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Abstract: In this work, we provide an innovative route for analysing urban expansion and popu-
lation growth and their link to the consumption of construction materials by combining satellite 
data with material consumption analysis within the Hanoi Province (Vietnam). Urban expansion is 
investigated with the use of landcover maps for the period 1975–2020 derived from satellite. Dur-
ing this period, artificial surfaces and agricultural areas have increased by 11.6% and 15.5%, re-
spectively, while forests have decreased by 26.7%. We have used publicly available datasets to 
calculate and forecast the construction materials consumption and measure its statistical correla-
tion with urban expansion between 2007 and 2018. Our results show that official figures for sand 
consumption are currently underestimated, and that by 2030, steel and sand and gravel consump-
tion will increase even further by three and two times, respectively. Our analysis uses a new 
method to assess urban development and associated impacts by combining socio-economic and 
Earth Observation datasets. The analysis can provide evidence, underpin decision-making by au-
thorities, policymakers, urban planners and sustainability experts, as well as support the devel-
opment of informed strategies for resource consumption. It can also provide important information 
for identifying areas of land conservation and ecological greenways during urban planning. 

Keywords: land cover; material consumption analysis; construction materials; cloud computing; 
machine learning 
 

1. Introduction 
Rapidly urbanising populations around the world are placing increased pressure 

on the environment, the process of land use planning and the management of resources 
[1–3]. An improved understanding of the speed and scale of development and the 
structure evolution of cities is therefore essential to assess the impacts of urbanisation 
and for the development of policies directed towards resource efficiency and sustaina-
bility. Reducing the impact of the human footprint on the planet is becoming a priority 
in the agendas of national and international institutions because it is recognized as criti-
cal to underpinning economic development, as proven by objective 11 (Sustainable Cit-
ies and Communities) of the United Nations’ Sustainable Development Goals (SGDs; 
https://sdgs.un.org/goals). 

These issues are particularly important for lower-middle income countries like Vi-
etnam [4], which are growing rapidly in terms of their economies, population numbers 
and standards of living [5]. Vietnam’s population increased at an average growth rate of 
1.1% between 2007 and 2018 and this trend is almost double in urban areas like the Ha-
noi Province (1.9%) due to both migration and political interventions, as highlighted by 
the General Statistics Office for Vietnam (GSOV) [6], and explained in more detail in 
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Section 2. This growth increases the demand for natural resources, whether this is land, 
raw materials for the construction of buildings and infrastructure, water or energy. Of 
particular interest is the consumption of construction materials in urban development, 
because increasing supplies within a short timeline often puts a strain on the environ-
ment and stock, production and reserves available from the local mineral sector [7]. 

There are various methods available for monitoring resource consumption [8], such 
as life cycle assessment (LCA), material input per unit of service (MIPS), materials flow 
analysis (MFA), substance flow analysis (SFA), ecological footprint (EF) and even envi-
ronmental impact assessment. The focus and purpose of different methodologies is quite 
diverse. For example LCA and MIPS are product-oriented, ecological footprint and en-
vironmental impact assessment are used to determine the ecological and environmental 
impacts associated with regions or processes and SFA is used to model material flows 
related to specific substances. None of the above methods find common use in urban 
planning to monitor and forecast material flows for assessing supply disruption, under-
taking assessments of resource efficiency, or quantifying potential environmental im-
pacts associated with resource extraction, processing, use and disposal. 

Methods such as Material Flow Analysis (MFA) that focus on spatial and social 
units are used to develop a systemic understanding of the material distribution in the 
urban environment [9]. MFA is a data intensive process and is highly dependent on a 
combination of different datasets (e.g., building and road stocks, mineral production, 
population census, construction statistics, etc.), which are not always available, complete 
or regularly updated, especially at the regional or local scale. 

Land Use/Land Cover (LULC) from Earth Observation (EO) satellite data can pro-
vide critical information for constrainting such required datasets and for a better under-
standing of the evolution and distribution of the built environment and of open-pit ex-
traction sites where the required raw material is extracted [10]. Being high-volume, 
low-value products, many construction materials (e.g., aggregates) are relatively expen-
sive to transport and thus they tend to be sourced locally and can result in visible impact 
on the landscape [11]. This makes supply issues in rapidly urbanising areas a risk but 
linking EO data and resource consumption provides an opportunity for sustainable ur-
ban growth strategies to be developed. 

The use of satellite derived information has increased rapidly in recent years for 
studying urban growth phenomena [12]. This is due to the surge of freely available 
spaceborne imagery, such as Landsat-8 from 2008 and Sentinel-2 from 2015, followed by 
the advent of cloud-based computing platforms that provide rapid access to datasets on 
a planetary scale [13] and the adoption of Machine Learning (ML) classification tech-
niques [14]. 

However, the integration of LULC satellite data with the quantification of stocks 
and flows of raw construction materials has not yet been widely explored. 

This is particularly needed in the Hanoi Province where, despite the fact that min-
ing plays an important role for the economy of the area in terms of the supply of con-
struction materials, little is known about its attributes such as spatial extent, type, scale, 
status and socio/environmental impacts. A recent study [15] has already highlighted 
concerns related to the lack of a resource management strategy for the responsible ex-
traction of construction materials. Given that they represent a non-renewable resource, 
unsustainable mining practices can cause negative environmental impact, excessive en-
ergy usage, and extreme landscape alterations. 

LULC offers a new perspective to analyse the building stock with high spatial and 
temporal resolution and support sustainable urban development at the regional scale. 
However, many users of the wealth of spatial datasets on LULC changes largely miss the 
connection with the underlying economic, production, trade and consumption phe-
nomena that drives the observed changes [16]. 

The aim of this study is to analyse the relationship between LULC and population- 
and economic-datasets during the 2007–2018 interval. Such a holistic approach provides 
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opportunities to quantify the consumption of resources associated with the past and 
current infrastructure development like transport units and buildings. This information 
enables national and local authorities to understand the volumes associated with the 
current use of construction materials and to plan and design effective policies and strat-
egies for future extraction and use of mineral resources, reducing negative environmen-
tal impacts and ensuring the security of supply. 

The paper is structured as follows: an overview of the study area is given in Section 
2, along with an overview of previous studies in the area. The datasets and the method-
ologies used are described in Section 3 and the results are presented in Section 4. The 
discussion (Section 5) focuses on the benefits and limitations of the methodology, while 
the conclusions (Section 6) provide observations on the use of the approach for future 
planning policies. 

2. Hanoi Province 
Hanoi Province is located in the northern part of Vietnam, within the Red River 

delta plain and nearly 90 km from the South China Sea. It encompasses Hanoi, the capi-
tal and second largest city of Vietnam with 7.4 million inhabitants [6], and represents the 
commercial, cultural and educational centre of Northern Vietnam. It is ranked as the 
third province of the country in terms of GDP per capita [17], behind Bà Rịa-Vũng Tàu 
and Ho Chi Minh City. 

In 1986, the Government of Vietnam implemented economic reforms known as Doi 
Moi (renovation) that supported private ownership, encouraged deregulation and for-
eign investment [18]. Since then, the economy of Vietnam has achieved rapid growth in 
agricultural and industrial production, construction and housing, exports and foreign 
investments. Each of these have resulted in momentous landscape transformations as 
consequence of rapid urbanization [19]. 

In 2008, the administrative boundary was enlarged to more than three times its 
previous size and the Hanoi Province now encompasses an area of 3342.92 km2 and 30 
subdivisions (29 districts and 1 town; Figure 1). Three years later, Hanoi’s lead planners 
(Hanoi People’s Committee and the Vietnamese Ministry of Construction), together with 
international consultancies, developed the Hanoi Capital Construction Master Plan 
(HCCMP). The latter is a framework to guide the city’s sustainable development to 2030 
in sectors like transportation, access to clean water, sanitation and housing and to estab-
lish a socio-economic vision until 2050 [20]. Under the HCCMP, about 28% of the natural 
land in 2011 will be converted to built-up land to accommodate the rising urban popula-
tion of Hanoi, projected to increase to ~9.2 million by 2030 [21]. As a result of the higher 
demands for housing and infrastructure, the amount of land that is built upon in the 
Province is projected to rise sharply, by almost three times, from 463.4 km2 in 2011 to 
more than 1,295 km2 by 2030 [22]. Consequently, there is an urgent need for urban plan-
ners and local authorities to monitor and regulate the upcoming urbanization and its 
environmental impact. The increase in urban development will indeed require addition-
al quantities of raw materials, such as construction aggregates, cement, bricks and steel, 
whose extraction and manufacture can have negative effects on the surrounding envi-
ronment. In addition, if an adequate supply of materials is not maintained, the ability to 
implement planed urban growth can be negatively impacted. 

This increased demand for raw materials in Vietnam is already evident as the pro-
duction of aggregates within Vietnam increased >60% between 2007 and 2018 (GSOV, 
2018) [23]. 

The increasing demand for raw materials is already having negative consequences 
to the environment (e.g., pollution, riverbank erosion). For example, the extraction of 
sand, one of the primary materials used in numerous construction products, has led to 
informal mining activities [24] due to the slow response from national and local institu-
tions to regulate the rights and obligations of the mining companies, the insufficient and 
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inconsistent implementation of the legal framework and lack of good mining practices 
[25]. 

 
Figure 1. Location map of the main administrative boundaries of the 30 districts within the Hanoi 
Province with an indication of the pre-2008 Hanoi Province in green and the newly added area in 
white, previously known as Ha Tay Province. Coordinate system: WGS1984, UTM Zone 48N. 

Despite the availability of datasets on production, trade and demand for construc-
tion-related mineral commodities (on a national level) and population, no study has 
correlated this information with Earth Observation datasets in Hanoi so far. 

In Reference [26], information has been used to assess the current and future (up to 
2030) material supply and demand, based on measured and predicted population 
growth, without including local data on the building stock, which was not available at 
the time. Recently, Reference [27] defined an MFA by not considering data on land cover 
but assumptions based on generic information about the total domestic net floor area 
derived from planning documents and expert knowledge without accounting for the 
different types of roads and buildings within each of these categories and the impact of 
informal mining activities. Neither of these studies considered the spatial aspects related 
to raw material consumption for Hanoi. 

Similarly, environmental information, mainly represented by LULC maps [28–31], 
has not been analysed in connection with socio-economic driving factors, but to quantify 
changes in built-up areas. 
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We therefore aim to integrate, for the first time, LULC maps with existing datatsets 
available on population and housing, and with new calculations for material consump-
tion, for a better understanding of the environmental and economic changes character-
izing the expansion of the built environment in the Hanoi Province. 

3. Materials and Methods 
The analysis of the urban growth described in this paper has considered the extrac-

tion of LULC maps from satellite data (Section 3.1) and consumption data from popula-
tion, housing, trade, supply and demand data (Section 3.2). Section 3.3 details how we 
have finally combined the two datasets. 

3.1. Satellite Data 

In this study, we used the Google Earth Engine (GEE) platform to access a total of 
286 medium resolution (MR) satelite imagery for ninteen different years across the period 
1975–2020. Cloud free images acquired on a single date were considered to derive the 
LULC maps and when the whole province could not be covered, a mosaic of different 
MR images across different dates within the same year was created (for more details on 
the input images used, see Supplementary Materials S1). This method allows for the 
production of spatially contiguous, cloud and haze-free, temporal series of surface 
reflectance composites of satellite data. If the mosaic did not allow the whole Province to 
be covered for a particular year, that year has been exluded in this work.  

The MR dataset includes (for a detailed list of the satellite imagery used, see Appendix 
A): 
• 18 Sentinel-2 (S2) acquisitions, from 2020 to 2015 with 10 m, 30 m and 60 m pixel 

spacing according to the thirteen spectral bands (from visible, RGB, to short-wave 
infrared). The S-2 imagery used corresponds to the Bottom-Of-Atmosphere (BOA) 
corrected reflectance. Cloud-free images were obtained by using the S2 QA (Quality 
Assurance) band to identify the presence of dense and cirrus clouds (ESA, 2020) [32]. 

• 2 Landsat-8 (L-8) images for the years 2014 and 2013 with 30 m pixel spacing along 
the RGB spectrum. The L-8 imagery used have been atmospherically corrected using 
LaSRC (USGS, 2019a) [33] and includes a cloud, shadow, water and snow mask, as 
well as a per-pixel saturation mask. 

• 264 Landsat-5 (L-5) images for the period 2012 to 1986 with 30 m pixel spacing along 
the RGB spectrum. The L-5 imagery used have been atmospherically corrected using 
LEDAPS [34], and include a cloud, shadow, water and snow mask, as well as a 
per-pixel saturation mask. 

• 2 Landsat-2 (L-2) for 1975 with 60 m pixel spacing along the Green, Red and 
Near-Infared spectrum. The L-2 imagery used belongs to the Tier 1 collection whose 
Digital Numbers (DNs) represent scaled, calibrated at-sensor radiance. 

LULC maps have been processed in GEE computing platform using the 
Classification and Regression Trees (CART) classifier [35], a supervised and 
non-parametric ML classification algorithm often used for LULC analysis for its high 
accuracy and flexibility [36]. CART, unlike logistic and linear regression, does not 
develop a prediction equation, instead data are partitioned along the predictor axes into 
subsets with homogeneous values of the dependent variable, a process represented by a 
decision tree that can be used to make predictions from new observations [37]. At each 
node of the tree, one attribute of the data that most effectively splits its set of samples into 
subsets enriched in one class or the other is selected. BOA surface reflectance values have 
been used to train the classifier over user-made training sample sites. The data were 
randomly divided into training and validation samples with a proportion of 80% and 
20%, respectively. 
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As the imagery was acquired at different times of the season across the years, each 
year was given its own independent training samples in order to overcome issues such as 
seasonal changes of land surface (e.g., phenology) that can alter the CART classifier in 
each image collection. 

Given the different resolutions across the sensors, the training sites were assigned to 
a single layer encompassing the five main (level-one) land cover categories identified in 
the Corine nomenclature guidelines [38]: artificial surfaces, agricultural areas, forest and 
semi-natural areas, wetlands and water bodies (Table 1). In addition, the changes in land 
use types over time were detected and analysed from the resulting maps. 

Table 1. The five categories of Land Use/Land Cover (LULC) classes used in this study. 

Classes Include 

Artificial Surfaces 
Urban fabric; industrial, commercial and 

transport units; mine, dump and construction 
sites 

Agricultural areas Arable land; permanent crops; pastures 

Forest and seminatural areas 
Forest areas and open space with little or no 

vegetation 
Wetlands Inland wetlands; paddy fields 

Water bodies Rivers; artificial canals; lakes 

Dense and evenly distributed validation samples covering urban areas and 
non-urban areas were needed to assure the fairness and rationality of the validation. The 
validation points have been used to build a confusion matrix through which the overall 
accuracy of our classification has been assessed [39]. 

The different time intervals across the satellite data did not allow a maximum a 
posteriori Markov Random Field analysis (MAP-MRF) [40] to be performed to improve 
the overall accuracy. However, a post-classification reanalysis of the LULC data has been 
done by considering the pixel trajectories. The latter provides the complete sequence of 
land cover classes over the analysed period of time for every pixel [41]. It consequently 
uncovered additional information on the time and type of land cover transition, which 
can include single-steps (only one land cover change) or multiple-steps (more than one 
land cover change). It has been used as a tool to remove the occurrence of illogical or 
transient land-cover transitions in resulting land-cover change (for more details on 
post-classification, see Supplementary Materials S2). For example, a transition from ur-
ban to wetlands or to forests is considered illogical as it is unrealistic in most situations 
and would definitely not occur in a short time period. 

3.2. Construction Materials Consumption Data 
Five construction materials have been considered in this study: crushed rock ag-

gregates, sand and gravel, cement, steel and bricks. 
The publically available data at a province level resolution has been used to analyse 

past construction material demand and supply in Hanoi, following the so-called 
‘top-down’ approach [42]. Additional information has been extracted from downscaling 
data from the national level statistics to province level, albeit based on some assump-
tions. These calculations can then be projected forward using forecasted information for 
population growth. The datasets utilised in the analysis of current and future construc-
tion materials for the Hanoi Province in this study were: 

• Population in numbers of persons for Vietnam as a whole and the Hanoi province 
by from 1995 to 2018. To ensure consistent comparison across all years, the 
population of what was Ha Tay Province prior to 2008 (see Figure 1) was combined 
with the data for the Hanoi Province in all years [6]. 
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• Projections of future population from 2019 to 2030 [43]. These projections are based 
on component analysis of the 2014 Intercensal Population and Housing Survey and 
take into account parameters such as age, mortality fertility and migration. 

• Area of housing floors constructed per year in Hanoi in 2010 and from 2013 to 2017 
(all the years available [6]). 

• Mineral production statistics for Vietnam [23]. Data for aggregates are given in 
thousand cubic metres; therefore, some assumptions have been made to convert 
these figures into kg and the following densities were applied: crushed rock 2,500 
kg/m3 and sand and pebbles 1,640 kg/m3. The densities applied were based on those 
the authors have used for previous work and were derived via consultation with 
the UK aggregates industry [26]. From 2007, information on the construction 
material production is consistent, so this year has been selected as the start year for 
our analysis. 

• Mineral trade statistics for Vietnam taken from the UN Commodity Trade 
Database, a database of international trade statistics collated by the UN. Vietnam 
only report monetary value for trade so the imports and exports, reported by other 
countries in kg, to and from Vietnam were used instead [44]. We considered the 
2007–2018 time interval only. 

Calculations of apparent consumption were made for each of the five commodities 
using Equation (1): 𝑨𝑪 = 𝑷 + 𝑰 − 𝑬 ± 𝑺𝑪 (1)

where AC = apparent consumption, P = production, I = import, E = export and SC = 
stock change. Units are expressed as tonnes. Data for stock changes are not normally 
available, but over long time trends, it can be assumed that positive and negative stock 
changes balance each other out and effectively become zero. 

The calculation for apparent consumption for sand and gravel was made more 
complex by the fact that reported sand data are expected to be underestimated due to 
issues with informal mining that is taking place along the Red River Delta where it is 
dredged from the river bed and banks [24]. 

We estimate that sand production and consumption was much higher than reported 
figures. As a result, cement has been used as a proxy for sand to predict future con-
sumption using the methodology of sand production outlined by the UN Environment 
Programme (UNEP) [45], because there is a clear relationship between cement and sand 
in the production of concrete, the main use for both commodites in construction. This is 
not ideal, however, as sand is also used (in lesser quantities) in non-concrete applications 
such as mortar, road construction, construction fill etc. 

The per capita consumption of construction materials will vary across a country like 
Vietnam because the type and quality of housing is likely to vary and the amount of in-
dustrial activity will be different. However, the assumption that the per capita con-
sumption is similar across Vietnam amd allows the national level minerals production 
and trade statistics to be applied to a single province. It also provides a method by which 
predictions of future consumption of construction materials can be made because of the 
availability of data for expected population growth. 

The production accounts for how the rate of urbanization highly influences the per 
capita consumption, as the more people move into urban centres, the more demand for 
housing, transport and other infrastructure accelerates. 

For the projected figures, the average annual growth rate of consumption per capita 
in kg/person was calculated by applying the average percentage change for a time range 
with recorded data (9 years, 2008 – 2016) to the previous year’s consumption per capita. 
This per capita figure was then factored up using the GSOV and UNFPA [43] figures to 
calculate consumption for Hanoi for each year from 2019 until 2030, the last year for 
which population forecast is available [21]. This process is shown in Equation (2): 
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𝑃𝐶𝐻 = 𝐶𝑃𝐶 +  ∑ 𝑃𝐶𝐶𝑃𝐶𝑛 × 100  × 𝐶𝑃𝐶  × 𝐻𝑃 (2)

where PCH = projected consumption for Hanoi for the ith year, n = total number of 
years, CPC = consumption per capita for Vietnam, PCCPC = yearly percentage change in 
per capita consumption and HP = projected population for the Hanoi Province. 

This top-down approach (Figure 2) is based solely on material consumption and 
population statistics and does not account for the complexity of our urban systems. For 
example, it does not account for changes in the building stock, in social trend and pref-
erences, in transport infrastructure and other components of the urban environment, 
which may differentiate per capita consumption to the projection made. However, de-
spite these limitations, the method provides a useful broad-brush approach for analysing 
Hanoi’s expansion in the recent past and for forecasting the quantities of materials that 
may be needed to support future growth in line with the city expansion and the popula-
tion growth. 

 
Figure 2. Schematic diagram explaining the steps involved in the top-down future supply and 
demand balance calculation. 

Despite information in the area of housing, floors constructed are only available for 
a few years at the city level, and these data were included in the analysis because they 
provide an additional type of information to population growth by illustrating changes 
that may affect the styles of building and population density. Both of these have a direct 
impact on material consumption. 

3.3. Method for Combining Datasets 
Combining the satellite data (spatial) with material AC, population and construction 

of housing floors data firstly requires that datasets be converted to the same spatial or 
temporal reference system. The material apparent consumption and the other data men-
tioned in Section 3.2 are not available as a geospatial dataset and consequently only a 
temporal comparison has been possible. 

To enable a correlation over the overlapping time interval, the following datasets 
have been analysed for every year available: 

• Areas of artificial areas (km2) vs population (in thousand persons) between 2010 and 
2017 (excluding 2011 and 2012).  
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• Areas of artificial areas (km2) vs area of housing floors constructed (m2) between 1996 
and 2018 (excluding 1997, 2002, 2010, 2012 and 2016). 

• Areas of artificial areas (km2) vs the AC of the five construction materials (t) between 
2007 and 2018 (excluding 2010, 2012 and 2016). 

• Population (in thousand persons) vs the AC of the five construction materials (t) be-
tween 2007 and 2018. 

• Housing floors constructed (m2) vs the AC of the five construction materials (t) be-
tween 2010 and 2017 (excluding 2011 and 2012). 

The statistical strength of these correlations has been expressed by the R-squared 
(R2) value. R2 is a statistical measure of fit that indicates how much variation of a de-
pendent variable is explained by the independent variable in a regression model. 

4. Results 
4.1. Land Use/Land Cover (LULC) 

The LULC maps associated with the urban expansion are summarised in Figure 3. 
The whole collection of LULC maps for every class is provided in Supplementary 
Materials S3.  

 
Figure 3. Expansion of the artificial surfaces areawithin the Hanoi Province across five decades. 
Starting from 1975, each colour corresponds to the extension of artificial surfaces at the end of each 
decade, approximatively. Coordinate system: WGS1984, UTM Zone 48N. 

The CART supervised classification was an iterative process that involved visually 
identifying misclassified areas, increasing the number of samples, and subsequently 
re-running the classifier and accuracy assessment. This step was necessary because of the 



Remote Sens. 2021, 13, 334 10 of 22 
 

 

heterogeneity of the land cover classes in the study area and their quick changes over 
time. On average the accuracy of the LULC maps, after the correction detailed in 
Supplementary Materials S2, is 82% with higher values (up to 98%) in S-2 and VHR 
imagery and lower values (down to ~70%) with Landsat data (see Appendix A). An 
average increase of ~2% in the overall accuracy is due to the post-classification reanalysis. 
Regardless of the sensors, the water bodies’ class has the highest accuracies over the 
years (Table 2). 
Table 2. Accuracy assessment of the LULC classification for the Hanoi Province for each class over 
the different years. 

Class Average Accuracy 
artificial surfaces 0.86 
agricultural areas 0.81 

forest and seminatural areas 0.86 
wetlands 0.74 

water bodies 0.99 

In general, the LULC maps reveal that Hanoi Province is a largely agricultural 
dominated landscape and this is uniformly distributed throughout the whole Province. 
The area of artificial surface has expanded from that seen in 1975, especially towards the 
west and south, along with the rise of small new conurbations in Thach That and Chuon 
My and the expansion of the airport area in Soc Son. Hanoi’s urban spatial development 
is based on a model that is shaping many emerging cities in Asia, and includes a central 
core and small and medium satellite urban areas connected by a network of ring roads 
and radial axes. 

Despite the reduction in forest cover, there are four main forest areas that still char-
acterize the edge of the Province (Supplementary Materials S3): the Ba Vi national park, 
the Khu Sinh Thái Thiên Phú Lâm ecological park and two forests in Mỹ Đức. Most of the 
forest clearance is due to conversion to agricultural areas in the central part of the Prov-
ince and to new extraction sites or urban developments in Ba Vi and Sóc Sơn districts. 

During the Sentinel-2 period (2015–2020), mining areas represent ~3% of the artifi-
cial surfaces areas, most of them are located along the river courses. A significant differ-
ence in the spatial density of mines is observed between Mỹ Đức District (lower) and the 
adjacent Hòa Bình Province (higher).  

Temporally, the largest change in LULC is related to the increase in artificial sur-
faces from 9.8% of the Province in 1975 to 21.4% in 2020 at the expense of forest and 
seminatural areas whose size has fallen from 32.5% in 1975 to 5.8% in 2020. The increase 
in artificial surfaces between the beginning of the 1990s and 2010s is >200km2 in agree-
ment with values reported in [28] for the same interval. Agricultural areas have always 
represented the majority of the LULC with a sharp increase from 51% in 1975 to >70% 
during the 1980s and 1990s and then a gradual decline to 66.5% in 2020 (Figure 4). 

 
Figure 4. Percentage of the LULC size for each class within the Hanoi Province between 1975 and 
2020. 
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Based on the trajectories analysis, between 1975 and 2020, only 18% of the Hanoi 
Province has not changed land cover and this is mostly represented by agricultural areas. 
Wetlands are not surprisingly ephemeral features so no pixel has been continuousoly 
classified in this category during the last 45 years. The low number of illogical transitions 
in the trajectories (<0.004%) confirms the high quality of our LULC changes 
(Supplementary Materials S2). 

Around 37% of the Hanoi Province trajectories can be considered to be a stable 
one-step change, meaning that, during the time periods analyzed, only one transition 
between different land covers has occurred. Additionally, 45% of LULC involved two or 
more changes, meaning land cover had changed from one class to a second class which 
has successively changed again. This highlights a very dynamic environment within the 
Hanoi urban catchment. 

The two most common one-step changes are from forest to agricultural areas (for a 
total of ~120 km2), especially between 1996 and 2001, and from agricultural areas to arti-
ficial surfaces (for a total of ~25 km2). 

The combined analysis of the LULC trends and trajectories shows that the growth of 
the artificial surfaces (or simply urban growth) occurred at a yearly average rate of 0.26% 
across the 1975–2020 period. This expansion has mainly occurred at the expense of forests 
and seminatural areas until the 2000s and of agricultural areas afterwards. 

4.2. Past and Future Consumption of the Construction Materials 
The projections of material consumption for the selected construction materials are 

shown in Figure 5. This shows forecast consumption (vertical axis) for Hanoi to 2030. 
Confidence intervals, with a significance level of 0.05, are provided for the forecasted 
values to assess our prediction accuracy. Due to uncertainties around sand and gravel 
production figures, both the reported data for consumption and the projections made for 
estimated consumption using cement as a proxy to 2030 are plotted. 

The AC calculated in this work is 1.8 times higher than the consumption reported in 
the official figures for 2018 and is projected to increase to 2.4 times by 2030. 

The graphs indicate that, for all the commodities considered within this study, con-
siderable increases in demand are to be expected. 

Based on the historical data, the highest increase (relative to 2007) is observed for 
steel (+286%) followed by crushed rock (+106%), while the forecasted increase in AC for 
bricks is much smaller (+13%). 



Remote Sens. 2021, 13, 334 12 of 22 
 

 

 
Figure 5. Projections and confidence intervals (dotted lines) for consumption of construction ma-
terials within the Hanoi Province for bricks, cement, (adjusted) sand and gravel, (not-adjusted) 
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sand and gravel and steel (a) and crushed rock aggregates (b). Note: a different scale for the 
consumption projection of crushd rock is used. 

For each material, the predicted rise in forecasted demand to 2030 is summarised in 
Table 3. This analysis shows that for some of the commodities demand is likely to more 
than double over the next 12 years. For materials where supply shortfalls are already an 
issue, this increased demand will form a serious challenge in sourcing raw materials. 
There is a clear need for pro-active strategies and planning to maintain supply and to 
avoid negative effects, such as unlicensed extraction. 

Table 3. Forecast material demand for the Hanoi Province. 

Construction Material Forecasted Demand in 2030 Compared to 
2018 Data 

Cement Increase 1.4-fold 
Steel Increase 3-fold 

Bricks Increase 1.2-fold 
Crushed rock Increase 1.6-fold 

Sand & gravel (adjusted) Increase 2-fold 
Sand & gravel (not-adjusted) Increased 1.5-fold 

4.3. Combination of the LULC Maps and Construction Material Analysis 
The correlation scatterplots (Figure 6) revealed a strong positive correlation between 

the areas of artificial surfaces and population change (R2 = 0.73). All artificial surfaces are 
the result of human actions and therefore it is logical that an increase in population will 
inevitably result in a larger area that is artificial rather than natural. Conversely, the 
R-squared between artificial surfaces and the construction of housing floors was weaker 
(R2 = 0.015). 

This suggests that the increase in artificial surfaces is connected to the rising popu-
lation, but the increase in artificial surfaces is not entirely due to the construction of 
housing. The latter is not unexpected because the artificial surfaces category includes a 
wider range of land uses than just housing, such as roads, industrial or commercial 
premises and also mineral extraction sites. 
The data for housing floors construction also relate to new housing and do not include 
the existing housing stock. 

 
Figure 6. Correlation between artificial surfaces vs population (green) and housing floor 
construction (red). Linear fitting and R2 values for each variable are provided. 
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Artificial surfaces have the highest R-squared correlation with the apparent 
consumption of cement, steel, crushed rock and the adjusted sand (Figure 7) with R2 
between 0.51 and 0.78. 

Almost no correlation was observed with bricks (R2 = 0.03) and non-adjusted sand 
(R2 = 0.08). The former indicates that the amount of artificial surface in Hanoi has little 
effect on the quantities of bricks produced. This suggests that much of the construction 
taking place in Hanoi is being carried out with concrete instead of bricks and this is 
further supported by the strong correlation between artificial surfaces and crushed rock, 
cement and (adjusted) sand. The weaker correlation with non-adjusted sand data 
suggests a possible under-reporting of sand production in these figures. 

 
Figure 7. Correlation between artificial surfaces and AC of bricks, cement, (adjusted) sand & grav-
el, (not-adjusted) sand and gravel and steel (a) and crushed rock aggregates (b). Note: a different 
scale for the consumption projection of crushd rock is used. Linear fitting equations and R2 values 
for each variable are provided. 

The slope of these R-squared correlations reveal that, for every additional km2 of 
artificial surfaces created, ~9.8 × 103 t of cement, ~4.7 × 103 of steel and ~2.9 × 104 of 
(adjusted) sand and gravel are needed. 
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The regression analysis using population as dependent variables (Figure 8) revealed 
that population growth has the strongest relationship with apparent consumption of 
cement, steel, crushed rock and sand and gravel (using the adjusted figures).  

 
Figure 8. Correlation between population and AC of bricks, cement, (adjusted) sand & gravel, 
(not-adjusted) sand & gravel and steel (a) and crushed rock aggregates (b). Note: a different scale 
for the consumption projection of crushd rock is used. Linear fitting equations and R2 values for 
each variable are provided. 

These relationships have R2 between 0.63 and 0.84. A low correlation is observed 
between population and AC of bricks and between population and AC of (not-adjusted) 
sand and gravel. 

Positive relationships between apparent material consumption and population are 
to be expected because as the population in a city grows more construction of housing 
and infrastructure is required, which is inveitably reflected in the increasing area of 
artificial surfaces (see Figure 6). 

Conversely, the areas of housing floors constructed [6] has a poor correlation with 
the AC of all the construction materials (Figure 9). The housing floor constructed per 
person has doubled from 44m2 per person in 2010 to 93m2 per person in 2018, a value 
much higher than the population increase during the same time interval (+13%). This 
suggests that housing is not the primary driver for material consumption over the time 
period for which data are available. This is not wholly unexpected because the 
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expanation of the city region will also include other types of construction, including new 
roads, railways and other infrastructure to support the population growth, as well as 
commercial and industrial buildings. 

 
Figure 9. Correlation between the area of housing floor constructed and AC of bricks, cement, 
(adjusted) sand & gravel, (not-adjusted) sand and gravel and steel (a) and crushed rock aggregates 
(b). Note: a different scale for the consumption projection of crushd rock is used. Linear fitting 
equations and R2 values for each variable are provided. 

In this case the relationships have low R2 (never exceeding 0.14) or a negative slope 
(bricks), which means that housing floor construction is not an indicative parameter for 
deriving AC of construction materials. 

5. Discussion 
We presented a method for combining mineral consumption and population statis-

tics with satellite data in the Hanoi Province. The methods rely on quick access to EO 
databases, supervised classification of LULC maps followed by comparison with AC data 
derived from socio-economic datasets. 

Due to economic development and administrative extension, Hanoi has experienced 
considerable changes in land cover, which are mainly driven by urban expansion, lead-
ing to an increase in residential, industrial and agricultural areas. Population growth, 
economic development and policy reform have played important roles in driving all of 
these changes. 
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Traditionally, data on urbanisation has come from census counts and population 
surveys, which are published infrequently, vary in terms of resolution and precision, and 
are subject to the availability of resources and the capacity to acquire reliable data [46]. 
Significant progress in the availability of remotely sensed data, ML techniques and 
cloud-based computing platforms have now added the capability to analyse the rate and 
pace of urbanisation in relationship with census datasets. 

While the decadal satellite-derived maps present gaps, especially in the 1970s and 
1980s due to lack of cloud-free acquisitions, the land cover change analysis encompasses 
sufficient information to map the Hanoi city expansion over the last 45 years. 

Our findings show that most of the land cover changes involve deforestation to ag-
ricultural areas and, to a lesser extent, from forest to artificial surfaces (including mining) 
until the 2000s. 

Thereafter, further temporal analysis of land cover changes and the LULC trajecto-
ries show a gradual shift to mainly the conversion of agricultural areas into artificial 
surfaces. 

A reduction in agricultural areas at the same time as population is increasing in the 
city suggests that agricultural produce must be coming from further afield to feed people 
in Hanoi. 

Compared to land cover changes observed worldwide, the average urban growth 
rate for Hanoi (0.26%) extracted between 1975 and 2020 is in line with urban growth rates 
observed between 1986 and 2010 in western world cities like Portland (USA), Prague 
(Czech Republic) and Frankfurt (Germany) but still below the rates (≥1.4%) of major 
Asian cities like Tianjin (China), Seoul (South Korea) and Bangkok (Thailand) [10,47]. The 
Hanoi urban growth rate is also below the rate of the largest city of Vietnam, Ho Chi 
Minh (0.94%), observed between 1990 and 2010 [48]. 

At this pace, Hanoi’s artificial areas will be at ~850km2 by 2030, below the target of 
1295 km2 of constructed land expected by the HCCMP, which includes five new satellite 
towns (Hoa Lac, Son Tay, Xuan Mai, Phu Xuyen and Soc Son) that are only partially de-
veloped in 2020. 

The resolution of the satellite imagery is still not sufficient to characterize and 
quantify the building stock (e.g., residential, commercial) for a full MFA, but it is suffi-
cient to characterise the past and current consumption of construction materials and to 
analyse their future demand. Higher resolution data will be needed to disentangle the 
different types of construction within the building stock and transport infrastructures, 
which at the moment are all included in the artificial surfaces class. 

Similarly, we do not have enough information on the local geology or mine data-
bases to separate the different types of materials extracted from the mines mapped in the 
Hanoi Province. Bringing this type of information into the analysis would allow for an 
understanding of how the mineral extraction industry can meet the demand on con-
struction going forward. 

Mining plays an important role for the economy of the Hanoi Province. However, 
little is known about its attributes, such as area, type, scale, and current status as well as 
socio-environmental impacts. The large extension of small-scale mining raises a concern 
regarding its socio-environment impacts for the Hanoi ecosystems and for local people, 
since it does not always follow environmental protocols [15]. 

The forecasted material consumption shows that, in 2030, crushed rock aggregates 
and sand and gravel will be the most required commodities by far (~57 Mt and ~26Mt 
respectively) and steel will be the material with the highest increase in usage (three times 
more than its use in 2018). This is perhaps unsurprising given the reliance on both con-
crete (the main component of which is aggregates in the form of sand with crushed rock 
or gravel) and steel in modern urban development. 

Whilst steel, due to its high value, is an internationally traded commodity, sand and 
gravel represent a high-bulk and low-value commodity. Sand and gravel are therefore 
normally sourced within tens of kilometers from the point of consumption, which means 
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that the future increase in its AC will likely result into additional land cover changes 
within the Hanoi Province. 

Additionally, the forecast identifies a huge volume of sand and gravel needed over 
the next 10 years in an already stressed market [26]. If sand and gravel cannot be supplied 
locally, this increasing demand can potentially outstrip the supply and result in a short-
age. This might cause delays in construction, economic difficulties as a result of volatile 
prices and development targets to be missed. 

The comparison of LULC and AC of construction materials presented in this work 
enables the characterisation of the spatio-temporal patterns of material metabolism for 
the infrastructure development. More importantly, it facilitates the investigation of the 
correlation between material utilisation, socio-economic development and environmen-
tal impact on a more refined level so that effective policies could be derived for sustain-
able infrastructure planning and environmental management of the HCCMP. 

We considered a top-down approach made of a total of 20 correlations between ar-
tificial surfaces, population, housing floor constructed and AC of construction materials, 
which revealed the following main points: 

- A clear correlation between the growth of population, artificial surfaces and AC of 
(adjusted) sand and gravel, cement, steel and crushed rock. The strength of the rela-
tionship between apparent consumption and population is a clear illustration of the 
need to plan for materials supply wherever population growth is expected. 

- The poor correlation between the construction of housing floors and the AC of con-
struction materials results from the former growing more than the latter and an 
overall increase of the surface of housing floors constructed per person. So far, little 
data is available to draw a specific conclusion from this comparison. It is likely that 
this trend can be explained by either different construction practices used for hous-
ing through the years, the decreasing proportion of construction materials used for 
housing compared to the quantity used for transport units and commercial infra-
structure or the import of additional construction materials from other provinces of 
Vietnam.  

- The AC of bricks is unrelated to population or artificial surfaces and is strongly and 
negatively related to housing floor construction. Such relationship means that the 
tonnes of bricks consumed per cubic metre of housing floor constructed are falling. 
Because housing is usually one of the largest processes by which the new bricks are 
being used (or consumed) this can be indicative of changing standards or building 
styles used for house contruction or that this material is mainly exported to 
elsewhere within the country. 

- The official figures for the production of sand and gravel (non-adjusted) are poorly 
related to population, housing floor construction and artificial surfaces, which 
suggests a level of under-reporting of sand and gravel production occurring. We 
have therefore used cement as a proxy to estimate AC and forecast consumpion of 
sand and gravel. According to the revised calculation (see Section 3.2), the reported 
(official) values are currently almost two times lower than the likely true level of 
AC. Our adjusted values are much more strongly related to the changes in artificial 
surfaces and population. The weak correlation with the reported levels of sand 
production strongly supports the suggestion that these figures are un-
der-representing the amount of sand that is being produced. It is very likely, there-
fore, that additional sand is being produced to meet the demand of construction in 
Hanoi and that this is originating from ‘unofficial’ sources within the province. As 
noted earlier, there is evidence for sand extraction taking place from river beds and 
banks in the Hanoi region [24], and, if this is not regulated, could have severe nega-
tive and irreversible effects on the environmental conditions of the rivers. 
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Some of the studied correlations are not as strong as expected, which may suggest 
some other factors (e.g., political or cultural) play important roles in affecting the change 
of construction materials. Further investigation of the driving factors is needed along 
with the support of data at a refined spatial/temporal scale. While current levels of pub-
licly available data are sufficient for the analysis of material supply and demand at the 
national level, the analysis of material flows at the city level require considerable as-
sumptions and estimation to be made by scaling national level data to the city level. New 
data and over a longer period at city level would allow for the development of a more 
comprehensive approach than the top-down method we adopted. Our top-down ap-
proach is based solely on material flows and population statistics and does not take into 
account urban growth plans, building stock information and the metabolism of urban 
development over time. In that sense, it is ‘simplistic’ and could be improved by incor-
porating some of the aforementioned factors into the model to drive a bottom-up mate-
rial flows quantification [26]. Material flow analysis is suitable as a method for quanti-
fying material input and use flows, but if we would like to quantify the impacts of mate-
rials to the environment, then additional data and methods would have to be considered 
(e.g., environmental impact assessment, LCA) [8]. 

The contrast between the smooth linear trend shown in projected consumption and 
more complex trends from measured statistical data illustrates the limitations of such 
simplistic modelling and how economic and political factors, which can alter such trends 
considerably, can only be constrained by confidence intervals. 

The comparison between LULC maps with AC provides it is still an added value for 
a better understanding of possible future demand for construction materials in the area 
which can be used to develop informed regulatory framework, as requested in Reference 
[15], and can guarantee the balance between promoting sustainable economic growth 
prosperity and guaranteeing environmental protection. Such efforts go in the direction of 
two United Nations SDGs: no.11 (Sustainable Cities and Communities) and 12 (Respon-
sible Consumption and Production). 

From our analysis, we can state that, over the last 20 years, the reduction in forest 
and seminatural areas has been very limited. However, if the targeted urban growth is 
to be achieved in Hanoi, then the main threat to forest preservation is related to the in-
creasing request for building plots and mining concessions, in particular for steel and 
sand and gravel. 

6. Conclusions 
The Hanoi Master Plan 2030 has been designed by the Vietnamese government to 

accommodate the growing population from 6.7 million in 2010 to 9.2 million by 2030 and 
promote economic development in the capital region. Indeed, urban areas in Vietnam 
contribute to most of the country’s annual GDP and will create expanding markets for 
construction materials. 

The rapid urbanisation has already determined drastic environmental changes in 
terms of land use [28,29] and despite this, an analysis of the impacts in terms of land use 
changes and future demand and supply of construction materials does not yet exist in the 
literature and has not been included in the city’s main planning document, the HCCMP.  

In this regard, satellite data have provided information on how we can assess the 
impact of the increasing population and demand for construction materials on landscape 
change. The latter is information that is easy to retrieve, especially at the national scale in 
Europe and North America, while LULC maps can be produced, based entirely on 
open-source data and software. Therefore, our methodology has the potential to be rep-
licated elsewhere. 

For the Hanoi Province, our work has identified the construction materials whose 
supply and exploration needs to be prioritised and where new legislative framework can 
be put in place to regulate and support businesses to realise more sustainable supply 
chains that can preserve or mitigate the impact of urbanisation on the natural landscape. 
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We have therefore analysed and demonstrated the close correlation among land 
cover changes, population growth and the apparent consumption of construction mate-
rials. These correlations provide reliable and consistent information to top-level institu-
tions such as Provincial People’s committee, MONRE and MOC (Ministry of Construc-
tion) to support more effective policies for the responsible use of non-renewable mineral 
resources or future strategies for an adequate supply of construction materials, propor-
tionally to the urban expansion. 

We aim to develop a full MFA for the Hanoi Province through higher resolution 
satellite data. The latter will provide information on the building stock and the infra-
structure that will further shorten the distance between EO data to conventional eco-
nomic tools. 
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Appendix A 
The satellite data used have a cloud coverage of ≤ 2% of the Hanoi Province and 

spans nineteen different years, years with cloud cover have a ‘*’: 

• 3 S-2 images acquired on 9/3/2020. Overall accuracy: 98%. 
• 2 S-2 images acquired on 10/12/2019. Overall accuracy: 88%. 
• 2 S-2 images acquired on 31/10/2018. Overall accuracy: 93%. 
• 4 S-2 images acquired on 20/12/2017. Overall accuracy: 91%. 
• 7 S-2 images acquired in 2015 *. Overall accuracy: 93%. 
• 2 L-8 images acquired on 19/1/2014 *. Overall accuracy: 85%. 
• 17 L-5 images acquired between July and November 2011 *. Overall accuracy: 78%. 
• 2 L-5 images acquired on 5/11/2009 *. Overall accuracy: 89%. 
• 35 L-5 images acquired in 2008. Overall accuracy: 87%. 
• 36 L-5 images acquired in 2005. Overall accuracy: 83%. 
• 2 L-5 images acquired on 9/12/2004. Overall accuracy: 86%. 
• 43 L-5 images acquired on 2003. Overall accuracy: 86%. 
• 35 L-5 images acquired on 2001. Overall accuracy: 75%. 
• 2 L-5 images acquired on 30/9/1996. Overall accuracy: 85%. 
• 39 L-5 images acquired in 1992. Overall accuracy: 74%. 
• 2 L-5 images acquired on 20/11/1991. Overall accuracy: 80%. 
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• 49 L-5 images acquired in 1989. Overall accuracy: 83%. 
• 2 L-5 images acquired on 1/7/1986. Overall accuracy: 80%. 
• 2 L-2 images acquired on 29/12/1975. Overall accuracy: 86%. 
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