silts, all underlain by the Penrith Sandstone aquifer (Allen et al., 2010). 106 

The riverbed is characterized by a series of riffle and pool sequences, and is predominantly GW fed; 107 

however, Käser et al. (2009) indicated the potential for SW down-welling at the site during storm 108 

events which was later confirmed experimentally by Dudley-Southern and Binley (2015). Most of the 109 

studies have focused on nitrate loading from the GW (e.g. Krause et al., 2009; Lansdown et al., 2012; 110 



2015; Heppell et al., 2014). These studies have revealed evidence of heterogeneity in redox 111 

processes controlling nitrate delivery from regional GW and demonstrated a need for measurement 112 

techniques to identify variation in the texture of riverbeds. The work presented here focused on an 113 

area just below site C (Fig. 1), which was shown to be a zone of regional GW up-welling, and 114 

therefore a zone of legacy nitrate loading to the river (Binley et al., 2013). 115 

2.2. Laboratory measurements 116 

Seven 0.8 to 1.0 m core samples were extracted from the study site using a Cobra TT drill (Atlas 117 

Copco, Stockholm, Sweden), see Fig. 1. The transition of the alluvial gravels (ALV) and underlying red 118 

sands (RS) was abrupt which allowed for sub-sampling in the field. Samples were cut into 119 

approximately 10 cm sections and double bagged before storage in a refrigerator; in total forty-five 120 

samples were obtained. Samples were compressed during drilling but by assuming a linear 121 

compression, the average thickness of the  ALV was calculated as 0.35 m; the thicknesses were 122 

relatively consistent and had a standard error (SE) of 0.04 m. 123 

A total of nine ALV and eight RS samples were selected randomly for SIP, grain size distribution (GSD), 124 

specific surface area, and CEC measurements. ALV samples were dry sieved with the following size 125 

fractions: 45, 22.4, 11.2, 5.6, 4, 3.35, 2.8, 2.38, 1.7, 1.4, 1.18, and 1 mm. Sub-millimeter ALV samples 126 

and RS samples were analyzed with a Beckman Coulter 13320 laser granulometer (Brea, California, 127 

USA). Laser granulometer data and sieving data for ALV samples were combined assuming a 128 

homogeneous density of grains (2.65 g/cm3). 129 

Specific surface area was determined by nitrogen gas adsorption (Brunauer et al., 1938) using a 130 

Micrometrics Gemini VI 2385C instrument (Norcross, Georgia, USA). Samples were sieved to < 4 mm 131 

to fit the sample holder (diameter = 5 mm) and 2 g of each sample were loaded into each holder 132 

before analysis. To ensure samples were representative the quartering method was used (see 133 

Schumacher et al., 1990), also three replicates of an ALV sample and an RS sample were measured 134 

to ensure sampling errors were low. As with the specific surface area analysis, for CEC analysis 135 

samples were sieved to < 4 mm, quartered into 4 g samples, and CEC estimates were obtained using 136 

the sodium acetate method (see Chapman, 1965) and a flame photometer. 137 

SIP measurements were made using an Ontash and Ermac PSIP device (River Edge, New Jersey, USA) 138 

and a Zimmerman ZEL SIP device (Zimmerman et al. 2008). For both devices, measurements were 139 

made at frequencies ranging from 10 mHz to 1 kHz, and several repeat samples were measured on 140 

both devices to ensure their consistency. Before SIP measurements, samples were rinsed several 141 

times using deionized water and saturated with 0.05 M sodium chloride solution for at least 12 142 



hours. The sodium chloride concentration was selected to ensure that the electrical conductivity (48 143 

mS/m) was consistent with observed pore fluid conductivity at the site (see Dudley-Southern and 144 

Binley, 2015). Samples were loaded into the holder and the current was injected between two 145 

copper coil electrodes, the potential was then measured with two silver-silver chloride point 146 

electrodes (Fig. 2). For the ALV samples measurements were made on samples sieved to < 4 mm and 147 

< 22.4 mm. The first grain-size threshold is used to match the limitations of the apparatus for specific 148 

surface area measurements; the second grain-size threshold provides electrical values more relevant 149 

to field conditions. 150 

 

Figure 2: Cross-sectional schematic of the sample holder used for SIP measurements. 

 151 

2.3. Synthetic modeling. 152 

In all synthetic cases, the geoelectrical values used to represent the riverbed were chosen based on 153 

the SIP measurements at 2 Hz (i.e. the measurement frequency used in the field), and the 154 

conductivity used to represent the river was the value measured in the field (see section 2.4). 155 

Furthermore, in all cases, synthetic data are generated and inverted using cR2 or its 3D equivalent 156 

cR3t (Binley, 2018). These inversion algorithms minimize the L2 norm of the parameter space and 157 

use finite element meshes, which were generated using Gmsh (Geuzaine and Remacle, 2009), to 158 

model the voltages resulting from a dipolar current injection. These algorithms also permit the 159 

blocking of regularization across specified regions, e.g. the river-riverbed interface, through reduced 160 

local sensitivity. 161 

2.3.1. Measurement sensitivity to river stage and riverbanks. 162 

Firstly, the sensitivity of ERI and IP measurements to water column height was determined by 163 

generating data for a two-layer model. The river was represented by a layer with a thickness, s, a 164 



conductivity of 50 mS/m, and a phase angle of 0 mrad, and the riverbed was represented by a semi-165 

infinite unit with a 13.33 mS/m conductivity and an 8 mrad phase angle. Data were generated for 166 

different dipole-dipole measurements with electrode spacing, a, and separation of the current and 167 

voltage dipoles, na, assuming the electrodes are located on the upper surface of the riverbed for 168 

three cases: s = 0 (i.e. no river present), s = a, and s = 2a. Additionally, to illustrate the effect of the 169 

water column on the measurement, the measurement sensitivity, S, was computed according to 170 

(see Binley, 2015): 171 

𝑆(𝑥, 𝑧) =
𝜕𝑙𝑜𝑔(𝜌𝑎)

𝜕𝑙𝑜𝑔(𝜌(𝑥,𝑧))
,     (1) 172 

where ρ(x, z) is the resistivity at a given location (x, z), and ρa is the apparent resistivity. Furthermore, 173 

by integrating S(x, z) over a given depth z for all values of x, a vertical sensitivity profile can be 174 

calculated.  175 

Whilst it is intuitive that larger electrode separations will be more sensitive to deeper depths (e.g. 176 

Day-Lewis et al., 2006), they will also have increased lateral sensitivity. Although assumptions behind 177 

the 2D inversion of geoelectrical surveys in sub-aerial investigations are often valid, the presence of 178 

a conductive water column means that measurements may be sensitive to riverbanks, especially in 179 

narrow, upper course rivers. This effect was investigated by computing the response of dipole-dipole 180 

measurements with electrode separation, a, for 3D models with different river widths (0, 0.5, 1, 1.5, 181 

2, 3, 4.5, 7, and 10 m) using cR3t. The river channel was assumed orthogonal with a stage of 0.5 m, 182 

the river was assigned a 50 mS/m conductivity, and a 0 mrad phase angle, the riverbed and riverbank 183 

were both assigned a 13.33 mS/m conductivity and an 8 mrad phase angle. 184 

2.3.2. Regularization across the river-riverbed interface. 185 

To assess the impact of constraining river properties in the inversion, a three-layer case was used to 186 

represent the field site. It comprised a 0.6 m thick layer with a 50 mS/m conductivity and a 0 mrad 187 

phase angle, a 0.35 m thick layer with a 13.33 mS/m conductivity and an 8 mrad phase angle, and a 188 

semi-infinite layer with a 20 mS/m conductivity and an 11 mrad phase angle. Data were generated 189 

for a dipole-dipole array with 297 measurements; resistance values and phase angles were 190 

corrupted with 1% and 0.1 mrad Gaussian noise, respectively. Data were then inverted using cR2 191 

allowing for: (1) regularization across the river-riverbed interface, (2) separate regularization in the 192 

river and riverbed, and (3) constraint of river elements, to the known geoelectrical values, with 193 

separate regularization in the river and riverbed. Additionally, to assess the impact of data with 194 



poorer quality, the synthetic data was also corrupted with higher noise levels, 2.5%, and 1 mrad, 195 

respectively, and inverted with the same regularization scenarios as above. 196 

As well as errors in geoelectrical data, measurements of river conductivity and stage may be 197 

incorrect. Although not necessarily relevant for this field site, given that stage can be accurately 198 

measured, larger-scale surveys may use acoustic sensors for bathymetric determination and may be 199 

prone to errors. Similarly, while it is reasonable to assume that for shallow cases the river 200 

conductivity is homogeneous, it is possible to obtain poor measurements from a faulty conductivity 201 

meter or have a field site where significant stratification exists, e.g. in lakes (e.g. Dahlin and Loke, 202 

2018) or at the confluence of large rivers. However, it also important to note that similar issues could 203 

arise in shallow river environments when time-lapse ERI is used to monitor saline tracers (e.g. Ward 204 

et al., 2010) as it could be that the tracer is not well mixed.  205 

To investigate the impact of inaccurate river properties on inverted ERI and IP results, data were 206 

generated from a two-layer model with a 0.6 m thick layer with a 50 mS/m conductivity and a 0 mrad 207 

phase angle, and a semi-infinite layer with a 13.33 mS/m conductivity and a phase angle of 8 mrad. 208 

As before, transfer resistances and phase angles were corrupted with 1% and 0.1 mrad Gaussian 209 

noise, respectively. Five scenarios were then tested and in each case, the river properties were 210 

constrained: (1) correct river depth and a correct river conductivity; (2) an incorrect river 211 

conductivity of 45 mS/m (i.e. 10% lower than the true value) with correct river depth; (3) an incorrect 212 

river conductivity of 55 mS/m (i.e. 10% higher than the true value) with the correct river depth; (4) 213 

an incorrect river depth of 0.54 m (i.e. 10% lower than the true value) with the correct river 214 

conductivity; (5) an incorrect river depth of 0.66 m (i.e. 10% higher than the true value) with the 215 

correct river conductivity. In all cases, no regularization across the river-riverbed interface was 216 

permitted. 217 

2.4. Field-based geoelectrical data collection. 218 

Field-based frequency-domain IP measurements were made using a Geolog2000 GeoTOM MK7E100 219 

instrument (Geolog, Augsburg, Germany). Twenty-four 4 cm long stainless-steel bolts were punched 220 

through a 6 cm wide rubber belting with 25 cm spacing, this was done to aid with positioning along 221 

the center of the riverbed, parallel to flow direction. Stainless-steel electrodes were chosen as they 222 

have been shown to provide good quality data (e.g. Dahlin et al., 2002); additionally, they are more 223 

robust than graphite and more practical than non-polarizing lead-lead chloride electrodes, especially 224 

in an aquatic environment with a gravel bed. Each electrode was wired using copper wire, run 225 

parallel along the rubber belting, and connected to the GeoTOM instrument. Although they were 226 



insulated; the cables were non-shielded. The array was placed onto the riverbed and electrodes 227 

were driven into the bed; rocks were placed between some electrodes to prevent the array from 228 

floating. A dipole-dipole sequence comprising 297 normal measurements, and 297 corresponding 229 

reciprocal measurements, was used. Current with a frequency of 2 Hz was injected with a range of 230 

10 to 100 mA and the survey lasted 50 minutes. The river stage above each electrode was measured 231 

after the survey, and the electrical conductivity of the river water was measured both before and 232 

after the survey, at multiple locations to ensure it was consistent. 233 

Reciprocal measurements were used to calculate a mean transfer resistance and phase angle for 234 

each quadrupole. Also, reciprocal errors were calculated from the difference between direct and 235 

reciprocal measurements. Transfer resistance measurements with > 10% error were removed, 236 

resulting in a total of 294 measurements with an average error of < 2.5%; for the phase angle 237 

measurements, measurements with > 25% error were removed, resulting in 63 measurements with 238 

an average absolute error of 0.6 mrad.  239 

To model resistance errors for the inversion, measurements were grouped into 15 bins of equal size. 240 

The average error and resistance were determined for each bin and a linear model was fitted; the 241 

model exhibited an expected relationship of increasing error with increasing resistance magnitude. 242 

For phase errors it is common to find a parabolic relationship (e.g. Mwakanyemale et al., 2012), 243 

however, in this case, no correlation was observed, instead, a phase error of 0.6 mrad (i.e. the 244 

average absolute error) was assigned for weighting in the inversion. 245 

Before the inversion, forward modeling errors (due to mesh discretization) were determined (e.g. 246 

LaBrecque et al., 1996) and added to error weights for both resistance and phase components. 247 

Smoothing across the river and riverbed was prevented and the river was constrained to a 248 

conductivity of 50 mS/m, as measured in the field, and the phase angle was constrained to 0 mrad. 249 

Due to the discrepancy in the number of measurements following filtering, the resistance data were 250 

first inverted to obtain a resistivity model using R2, this was subsequently used as a starting model 251 

for the inversion of resistance and phase data using cR2. 252 

3. Results 253 

3.1. Lab results 254 

The grain size data are shown in Fig. 3; the RS samples were well sorted and had a mean grain size 255 

of 0.255 (SE = 0.008) mm, whereas the ALV samples had significantly higher variability and an 256 



average grain size of 4.792 (SE = 1.454) mm. For the ALV samples sieved to < 4 mm, the mean grain 257 

size was 0.413 (SE = 0.043) mm. 258 

 

Figure 3: Grain size distribution of (a) RS samples and (b) ALV samples. 

 259 

The specific surface area, CEC, real conductivity, complex conductivity, and phase angles, at 2 Hz, for 260 

RS and < 4 mm ALV samples are presented in Table 1. The specific surface area of RS and < 4 mm ALV 261 

samples were not significantly different from one another, 3.02 (SE = 0.15) m2/g and 2.84 (SE = 0.34) 262 

m2/g, respectively. Similarly, the CEC values for RS and < 4 mm ALV were not significantly different, 263 

3.07 (SE = 0.24) meq/100 g and 2.87 (SE = 0.12) meq/100 g, respectively. 264 

Table 1 – Laboratory data of < 4 mm ALV and RS samples, SIP measurements obtained from currents 265 

with a frequency of 2 Hz. 266 

# Type Specific 
Surface 
Area 
(m2/g) 

CEC 
(meq/g) 

σ’ (mS/m) σ’’ 
(mS/m) 

φ (mrad) 

C1.2 ALV (< 4 mm) 2.30 3.83 12.46 0.14 10.87 

C1.3 ALV (< 4 mm) 2.92 2.83 21.88 0.24 10.92 

C1.6 RS 3.09 2.78 20.48 0.24 11.47  

C2.1 ALV (< 4 mm) 2.24 1.84 13.89 0.13 9.36  

C2.2 ALV (< 4 mm) 4.95 4.10 18.86 0.18 9.33  

C2.4 RS 2.7 2.94 20.22 0.24 12.35 

C2.5 RS 3.45 3.28 19.59 0.23 11.55  

C2.6 RS 2.65 2.40 19.08 0.23 11.95  

C2.8 RS 2.62 2.46 20.01 0.16 8.02 

C4.1t ALV (< 4 mm) 2.83 3.39 19.47 0.16 6.97  

C4.2t ALV (< 4 mm) 3.64 4.37 20.59 0.27 13.11 

C4.2b RS 3.76 3.21 - - - 

C5.7 RS 2.73 2.67 18.79 0.15 7.90 

C6.1 ALV (< 4 mm) 1.64 1.55 19.47 0.1 5.27 



C6.3 ALV (< 4 mm) 3.08 3.26 20.96 0.27 12.86 

C6.7 RS 3.13 3.21 20 0.27 13.64 

C7.2 ALV (< 4 mm) 1.88 2.01 17.69 0.13 7.45 

 267 

The spectral behavior for the RS, < 4 mm ALV, and < 22.4 mm ALV samples were distinctive and 268 

displayed similar patterns for each sample type; the results of an ALV sample (C2.2) and an RS sample 269 

(C2.5) are shown in Fig. 4 to highlight the typical spectra observed. All samples showed the expected 270 

increasing real conductivity with increasing frequency. The real conductivity of the RS samples was 271 

consistently higher than the < 22.4 mm ALV samples; however, in removing the > 4 mm particles; 272 

the real conductivity behavior of the < 4 mm ALV samples became less distinguishable from the RS 273 

samples. In terms of phase angle, the removal of coarser ALV fractions resulted in a slightly higher 274 

phase angle. The contrasts between RS and ALV samples were greatest at higher frequencies (100-275 

1000 Hz) and indistinguishable at lower frequencies (0.05 to 0.1 Hz). Given the generally higher 276 

conductivity and phase angle of RS samples, compared to ALV samples, the RS samples typically had 277 

a higher polarization. 278 

 

Figure 4: Representative SIP spectra for RS (C2.5), < 4 mm ALV (C2.2)  and < 22.4 mm ALV (C2.2) 
for (a) real conductivity and (b) phase angle. 

 279 

The imaginary conductivity, at 2 Hz is strongly correlated with specific surface area, expressed in 280 

terms of m2/g (see Fig. 5a). The specific surface area measurement of C2.2 was excluded as it was 281 

deemed an outlier by Grubbs’ (1950) outlier test (data was assumed normal, i.e. Shapiro-Wilk p-282 

value > 0.05), the resultant relationship had an R2 of 0.74. Also, although not as strong (R2 = 0.34), 283 

imaginary conductivity was positively correlated with CEC (see Fig. 5b). 284 



 

Figure 5: (a) Linear relationship between specific surface area and imaginary conductivity, and 

(b) linear relationship between CEC and imaginary conductivity. 

 285 

Most published relationships between imaginary conductivity and specific surface area use pore 286 

normalized surface area, Spor (e.g. Weller et al., 2010). Specific surface area values without pore 287 

normalization are presented in Fig. 5a as the porosity of each sample was not measured directly and 288 

the surface area expressed in m2/g is more commonly used in GW-SW interaction studies. However, 289 

to compare with published results, the porosity of each sample was estimated assuming a grain 290 

density of 2.65 g/cm3, and from measurements of sample mass and core volume. Furthermore, 291 

although not measured, the specific surface area of < 22.4 mm ALV samples can be estimated by 292 

assuming > 4 mm grains are spherical. In doing so their specific surface area, expressed in m2/g, 293 

becomes negligible. Subsequent normalizing for pore space results in an average Spor value of 6.58 294 

1/μm for < 22.4 mm ALV and 18.08 1/μm for RS samples.  295 

Expressed in these units, data can be compared with Weller et al. (2010) who presented an empirical 296 

link between Spor and imaginary conductivity following analysis of a large database of SIP 297 

measurements of sand and clay mixtures. Using pore fluids with a conductivity of 100 mS/m and an 298 

excitation frequency of 1 Hz, they found that σ” = 0.01 Spor (where σ” is expressed in mS/m and Spor 299 

is expressed in 1/μm). To account for the lower conductivity of the saturating fluid used here, the 300 

correction factor proposed by Weller et al. (2011) can be used such that σ” = 0.01 √𝜎𝑤 𝜎𝑓⁄  Spor 301 

(where σw is the conductivity of water used by Weller et al. (2010), i.e. 100 mS/m, and σf is the 302 

conductivity of the fluid used here, 48 mS/m). From this relationship the mean of the predicted Spor 303 

values for < 22.4 mm ALV and RS samples would be 20.21 and 50.51 1/μm, respectively. Although 304 



these are substantially higher than the observed Spor, these values fall within the data used by Weller 305 

et al. (2010) to fit their linear regression (see Fig. 2 of Weller et al., 2010).  306 

3.2. Synthetic modeling 307 

The results of the sensitivity of measurements to different river stages are shown in Fig. 6. It is 308 

evident that the water column suppresses the observed response; this is especially true of the phase 309 

angles. This effect may amplify the low signal-to-noise ratio typical of IP data and hence the 310 

collection of data with high error levels seems likely in aquatic environments. 311 

 

Figure 6: Response of dipole-dipole measurements to different river stages: (a) apparent 
conductivity, (b) phase angle, and (c) measurement sensitivity. 

 312 

It can also be noted that when n = 1, the apparent conductivity and phase angle for s = a and s = 2a 313 

are almost identical. This indicates that when s ≥ a, river stage does not influence the response, i.e. 314 

the electrical flow boundary of the upper surface of the river is insignificant. It is also logical that if 315 

floating electrodes were used in this synthetic experiment, when s ≥ a, the sensitivity of 316 

measurements to the riverbed would be negligible. Furthermore, although there is some sensitivity 317 

to the riverbed when using electrodes placed on the riverbed, it is evident that most sensitivity is 318 

within the water column. Moreover, it is evident from Fig 6c that there is a zone of reduced local 319 

sensitivity at the river-riverbed interface. Although this case uses a river conductivity of 50 mS/m, 320 

for cases where conductivity is larger it can be anticipated that sensitivity to a 13.33 mS/m riverbed 321 

would be reduced, in comparison sensitivity to the riverbed would increase for scenarios when river 322 

conductivity is lower. 323 

In Fig. 7 the results of the case to investigate the sensitivity of measurements to riverbanks for 324 

orthogonal channels are presented. It is evident that when a = 0.5 m, measurements are influenced 325 

by the bank when the river width is less than ~2 m. For instance, assuming the channel is orthogonal, 326 

data with electrode separations of < 0.5 m could be inverted using a 2D inversion algorithm. Similar 327 



observations are also evident when a = 1 m and a = 1.5 m, where the inversion could be treated as 328 

2D when the river width is < 4 m and < 6 m, respectively. Therefore, for the field data collected here, 329 

and under the assumption of an orthogonal channel, inversion of the field data with a 2D inversion 330 

algorithm was valid. However, as with the case presented in Fig. 6, it should be noted that these 331 

results are for a river with a conductivity of 50 mS/m, for instance when the river conductivity is 332 

lower the influence of banks may be more prevalent. 333 

 

Figure 7: Response of dipole-dipole measurements to different river widths: (a) schematic 

showing the central region of 3D mesh and electrode array, (b) apparent conductivity, and (c) 

phase angle.  

 334 

The effect of constraining river properties is presented in Fig. 8; the three-layer models used to 335 

generate data are shown in Fig. 8a and 8b. It is evident that allowing regularization across the river-336 

riverbed interface gives a poorly resolved conductivity model (Fig. 8c) where the upper riverbed 337 

layer appears more conductive than the lower layer; a similar effect is seen for the phase angle 338 

model (Fig. 8d). Adding the river-riverbed boundary and enforcing a separation in the regularization 339 

results in the conductivity of the river (Fig. 8e) being recovered more accurately, but the riverbed 340 

appears as a broadly homogeneous layer for both conductivity (Fig. 8e) and phase angle (Fig. 8f) 341 

images. This highlights the observations from Fig. 6, that measurements are relatively insensitive to 342 

riverbed properties and that data can be fitted easily by modifying parameters of the river layer. 343 

When river values are constrained in the inversion, the inverse model is significantly improved and 344 

reveals a contrast in the two riverbed layers with a reasonable demarcation of the two units, 345 



particularly for the conductivity image (Fig. 8g). However, if data have higher noise levels, the 346 

contrast in the two units is weakened and demarcation of the lower unit is less obvious in the 347 

conductivity (Fig. 8i) and phase angle (Fig. 8j) images, this highlights the importance of good quality 348 

data. 349 

 



Figure 8: Models for regularized, blocked, and constrained river element inversions. Synthetic 
models for real conductivity and phase are shown in (a) and (b). Inverse models for the lower 
noise case with regularization across the river-riverbed interface are shown in (c) and (d). Inverse 
models for the lower noise case with no regularization across the river-riverbed interface are 
shown in (e) and (f). Inverse models for the lower noise case with no regularization across the 
river-riverbed interface and constrained river element properties are shown in (g) and (h). 
Inverse models for the higher noise case with no regularization across the river-riverbed 
interface and constrained river element properties are shown in (i) and (j). The dashed lines 
indicate the position of the 2nd and 3rd layer boundary and electrode positions are marked by 
white circles. 

 350 

The effects of incorrect constraining of river properties are presented in Fig. 9. Results of the 351 

constrained inversion using the correct river values are shown in Fig. 9a and 9b, where the two-layer 352 

structure is well resolved. Constraining the river conductivity to a value that is too low forces the 353 

inversion to compensate by resolving the riverbed as more conductive (Fig. 9c) and less polarizable 354 

(Fig. 9d) than it ought to be. In this case, the inverted phase angle is lower than in Fig. 9b because 355 

the synthetic data are less sensitive to the riverbed (i.e. they contain less information about the 356 

riverbed) than is accounted for by the inversion, such that the riverbed phase angle values are 357 

underestimated. Conversely, by setting the conductivity of the river too high the inversion creates a 358 

non-existent low conductivity layer (Fig. 9e), and in the phase angle image the phase angle values 359 

are elevated (Fig. 9f). Similar effects are also seen with erroneous depth fixing, underestimation of 360 

river depth results in a resistive artifact near the riverbed followed by a more conductive underlying 361 

region (Fig. 9g). In comparison, the overestimation of the river stage results in an overly resistive 362 

upper riverbed with high phase angles, and overly conductive lower riverbed with low phase angle 363 

values, Fig. 9i and 9j respectively. 364 



 

Figure 9: Inversion results with the erroneous constraining of river properties. Inverted models 

for when the river conductivity and river depth are correctly constrained are shown in (a) and 



(b). Inverted models when the river is erroneously constrained to 10% underestimation in real 

conductivity are shown in (c) and (d). Inverted models when the in the river is erroneously 

constrained to a 10% overestimation in real conductivity are shown in (e) and (f). Inverted 

models with a 10% underestimation in river depth are shown in (g) and (h). Inverted models 

with a 10% overestimation in river depth are shown in (i) and (j). 

 365 

3.3. Field results 366 

The inverted models for the field data, expressed in real conductivity and phase angle, are shown in 367 

Fig. 10. Based on laboratory values obtained at 2 Hz, it was anticipated that the riverbed would be 368 

characterized by two-layers, with the ALV exhibiting a conductivity of 13.33 mS/m, a phase angle of 369 

8 mrad, and a thickness of ~0.35 m overlying the RS layer with a conductivity of 20 mS/m and a 370 

phase angle of 11 mrad. The most obvious boundary in the inverted real conductivity is at 371 

approximately 1 m below the river-riverbed interface. This boundary separates an upper region with 372 

average real conductivity values of 20-40 mS/m and a lower region with average real conductivity 373 

values of 4-10 mS/m. Additionally, although more subtle, there is a distinction between a lower 374 

conductivity zone immediately beneath the river and the underlying 20-40 mS/m region. In 375 

comparison, the phase angle image is dominated shows a polarizable region and an underlying 376 

region with lower phase angles. In particular, the upper region is characterized by high phase values 377 

at a horizontal location of 1.5 to 3 m. 378 

 



Figure 10: Inverted field data: (a) real conductivity and (b) phase angle. 

 379 

4. Discussion 380 

4.1. Characterization of units within the riverbed 381 

It was demonstrated, via synthetic modeling, that constraining river properties with accurate values 382 

resulted in a more accurate determination of the geoelectrical properties and better demarcation 383 

of the boundary within the riverbed. However, constraining the river with erroneous values in the 384 

inversion resulted in misleading artifacts. Although, simply preventing regularization across the 385 

river-riverbed interface (i.e. without constraining river properties), provided river conductivity and 386 

phase angle values comparable to the values of the synthetic model used to generate the data it 387 

was not possible to differentiate between the subtle contrasts in the riverbed (see Fig. 8e and 8f). 388 

Potentially, the decision to limit regularization across the river-riverbed interface but allow the 389 

inversion to modify the geoelectrical properties of the river could be useful in environments where 390 

there are greater contrasts in geoelectrical properties (e.g. fluvial sediments overlying electrically 391 

resistive bedrock). Also, although in this work the field data were collected for an electrical current 392 

injected at 2 Hz, potentially the collection of high-quality data at higher frequencies may have also 393 

aided in the demarcation of the units here, see Fig. 4b. 394 

A major issue of the inversion is when the water column properties (i.e. stage and conductivity) are 395 

erroneously constrained as they will result in horizontal artifacts. This makes it difficult to distinguish 396 

between genuine geological units and inversion artifacts. For instance, unless intrusive data are also 397 

collected such artifacts will likely be interpreted as stratigraphic units. These artifacts also become 398 

clear in time-lapse cases, this problem was encountered in McLachlan et al. (2020) where extreme 399 

resistivity changes in sequential data sets could not realistically be explained by hydrological or 400 

biogeochemical processes. Although not investigated here, similar artifacts are also likely to be 401 

generated in cases where surface waters are poorly mixed, e.g. cases where stratification is present 402 

or in time-lapse ERI/IP experiments where saline tracers have not fully mixed with the river water. 403 

Moreover, whilst it is possible to dampen the presence of these artifacts by increasing the error 404 

weighting in the inversion, the fictitious stratigraphy effect would merely be subdued and it could 405 

still obscure the interpretation of genuine lithological structures. In the context of the field data 406 

here, the real conductivity image of the riverbed can be interpreted in terms of three lithological 407 

units. An upper layer with a thickness of 0.2-0.4 m and an average conductivity of 5-20 mS/m, a 408 



middle layer with a thickness of 0.6-0.8 m and an average conductivity of 30-40 mS/m, and a lower 409 

layer with a conductivity of 5-10 mS/m. This could be interpreted in terms of the expected geology 410 

of the site, i.e. ALV, RS, and the underlying Penrith Sandstone bedrock; however similar features 411 

could also be created if the actual river conductivity was lower than the value that was measured 412 

and used to constrain the inversion (e.g. Fig. 9e). Furthermore, although the reciprocal errors for 413 

measured resistances were relatively low (< 2.5 %), based on the results from Fig. 8i a clear boundary 414 

between the ALV and RS units would not be expected. 415 

4.2. ERI an IP data quality 416 

In the synthetic studies to assess inversion decisions, it was assumed that data was relatively high 417 

quality (i.e. 1% for resistance and 0.1 mrad for phase angle). However, when data with higher error 418 

(i.e. 2.5% and 1 mrad) were considered, the ability to distinguish between the ALV and RS, and 419 

obtain accurate geoelectrical properties were substantially reduced. In the field data here, ~80% of 420 

phase angle measurements had errors exceeding 25%, and only ~20% of data were inverted. One 421 

shortcoming of this work is that methods to collect higher quality phase data were not investigated. 422 

For instance, although objective tests of electrode material have been conducted in sub-aerial IP 423 

investigations (e.g. Dahlin et al., 2002; Zarif et al., 2018), similar work has not been conducted for 424 

aquatic systems. Nonetheless, it is important to note that in their characterization of a riverbed 425 

using IP, Benoit et al. (2019) achieved high-quality data using a floating array of stainless-steel 426 

electrodes. Another reason for poor quality IP data could be the presence of non-shielded cables 427 

that were run in proximity to one another along the array and through the river; potentially this led 428 

to significant coupling and poor-quality phase angle measurements. Future applications should 429 

attempt to explore the effects of electrode materials, measurement geometry (Martin et al., 2020), 430 

and the use of shielded cables (e.g. Flores Orocozo et al., 2013) on geoelectrical data quality in 431 

aquatic environments. 432 

Another important aspect of this work was that reciprocity checks enabled the characterization of 433 

errors. Although the importance of appropriate data weighting in inversions of aquatic geoelectrical 434 

data was not explored in this work, it is also perhaps an important area for future synthetic studies 435 

given the sensitivity of measurements to the water column. This is especially true for studies 436 

employing towed arrays where the collection of reciprocal measurements is not possible. It is 437 

anticipated that, as with standard sub-aerial applications, overestimation of errors would lead to 438 

overly smoothed models of the subsurface, whereas the underestimation of errors could exacerbate 439 

artifacts related to the issues surrounding the water column. 440 



4.3. Comparing laboratory and field observations 441 

One of the aims of this work was to apply laboratory-derived petrophysical relationships to field 442 

data. The laboratory measurements indicated the potential of IP to characterize important 443 

properties of riverbed sediments relevant to GW-SW interactions. Despite the similar specific surface 444 

area values of RS and < 4 mm ALV samples, they were strongly correlated with the imaginary 445 

conductivity values (Fig. 5a). Furthermore, in re-scaling the surface area measurements for ALV 446 

samples with grains > 4 mm the link between Spor and polarization was found to follow published 447 

relationships for sands and sandstones (Weller et al., 2010). 448 

The elevated phase angle values in the inverted field data (Fig. 10b) are unlikely to relate to natural 449 

(e.g. sedimentological) features. For instance, although the elevated phase angles could be 450 

attributed to finer particles in the ALV than were sampled during drilling, this is unlikely as samples 451 

were collected in a plastic sheath, this meant that the loss of fine materials was minimal. Moreover, 452 

the phase angle values in the field ought to be smaller because > 22.4 mm grains were not measured 453 

in the laboratory. These elevated values are most likely related to issues with data quality.  454 

Nonetheless, when the field data is expressed in terms of imaginary conductivity (Fig. 11a) it is 455 

evident that values are dominated by the real conductivity. For instance, the high phase angle values 456 

observed in Fig. 10b are coincident with areas of low conductivity When applying the laboratory-457 

derived petrophysical model (Fig. 11b) the riverbed appears to comprise a layer with a moderate 458 

specific surface area, overlying a layer of, comparatively, higher specific surface area, and an 459 

underlying unit of low specific surface area. However, it is important to note that this relationship 460 

is based on measurements of RS and < 4 mm ALV, and not < 22.4 mm ALV as measurements of the 461 

specific surface area of coarser fractions were not possible. Also, the maximum specific surface area 462 

measured in the laboratory was 3.76 m2/g. 463 



 

Figure 11: Petrophysical transformation of data in terms of specific surface area, using laboratory 
relationship present in Figure 5a. 

 464 

4.4. Recommendations for future work 465 

Several important observations are made in this work that can help to inform future studies. These 466 

are summarized as follows: 467 

- Practitioners should be aware of the limitations in the sensitivity of ERI and IP measurements, 468 

especially in deep waters or settings with high conductivity (e.g. saline) environments. It is 469 

important to consider this before inversion as constraining inversions with incorrect water 470 

column data could produce information about underlying lithology even if there is 471 

insignificant sensitivity to the bed. Post-inversion depth of investigation analysis (e.g. 472 

Oldenburg and Li, 1999) could be used to aid in the validation of results from deep water or 473 

high conductivity environments. 474 

- Inaccurate knowledge of water column properties can result in the fabrication of non-475 

existent lithological units. Although such artifacts may be avoided in some cases (e.g. beds 476 

with large contrasts in geoelectrical properties) simply preventing regularization across the 477 

riverbed in inversions may yield useful results. However, such an approach should be applied 478 

with caution. 479 

- It was observed in the laboratory that the phase angle contrasts were greater for higher 480 

frequencies, however here field measurements were made with frequencies of 2 Hz. In most 481 

field investigations, measurements are typically made with frequencies in the order of 1-2 482 

Hz predominantly due to instrumentation limitations and the higher error levels commonly 483 



encountered for high-frequency measurements (see Martin et al., 2020). It is, however, 484 

anticipated that improvements in instrumentation and acquisition strategies will provide 485 

future opportunities for enhanced characterization. 486 

- The sensitivity of measurements to riverbanks demonstrated that, under the assumption of 487 

an orthogonal channel, inverting data with a 2D inversion algorithm was sufficient. However, 488 

channels may be characterized by significant off-axis variation in channel morphology. This is 489 

likely to have similar effects as erroneous constraining of the water column and may also lead 490 

to obscuration of the true geoelectrical structure. In areas with significant variability in 491 

bathymetry, inversions should perhaps be conducted using 3D algorithms. However, 492 

practically speaking this significantly reduces the efficiency of geoelectrical measurements 493 

over traditional intrusive sampling given that detailed bathymetric surveys may be time-494 

consuming.  495 

- Ideally, in terms of usefulness to GW-SW interaction studies, geoelectrical methods would be 496 

used to characterize larger areas to estimate bed properties at scales relevant to the 497 

catchment. However, given the complications of characterization for a relatively simple case 498 

presented here, e.g. a river with a homogenous conductivity and a stage that can be 499 

measured directly, applications at larger scales using towed or floating arrays should be 500 

particularly aware of the impact that inaccurate water column properties have on the 501 

inversion.  502 
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