
Journal of Alzheimer’s Disease 79 (2021) 1063–1074
DOI 10.3233/JAD-200910
IOS Press

1063

Life Course Air Pollution Exposure and
Cognitive Decline: Modelled Historical
Air Pollution Data and the Lothian Birth
Cohort 1936

Tom C. Russa,b,c,d,∗, Mark P.C. Cherriee, Chris Dibbene,f , Sam Tomlinsong,h, Stefan Reisg,i,
Ulrike Dragositsg, Massimo Vienog, Rachel Beckg, Ed Carnellg, Niamh K. Shorttk,
Graciela Muniz-Terreraa,c, Paul Redmondb, Adele M. Taylorb, Tom Clemense,
Martie van Tongerenk, Raymond M. Agiusk, John M. Starra,b,1, Ian J. Dearyb and Jamie R. Pearcek

aAlzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
bLothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
cEdinburgh Dementia Prevention Group, Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
dDivision of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
eSchool of GeoSciences, University of Edinburgh, Edinburgh, UK
f Scottish Centre for Administrative Data Research, University of Edinburgh, Edinburgh, UK
gUK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik, UK
hUK Centre for Ecology & Hydrology (UKCEH), Lancaster Environment Centre, Lancaster University,
Lancaster, UK
iUniversity of Exeter Medical School, Knowledge Spa, Truro, UK
jCentre for Occupational and Environmental Health, School of Health Sciences, University of Manchester,
Manchester, UK
kCentre for Research on Environment, Society and Health, School of GeoSciences, University of Edinburgh,
Edinburgh, UK

Accepted 13 November 2020
Pre-press 8 January 2021

Abstract.
Background: Air pollution has been consistently linked with dementia and cognitive decline. However, it is unclear whether
risk is accumulated through long-term exposure or whether there are sensitive/critical periods. A key barrier to clarifying this
relationship is the dearth of historical air pollution data.
Objective: To demonstrate the feasibility of modelling historical air pollution data and using them in epidemiological
models.
Methods: Using the EMEP4UK atmospheric chemistry transport model, we modelled historical fine particulate matter
(PM2.5) concentrations for the years 1935, 1950, 1970, 1980, and 1990 and combined these with contemporary modelled
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data from 2001 to estimate life course exposure in 572 participants in the Lothian Birth Cohort 1936 with lifetime residential
history recorded. Linear regression and latent growth models were constructed using cognitive ability (IQ) measured by the
Moray House Test at the ages of 11, 70, 76, and 79 years to explore the effects of historical air pollution exposure. Covariates
included sex, IQ at age 11 years, social class, and smoking.
Results: Higher air pollution modelled for 1935 (when participants would have been in utero) was associated with worse
change in IQ from age 11–70 years (� = –0.006, SE = 0.002, p = 0.03) but not cognitive trajectories from age 70–79 years
(p > 0.05). There was no support for other critical/sensitive periods of exposure or an accumulation of risk (all p > 0.05).
Conclusion: The life course paradigm is essential in understanding cognitive decline and this is the first study to examine
life course air pollution exposure in relation to cognitive health.
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INTRODUCTION

Dementia is a global public health crisis with
almost 47 million people affected in 2015 and almost
10 million new cases every year, leading to a pro-
jected prevalence of over 130 million by 2050 [1].
The brain changes which lead to many dementias—
including the most common form, Alzheimer’s dis-
ease dementia—begin in midlife and only manifest
in later life [2]. Dementia prevention is now a world-
wide priority and accepted risk factors include lower
levels of educational attainment (in early life), cardio-
vascular disease risk factors (with hypertension and
obesity particularly highlighted in mid-life), depres-
sion, hearing loss, and possession of the APOE �4
allele [3]. A recent Lancet Commission report and
other analyses have estimated that approximately a
third of dementia risk can be explained by these com-
mon risk factors [4, 5]. With genetic factors (most
prominently APOE �4 carriage) explaining approx-
imately another third [6], this leaves around a third
of dementia risk unexplained. However, there is also
evidence linking a number of environmental risk fac-
tors with dementia which might account for some
of this unexplained risk [7]. The risk factor for which
there is strongest evidence is air pollution [8, 9]. How-
ever, the field has been criticized since studies to date
have lacked long-term (i.e., whole life) assessment
of both exposure and outcome [10]. Thus, no light
has yet been shed on the question of when in the
life-course exposure to air pollution is most harm-
ful to the brain. Recent papers describing “long-term
exposure” to air pollution only estimated air pol-
lution exposure at one time point [11, 12]. Indeed,
answering this question from a life-course epidemi-
ology perspective is hampered by both a dearth of
available air pollution data from earlier than a few
decades ago, when systematic long-term monitoring

of atmospheric concentrations was implemented, and
limited information about the geographical location
of study participants over their lives [13]. There-
fore, we modelled air pollution data (fine particulate
matter, with an aerodynamic diameter of 2.5 �m or
smaller; PM2.5) for multiple time periods and linked
these with the Lothian Birth Cohort 1936 (LBC1936),
for whom lifetime residential history is available, to
investigate links between air pollution and cognitive
change over more than six decades.

MATERIALS AND METHODS

Study participants

The LBC1936 is a well-established cohort study,
originally comprising 1,091 men and women aged
approximately 70 years at recruitment. Almost all
sat the Moray House Test (MHT) of general cogni-
tive ability in the Scottish Mental Survey in 1947
when they were aged about 11 years [14]. Thus,
general intelligence data are available for almost all
participants at ages 11 years, and repeatedly from
approximately 70 years onwards. In the present study,
we used data from waves 1, 3, and 4 when partici-
pants had mean ages of 69.5 (SD = 0.8), 76.3 (0.7),
and 79.3 (0.6) years respectively; the MHT was not
administered in wave 2. We operationalized cogni-
tive function in the same way as previous studies,
adjusting for age in days and standardizing to an
IQ-type score with mean 100 and SD 15 [15]. In
line with previous analyses, change in IQ score was
computed as the standardized residual from a linear
regression model with age 11 IQ as the independent
variable and age 70 IQ as the dependent variable;
this is superior to computing the arithmetic difference
[16, 17].
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In 2014, surviving LBC1936 participants were
asked to complete a lifetime residential questionnaire
and 593 of 704 approached provided usable life grid
data (full addresses) which were geocoded to lati-
tude and longitude [15]. Participants had a mean (SD)
11.3 (2.9) separate locations throughout life, ranging
from six to 27, with the years they lived there also
recorded. Each location was allocated to the clos-
est time period for which air pollution data were
available: 1935 (location year 1942 or earlier); 1950
(1943–1959); 1970 (1960–1975); 1980 (1976–1985);
1990 (1986–1995); or 2001 (1995–2004); locations
after 2004 were excluded to avoid overlap with cogni-
tive testing (wave 1 of the LBC1936 took place from
2004–2007 [14]). Participants may have had more
than one location allocated to each time point, e.g.,
all locations between the years 1995 and 2004 would
be allocated to the 2001 time point. Thus, participants
had up to ten locations per time point (mean [SD]
values ranged from 1.11 [0.34] locations recorded in
2001 to 3.38 [1.33] locations in 1970). Twenty-one
participants (3.5%) were missing location data for at
least one time point, leaving 572 in the final sample
who had location (and therefore air pollution) data
available for every time point.

Other covariate data available in the LBC1936 and
used in the models included sex, parental occupa-
tional social class (using the Registrar General 1951
classification from I to V [18]), and self-reported
smoking status (current smoker at wave 1 or non-/
ex-smoker).

Air pollution modelling

The EMEP4UK atmospheric chemistry trans-
port model (rv4.3 for 1970–2010 and rv4.10 for
1935/50 [19]) was used to model historical ambient
concentrations of fine particulate matter (PM2.5)
for the years 1935, 1950, 1970, 1980, and 1990
which were combined with contemporary modelled
data from 2000 onwards and residential histories to
estimate life course exposure. The EMEP4UK model
setup, geographical coverage, and configuration
used here has been described previously [20, 21].
The model covers the European Union with a
horizontal resolution of 0.5◦ × 0.5◦ used to provide
the boundary condition for a nested UK domain
(resolution of 0.055◦ × 0.055◦). The modelled
PM2.5 and other key air pollutant concentrations are
routinely validated against observations across UK
monitoring networks [20–25] and have been used for
the assessment of population exposure over longer

time scales in other studies for the period 1970 to
2010 [26]. Emission data have been identified as
key sources of uncertainty in modelling historic air
pollution. A detailed assessment of sensitivity and
uncertainty of the Atmospheric Chemistry Transport
Models (ACTM) applied in this study has been
published elsewhere [27].

UK-specific gridded emissions of nitrogen oxides
(NOx), sulphur oxides (SOx), ammonia (NH3), non-
methane volatile organic compounds (NMVOCs),
carbon monoxide (CO), and coarse (PM10) and fine
(PM2.5) particulate matter—all necessary for the
atmospheric composition calculations—were pro-
duced for the target years on a nominal 1 km × 1 km
grid covering the United Kingdom. Emissions data
were internally re-projected and processed by the
EMEMP4UK model to provide output concentration
data at the model grid resolution of 0.055◦ × 0.055◦
resolution (∼5 km × 6 km) for the UK. The concen-
trations of PM2.5 calculated by the EMEP4UK model
were used in conjunction with the residential history
data (as described above). The sources of primary
emitted PM are varied but the main contributors are
essentially fuel combustion (from all sources) and
the use of any mobile machinery, including road traf-
fic. This is in contrast to secondary produced PM,
such as ammonium sulphate which is formed by
the interaction of ammonia gas and sulphur dioxide,
which are strongly linked to specific sectors, such as
SOx (energy) and NH3 (agriculture). The PM compo-
nents included in the EMEP4UK model are primary
PM, secondary inorganic and organic aerosols, sea
salt, and mineral dust [22]. Although this work is
focused on the UK the EMEP4UK requires emis-
sion data for the whole of Europe to account for the
transboundary imports/export. EU data were kindly
supplied at a 50 km × 50 km resolution (D. Simp-
son, personal communication, [28]). The EMEP4UK
model is driven by 3D hourly meteorology calcu-
lated by the weather and research forecast model
[29]. The meteorological year used for the 1935 and
1950 emission scenario was the year 2014, for the
1970, 1980, 1990 emission scenario was the year
2012, and for the 2001 emission scenario the year was
2001.

For the years 1970, 1980, and 1990, emission data
in the official UK inventory, the National Atmo-
spheric Emissions Inventory [30], were used to scale
2017 spatial distributions (1 km × 1 km resolution) of
sectoral totals per pollutant, reported via the Selected
Nomenclature for sources of Air Pollution system
(SNAP sectors). While the use of contemporary dis-
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tributions back to 1970 is imperfect, the majority
of the time series had the best possible emissions
estimates per sector. Emissions for 1950 were esti-
mated and distributed in the Long Term Large Scale
project [31], while the 1935 emissions were a scaled
version of the 1950 distributions based upon activ-
ity data research, using the same spatial methods.
Non-NH3 activity data prior to 1970 are largely a
reflection of the use of fossil fuels such as coal and
of oil-derived products such as diesel (DERV); coal
usage in the UK had a double peak either side of
World War Two before a rapid decline in the 1960s.
Agricultural activity data such as animal numbers,
principally associated with emissions of NH3, were
derived from the Vision of Britain database [32]. For
source strength emission factors (EFs), many were
similar to those used by the UK National Atmo-
spheric Emission Inventory (NAEI) in 1970 while
in terms of the spatial distribution of pre-1970 data,
the principal differences from the NAEI distributions
were: power stations relevant to the time period were
mapped and the distribution of industrial activity was
tied to census employment data [31].

Raster files for each location year (1935, 1950,
1970, 1980, 1990, and 2001) were read into the R sta-
tistical computing environment version 4.0.2 using
the raster package [33]. The latitude and longitude for
each location were used to derive values from these
raster files for each participant at each time point.
Since participants may have had multiple locations
within each time band, the unweighted mean of these
multiple values per time point was calculated and
used in the analyses as the value for that participant
at that time point. For example, the mean of all
the air pollution values corresponding to locations
recorded between the years 1995 and 2004 would
be allocated to the 2001 time point for an individual
participant. For the purposes of sensitivity analyses,
we also computed the maximum value for each time
point per participant and the 90% percentile value.

Statistical modelling

Following the convention in previous LBC1936
analyses, we modelled change in IQ score from age
11 to age 70 years separately from changes between
the ages of 70, 76, and 79 years. The former used
a linear regression model of in utero air pollution
exposure (i.e., using PM2.5 data for 1935; this was
the only measurement of air pollution which predated
the MHT administration at age 11 years) and resid-
ualized change in IQ score from age 11 to age 70

years in the R statistical computing environment ver-
sion 4.0.2. We adjusted this model for sex, parental
occupation, and smoking status.

To estimate linear late life cognitive trajectories,
we fitted latent growth models to IQ scores from ages
70, 76, and 79 years to estimate the average popu-
lation cognitive curves. These longitudinal models
permit estimation of the outcome’s mean and indi-
vidual trajectories while permitting the inclusion of
predictors (time-invariant or time-varying) to study
their association with curve parameters such as the
intercept and slope parameters. Latent growth mod-
els were estimated using maximum likelihood under
a ‘missing at random’ missing data assumption. All
latent growth models were estimated using MPLUS
[34].

We summarize the models fitted in Fig. 1, in which
observed data are represented within rectangles, and
latent variables such as the model’s intercept and
slope are represented within circles. The one-way
arrows indicate that the variable at the end of the
arrow is explained in the model by the variable at
the beginning of the arrow. Often in such figures,
two-way curved arrows indicate covariances but as
is commonly done, in order to simplify the figure, we
have omitted these arrows here as well as the arrows
that indicate error terms.

Life course models

The two main models in life course epidemiology
are critical/sensitive periods and accumulation of risk
[2]. To evaluate questions about any critical/sensitive
period(s) of air pollution exposure and maximize the
use of pollution data collected over the life course,
we estimated late life trajectories of IQ scores at ages
70, 76, and 79 years, adjusting the intercept and rate
of change for air pollution measures collected at dif-
ferent ages in the life course, age 11 IQ scores, sex,
parental social class, and smoking status. Specifically,
we adjusted the models separately for PM2.5 in 1935,
1950, 1970, 1980, 1990, or 2001. Figure 1a depicts an
example of the critical/sensitive period model fitted
here.

In order to evaluate an accumulation of risk model,
we estimated a series of latent growth models similar
to the previous ones, adjusting the level and rate of
change for variables defined as the sum of air pol-
lution to which the individual was exposed up to
different stages in life. That is, we added in utero
air pollution measures (i.e., from 1935) to air pollu-
tion measures collected in 1950 to derive an indicator
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Fig. 1. Figure representing the (a) critical/sensitive period and (b) accumulation models fitted to IQ scores: life course air pollution exposure
and cognitive decline in the LBC1936.

Summary of the models used in the present analyses

OUTCOME EXPOSURE
Sensitive/critical period(s)
Change in IQ from age 11 to age 70 years In utero PM2.5 exposure (1935)

Trajectories of IQ from age 70 to 79 years In utero PM2.5 exposure (1935)
(intercept and rate of change) PM2.5 exposure aged ∼14 years (1950)

PM2.5 exposure aged ∼34 years (1970)
PM2.5 exposure aged ∼44 years (1980)
PM2.5 exposure aged ∼54 years (1990)
PM2.5 exposure aged ∼65 years (2001)

Accumulation of risk
Trajectories of IQ from age 70 to 79 years Early life
(intercept and rate of change) (1935 + 1950)

Early life to young adulthood
(1935 + 1950 + 1970)
Early life to mid-adulthood
(1935 + 1950 + 1970 + 1980)
Early life to late adulthood
(1935 + 1950 + 1970 + 1980 + 1990)
Early life to later life
(1935 + 1950 + 1970 + 1980 + 1990 + 2001)

of early life exposure; the sum of air pollution mea-
sures from 1935 to 1970 covered early life to young
adulthood; additionally, adding pollution from 1980
encompassed early life to mid-adulthood; the addi-
tion of air pollution in 1990 covered early life to
late adulthood; finally, adding air pollution from 2001
covered early life to later life. Figure 1b depicts an
example of the accumulation period model fitted here.
The Text Box above summarizes the models used in
the present analyses.

RESULTS

A total of 572 LBC1936 participants were included
in the present analyses. Their characteristics are sum-
marized in Table 1. Briefly, just under half were
female, and had completed more than compulsory
education. Just over a quarter had parents from occu-
pational social classes I or II (i.e., less deprived), and
about half were smokers at the time of recruitment
to the LBC1936. Comparing the 572 LBC1936 par-
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Table 1
Sample characteristics: life course air pollution exposure and cognitive decline in the LBC1936

Includeda Excludedb pc Total LBC1936
sample

N 572 519 1091
Age at SMS1947 (mean [SD] years) 10.92 (0.27) 10.96 (0.29) 0.027 10.94 (0.28)
Female (%) 46.9 53.0 0.0497 49.8
Age 11 IQd (mean [SD]) 101.6 (15.0) 98.2 (14.9) <0.001 100.0 (15.0)
Parental occupational social class (% class I or II) 27.7 26.3 0.011 27.1
Current smoker at baseline (%) 49.3 42.2 0.022 45.9

aParticipants were included if they had at least one location recorded for each time period. bExcluded participants included
21 with missing location data for at least one time period, 111 who did not respond to the questionnaire requesting lifetime
residential history, and 387 who were not approached, mainly because they had died or withdrawn from the study prior to
the questionnaire being used in 2014. cp-values from comparisons of included and excluded participants. d31 participants
were missing age 11 intelligence data.
LBC1936: Lothian Birth Cohort 1936 (N = 1091); SMS1947: Scottish Mental Survey 1947 (N = 70,805, of which the
LBC1936 is a subset).

ticipants for whom we had location (and therefore
air pollution) data with the 519 participants excluded
from these analyses revealed no major differences.

Air pollution

Table 2 shows the average air pollution estimates
for the LBC1936 participants and Supplementary
Figure 1 shows the distribution of air pollution
exposure at each time period. Supplementary Fig-
ure 2 shows participants’ PM2.5 exposure changes
over time and Supplementary Table 1 shows the
correlations between individuals’ PM2.5 exposure
ranking at different time points. Rankings varied over
time—likely due more to participants moving than
the relative ranking of areas changing—but were
more closely correlated when closer in time, sug-
gesting it is feasible to explore critical/sensitive time
periods. Figure 2 shows the modelled PM2.5 values
for Scotland in 1935; the urban centers are clearly
visible.

Table 2
Annual average particulate matter (PM2.5) values at different time
points for all participants: life course air pollution exposure and

cognitive decline in the LBC1936

Year Mean (sd) Range Ntotal
a >10 �g/m3 b

1935 34.8 (16.0) 5.2–133.0 590 562 (95%)
1950 32.4 (12.8) 6.0–113.3 591 578 (98%)
1970 17.0 (1.5) 9.5–23.9 585 584 (100%)
1980 15.0 (1.5) 7.3–24.0 580 575 (99%)
1990 13.4 (1.2) 6.7–21.4 580 579 (100%)
2001 7.9 (0.6) 4.8–15.9 591 4 (0.7%)
a593 participants provided lifetime residential histories; 572 had
air pollution data from all time periods and were included in
the present analyses; bThe number (%) of participants whose
PM2.5 exposure exceeded the WHO guidelines of an annual mean
of ≤ 10 �g/m3.

Is in utero air pollution exposure associated with
cognitive trajectories over the life course?

Results from this model are presented in Table 3a,
where the potential impact of air pollution measured
in 1935 on the residualized change in IQ between the
ages of 11 and 70 years, controlling for sex, parental
social, class, and smoking was explored. There was
a small association between higher levels of air pol-
lution exposure in 1935 and in utero and a poorer
IQ trajectory in IQ from 11 to 70 years (� = –0.006
IQ point per 1 �g/m3 increase in PM2.5, SE = 0.002,
p = 0.03).

Is in utero exposure to air pollution associated
with late life cognitive trajectories?

Figure 1a depicts the model that estimates linear
changes in IQ scores between the ages of 70, 76, and
79 years. In this model, the intercept represents the
average IQ score at age 70 for a reference individual (a
male whose father had a skilled job, who was exposed
in utero to average levels of pollution, and who had
an average IQ score at age 11 years) and the slope,
the average rate of change of IQ scores from age 70 to
79 years. There was a small association between air
pollution values for 1935 and the intercept (IQ score
at age 70 years), albeit only of marginal statistical
significance at conventional levels (p = 0.06), but no
association with rate of change in IQ score from age
70 to 79 years (p = 0.36; Table 3b).

Critical/sensitive period

For the sake of brevity, Table 4 only contains esti-
mates of the average value of IQ scores at age 70, their
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Fig. 2. Modelled particulate matter (PM2.5) values in 1935:
life course air pollution exposure and cognitive decline in the
LBC1936.
The area displayed in the lower panel and enclosed in a box on the
upper panel is the central belt of Scotland including Glasgow (left)
and Edinburgh (right). Over half of the population of Scotland lives
in this area.

rate of decline until age 79 (for a reference individual,
as defined above) and estimates of the association of
air pollution exposure at each of the life course time
points (apart from 1935 which was reported above)
with IQ level at age 70 and rate of change (Fig. 1b).
No period of air pollution exposure had an effect on
either the intercept or the rate of change of the models

which reached statistical significance at conventional
levels (all p > 0.05).

Accumulation model

Summary results of the models are presented in
Table 5, where estimates of average IQ level at age 70,
average IQ linear rate of change from that same age,
and coefficients of the association between air pol-
lution exposure at different stages of life with these
parameters are presented. None of the risk periods
had an effect on either the intercept or the rate of
change of the models which reached statistical sig-
nificance at conventional levels (all p > 0.05).

Our findings were robust to the sensitivity analyses
varying the aggregation method used for multiple air
pollution values.

DISCUSSION

Our main finding is that it is feasible to model
historical air pollutant concentration data and incor-
porate them in epidemiological models to explore the
influence of exposure to air pollution across the life
course. We found little evidence that exposure to air
pollution at different stages of the life course was
associated with cognitive health and there was no
support for an accumulation of risk. There was some
evidence of exposure to air pollution in utero being
associated with worse cognitive change between the
ages of 11 and 70 years, but the effect size was small
(� = –0.006). In particular we would highlight that
these results have large degrees of uncertainties, con-
sidering the various methodologies used to produce
the different air pollution concentration estimates due
the wide range of emissions estimates, particularly for
earlier estimates which have a lack of measured air
quality data against which to be evaluated.

Comparison with other literature

As noted in the introduction, there is a growing
wealth of literature on the association between air
pollution and subsequent cognitive impairment and
dementia, but the majority of publications share the
same shortcomings [10]: 1) an inability to explore
when in the life course exposure to air pollution has
the most impact?; 2) which pollutant(s) or compo-
nents are most important?; and 3) since dementia
describes a heterogeneous group of conditions, which
are most affected by exposure to air pollution?
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Table 3
Results from (a) linear regression of residualized change in IQ from age 11 to age 70 years and (b) latent growth models fitted to IQ scores

to estimate cognitive trajectories at ages 70, 76, and 79 years: life course air pollution exposure and cognitive decline in the LBC1936

� (SE) p
(a) Change in IQ between ages 11 and 70 years
In utero exposure to air pollution –0.006 (0.002) 0.03
(b) IQ trajectories from age 70 to age 79 years
Intercept (average IQ at 70 years) 97.74 (1.38) Rate of change (in IQ from

age 70 to 79 years)
–0.11 (0.31) 0.71

Random Intercept Variance 71.12 (5.61) Random Slopes variance 2.36 (0.31) <0.001
Intercept-slope correlation –3.02 (0.06) <0.001

� (SE) p � p
In utero exposure to air pollution 0.05 (0.02) 0.06 In utero exposure to air

pollution
–0.006 (0.006) 0.36

Model (a) is adjusted for sex, parental (father’s) occupation, and smoking; Model (b) is adjusted for sex, age 11 IQ, parental (father’s)
occupation, and smoking; Coefficients (�) represent the change in IQ and rate of change per 1 �g/m3 increase in PM2.5.

Table 4
Estimates of the association between air pollution exposures at different time points in the life course with mean IQ at age 70 and its rate of

change from 70 to 79 years: life course air pollution exposure and cognitive decline in the LBC1936

Level and change in IQ between ages 70, 76, and 79 years
IQ � (SE) p � (SE) p

Age 70 IQ 102.14 (1.62) Rate of change in IQ from age 70–79 –0.14 (0.33) 0.46
Pollution 1950 –0.027 (0.04) 0.52 –0.001 (0.006) 0.84
Age 70 IQ 105.14 (5.56) 0.21 (1.13) 0.85
Pollution 1970 –0.22 (0.04) 0.46 –0.03 (0.06) 0.65
Age 70 IQ 96.38 (4.94) 0.84 (1.51) 0.57
Pollution 1980 0.32 (0.32) 0.32 –0.07 (0.10) 0.45
Age 70 IQ 99.39 (7.34) 1.46 (1.51) 0.33
Pollution 1990 0.14 (0.54) 0.79 –0.13 (0.11) 0.24
Age 70 IQ 103.21 (8.84) –0.91(1.86) 0.62
Pollution 2001 –0.24 (1.10) 0.82 0.08 (0.23) 0.74

Models adjusted for sex, age 11 IQ, parental (father’s) occupation, and smoking status; Coefficients (�) represent the change in IQ and rate
of change per 1 �g/m3 increase in PM2.5.

Investigators from the Washington Heights–
Inwood Community Aging Project (WHICAP) and
the Northern Manhattan Study (NOMAS) recently
reported their findings of the impact of “long-term”
exposure to air pollution (nitrogen dioxide, PM10, and
PM2.5), but these participants (aged 65 years or older)
were only recruited in the early 1990s and only their
residential address at the time of recruitment was used
to estimate their exposure to air pollution; air pollu-
tion values for the year before recruitment were used
as the exposure [11, 12]. Our study was able to track
migration and movement throughout the life course,
combined with modelled atmospheric concentration
data covering most of the twentieth century, to give
a much better estimate of each person’s exposure to
air pollution at different points in their lives.

Limitations and strengths

Referring to the three criticisms of the air pollu-
tion literature described above [10], the present study

could potentially shed some provisional light on the
first (when in the life course is most important), but
not the second or third. A decision was taken early on
to minimize the impact of multiple testing by restrict-
ing the pilot modelling (of 1935 data) to a single
pollutant; PM2.5 was chosen since the majority of the
literature linking air pollution and dementia focused
on that pollutant. Modelling other pollutants—such
as smaller PM, NOx, etc.—is feasible and we hope
to do this in the future, now that the feasibility of this
approach has been demonstrated.

The collection of lifetime residential histories is
rare and greatly augments the other data available
in the LBC1936. However, there are limitations to
the approach taken (retrospective collection of resi-
dential address history), including the fact that it is
prone to recall bias. Furthermore, only participants
who were alive in 2014 were approached, additionally
introducing survivor bias. Finally, the accumulated
PM2.5 exposure was calculated using an unweighted
method, i.e., not taking into account the length of time
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Table 5
Estimates of IQ intercept (at age 70 years) and rate of change from age 70 and of the association of cumulative air pollution exposure at

various stages of life: life course air pollution exposure and cognitive decline in the LBC1936

Level and change in IQ between ages 70, 76, and 79 years
IQ � (SE) p � (SE) p

Age 70 IQ 100.49 (1.63) Rate of change in IQ
from age 70–79

–0.12 (0.34) 0.72

Early life (1935 + 1950) 0.01 (0.02) 0.54 –0.002 (0.003) 0.47
Age 70 IQ 100.42 (1.86) –0.07 (0.39) 0.84
Early life to young
adulthood
(1935 + 1950 + 1970)

0.01 (0.02) 0.58 –0.002 (0.003) 0.46

Age 70 IQ 100.19 (2.08) –0.02 (0.43) 0.96
Early life to
mid-adulthood
(1935 + 1950 + 1970 + 1980)

0.01 (0.02) 0.54 –0.003 (0.003) 0.42

Age 70 IQ 100.03 (2.27) 0.04 (0.47) 0.92
Early life to late adulthood
(1935 + 1950 + 1970 + 1980 +
1990)

0.01 (0.02) 0.54 –0.003 (0.003) 0.38

Age 70 IQ 99.96 (2.39) 0.06 (0.49) 0.89
Early life to later life
(1935 + 1950 + 1970 + 1980 +
1990 + 2001)

0.01 (0.02) 0.54 –0.003 (0.003) 0.38

Models adjusted for sex, age 11 IQ, parental (father’s) occupation, and smoking status; Coefficients (�) represent the change in IQ and rate
of change per 1 �g/m3 increase in PM2.5

an individual lived at each address. Our main aim in
the present analysis was to establish proof of concept
and hope that a more sophisticated weighted calcula-
tion, which could arguably be more accurate, could
be taken by future studies.

Almost all participants, until 2001, were exposed
to levels of PM2.5 in excess of the World Health Orga-
nization’s guidelines of a maximum annual mean of
10 �g/m3 [35]. For comparison, approximately half
of UK Biobank participants were exposed to simi-
larly excessive values at baseline (mean [SD] 10.0
[1.1]) [36], in line with most of the world [37]. There
was a general reduction in air pollution over time, and
marked step-changes between some time points, but it
is unclear how much of this is artefactual, relating to
methodological differences between the procedures
used to generate these historical estimates. There are
inherent uncertainties at all stages of the emissions
estimation process, even for the present day, and
many of these problems are magnified when trying to
recreate an historical context. The lack of measure-
ment data to verify source strength, the lack of data
regarding the chemical composition of fuel and the
behavior of combustion technologies prior to emis-
sions mitigations are just some of the many issues that
can influence the uncertainty. From 1970 onwards,
emissions uncertainties were estimated from the UK
Inventory [38] while for 1935 and 1950, uncertainty
estimations are expert judgement [39]. Given the

assumptions that the fuel use data are lacking some
detail (such as certain oil-based products, wood, etc.),
combustion technology was a lot more polluting than
in 1970 due to a lack of various mitigating options
such as scrubbers and particulate filters and that there
are some missing sources such as construction, etc., it
is very likely that the uncertainty range is asymmetric
with respect to the best estimate. To reflect this prob-
able under estimation, the asymmetry was estimated
to be one order of magnitude centered on the mean,
that is 1√

10
< x <

√
10. As an example, the emis-

sions of PM2.5 in 1935 were 715 kt (range 226–2261
kt). While the uncertainties were not utilized within
the EMEP4UK model, it is important to note these
qualitative estimates and the potential impacts on the
final results. Figure 3 shows the final emissions esti-
mates for all pollutants per year (2015 is displayed
for context).

The focus of this paper is cognitive change rather
than dementia. It is important to assess pre-dementia
cognitive change and its determinants in their own
right, but dementia is inarguably important. How-
ever, there were not sufficient LBC1936 participants
who had developed dementia to allow meaningful
models to be constructed. A comprehensive program
of dementia ascertainment in LBC1936 participants
(who are currently in their mid-80 s) is currently
underway and, once these data are available, similar
models focused on dementia will be possible.
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Fig. 3. Modelled emission totals (Gg) with uncertainty ranges for five air pollutants (CO, NH3, NMVOCs, NOx, and SOx), plus PM2.5,
across five model years (2015 is included for context) for use in the EMEP4UK model: life course air pollution exposure and cognitive
decline in the LBC1936.

Statistically, the life course model (change between
ages 11 and 70 years) and late life models (intercept
and change from 70 to 79 years) are not compara-
ble. Furthermore, a linear assumption for the late life
cognitive trajectories may be too strong. It may be
necessary to explore more complex models, such as
quadratic trajectories, but the primary aim of this
study was proof of concept and so we have not
taken that approach here. With additional time points,
we could have constructed a model that would per-
mit estimation of piecewise trajectories. This may
become possible as further waves of data become
available; wave 5 of the LBC1936 was completed
last year and wave 6 was due to begin in Spring
2020 but had to be delayed because of the COVID-19
pandemic.

Future directions

This paper is the first step toward an understand-
ing of the associations between air pollution and

cognitive decline and dementia from a life course
epidemiology perspective. The modelled historical
air pollution data need to be refined and harmonized
across different time points, and these data used to
provide a robust estimate of life course exposure,
but we believe that we have demonstrated the fea-
sibility and value of this approach. However, these
air pollution data will be of little value without
well-characterized cohort studies with full residential
histories for participants, such as are available for the
LBC1936. All high-quality longitudinal cohort stud-
ies should explore whether it is possible to obtain such
data through record linkage or, as in the LBC1936,
self-report.

Conclusions

We have shown the feasibility of modelling his-
torical air pollution data and incorporating them in
epidemiological models. This is the first step in a new
area, and we look forward to a greater understanding
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of the life course effects of air pollution on the brain
in coming years.
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S (2020) Joint impact of common risk factors on incident
dementia: A cohort study of the Swedish Twin Registry. J
Intern Med 288, 234-247.

[6] Van Cauwenberghe C, Van Broeckhoven C, Sleegers K
(2016) The genetic landscape of Alzheimer disease: Clinical
implications and perspectives. Genet Med 18, 421-430.

[7] Killin LO, Starr JM, Shiue IJ, Russ TC (2016) Environ-
mental risk factors for dementia: A systematic review. BMC
Geriatr 16, 175.

[8] Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ
(2019) Air pollution and dementia: A systematic review. J
Alzheimers Dis 70 (s1), S145-S163.

[9] Rizzuto D, Grande G, Ljungman P, Bellander T (2019)
Long-term exposure to air pollution and the risk of demen-
tia: The role of cardiovascular diseases. Innov Aging 3,
S119.

[10] Russ TC, Reis S, van Tongeren M (2019) Air pollution
and brain health: Defining the research agenda. Curr Opin
Psychiatry 32, 97-104.

[11] Kulick ER, Elkind MSV, Boehme AK, Joyce NR, Schupf N,
Kaufman JD, Mayeux R, Manly JJ, Wellenius GA (2020)
Long-term exposure to ambient air pollution, APOE-�4 sta-
tus, and cognitive decline in a cohort of older adults in
northern Manhattan. Environ Int 136, 105440.

[12] Kulick ER, Wellenius GA, Boehme AK, Joyce NR, Schupf
N, Kaufman JD, Mayeux R, Sacco RL, Manly JJ, Elkind
MSV (2020) Long-term exposure to air pollution and tra-
jectories of cognitive decline among older adults. Neurology
94, e1782-e1792.

[13] Pearce JR (2018) Complexity and uncertainty in geography
of health research: Incorporating life-course perspectives.
Ann Am Assoc Geogr 108, 1491-1498.

[14] Taylor AM, Pattie A, Deary IJ (2018) Cohort profile update:
The Lothian Birth Cohorts of 1921 and 1936. Int J Epidemiol
47, 1042-1042r.

[15] Cherrie MPC, Shortt NK, Mitchell RJ, Taylor AM, Red-
mond P, Thompson CW, Starr JM, Deary IJ, Pearce JR
(2018) Green space and cognitive ageing: A retrospective
life course analysis in the Lothian Birth Cohort 1936. Soc
Sci Med 196, 56-65.

[16] Gow AJ, Whiteman MC, Pattie A, Whalley L, Starr J,
Deary IJ (2005) Lifetime intellectual function and satisfac-
tion with life in old age: Longitudinal cohort study. BMJ 331,
141-142.

[17] Prochaska JJ, Velicer WF, Nigg CR, Prochaska JO (2008)
Methods of quantifying change in multiple risk factor inter-
ventions. Prev Med 46, 260-265.

[18] Office of Population Censuses and Surveys (1951) Census of
population 1951, Her Majesty’s Stationery Office, London.

[19] Vieno M, Heal MR, Hallsworth S, Famulari D, Doherty
RM, Dore AJ, Tang YS, Braban CF, Leaver D, Sutton MA,
Reis S (2014) The role of long-range transport and domestic
emissions in determining atmospheric secondary inorganic
particle concentrations across the UK. Atmos Chem Phys
14, 8435-8447.

https://doi.org/10.1016/j.jalz.2018.06.2861
https://doi.org/10.1016/j.jalz.2018.06.2861
https://www.j-alz.com/manuscript-disclosures/20-0910r2
https://www.j-alz.com/manuscript-disclosures/20-0910r2
http://dx.doi.org/10.3233/JAD-200910
http://dx.doi.org/10.3233/JAD-200910


1074 T.C. Russ et al. / Air Pollution and Cognitive Decline

[20] Vieno M, Heal MR, Twigg MM, MacKenzie I, Braban CF,
Lingard J, Ritchie S, Beck R, Móring A, Ots R (2016) The
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