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Abstract: The innate immune system evolved to detect and react against potential dangers such as
bacteria, viruses, and environmental particles. The advent of modern technology has exposed innate
immune cells, such as monocytes, macrophages, and dendritic cells, to a relatively novel type of
particulate matter, i.e., engineered nanoparticles. Nanoparticles are not inherently pathogenic, and yet
cases have been described in which specific nanoparticle types can either induce innate/inflammatory
responses or modulate the activity of activated innate cells. Many of these studies rely upon activation
by agonists of toll-like receptors, such as lipopolysaccharide or peptidoglycan, instead of the more
realistic stimulation by whole live organisms. In this review we examine and discuss the effects
of nanoparticles on innate immune cells activated by live bacteria. We focus in particular on how
nanoparticles may interfere with bacterial processes in the context of innate activation, and confine
our scope to the effects due to particles themselves, rather than to molecules adsorbed on the particle
surface. Finally, we examine the long-lasting consequences of coexposure to nanoparticles and
bacteria, in terms of potential microbiome alterations and innate immune memory, and address
nanoparticle-based vaccine strategies against bacterial infection.

Keywords: engineered nanoparticles; innate immunity; inflammation; innate immune memory;
toll-like receptors; pathogen-associated molecular patterns; lipopolysaccharide; biocorona; microbiota;
nanovaccines; adjuvants

1. Introduction

1.1. The Human Innate Immune Response

The innate immune response begins with cellular or humoral recognition of danger, which alerts
cells of the presence of potentially pathogenic foreign or endogenous materials. Upon recognition
of danger, innate immune cells such as monocytes and macrophages rapidly initiate a response that
includes phagocytosis and leads to inflammation, which are aimed at removal and destruction of
the threatening object [1,2]. Activation of innate cells is generally initiated by pathogen binding
to pattern recognition receptors (PRRs) expressed on the plasma membrane and on intracellular
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membranes. Ligand binding of PRRs initiates signalling pathways that lead to production and release
of inflammatory factors, such as cytokines and chemokines, and upregulation of costimulatory surface
molecules [3]. The classic example of a PRR-activating ligand is lipopolysaccharide (LPS), which is
present on Gram-negative bacteria and activates the PRR toll-like receptor 4 (TLR4) [4,5]. Different
pathogen-associated molecular patterns (PAMPs) bind other PRRs and lead to a similar inflammatory
cell activation. Due to the fact that they potently stimulate innate immune responses, PRR ligands
such as LPS are routinely used for in vitro activation and assessment of innate/inflammatory responses,
particularly to examine the impact of drug candidates and biological materials [6]. In in vitro testing of
novel biomedical products, the reaction of innate immune cells to LPS or other PAMPs is generally
considered as a proxy for the general reaction to pathogenic stimulation, in order to obtain insight into
whether a material may have a direct impact on or interfere with a normal innate immune response.
Several important limitations of this experimental/screening approach should be considered. Innate
immune cells typically come in contact with bacteria after they have crossed protective barriers such as
the intestinal or respiratory epithelium, and thus in vivo the interaction mostly occurs with whole live
bacteria. While PRR activation is a central component to the resulting immune response, innate cells
also respond to other important physical and active aspects of bacterial invasion such as the shape
and size, and the spatial organization of PAMPs on the bacterial surface [7,8]. Additionally, bacterial
motility and proliferation can dramatically impact defensive cell activation [9]. In vitro models that
attempt to simulate the in vivo response should therefore consider the use of whole and live bacteria,
to more completely mimic the processes inherent to an immune response to infection. Based on such
considerations, a re-evaluation of the immunological effects of engineered nanoparticles (NPs) may be
necessary, as the majority of nanoparticle related studies do not address the impact of nanoparticles in
the context of challenge by live bacteria.

1.2. Current State of Nanotechnology from a Biological Perspective

Nanotechnology is one of the key technologies of the 21st century with many applications,
including in biomedical sciences. NPs (i.e., particles with dimensions of 1–100 nm) can be composed of
different materials and can appear in different sizes, shapes, and with different surface functionalization.
Silicon dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs are the most produced
types of NPs worldwide [10]. Applications can be found in electronics (SiO2), manufacturing and
construction (e.g., car tires, concrete, sports equipment; SiO2, TiO2, and also aluminum oxide, Al2O3,
and carbon nanotubes or graphene), food additives (SiO2 and TiO2), food contact materials or textiles
(silver, Ag), paintings (TiO2), and sunscreens (TiO2 and ZnO) among others [11–13]. Despite their broad
applications, there is evidence that certain NPs can induce cell stress and/or toxicity or cause unwanted
immune reactions [14,15]. Thus, a manifold of “safe-by-design” strategies have been developed during
the past decades in the attempt to design safer nanomaterials [16]. From a biomedical standpoint,
many NP formulations can be used for therapeutic benefit. Iron oxide NPs can function as contrast
agents in magnetic resonance imaging, for tumour therapy by magnetic hyperthermia, for iron
replacement therapy, and are in development for use in drug delivery [17–19]. Gold (Au) NPs offer a
number of potential medical applications in various areas, including bioimaging, sensing, diagnosis,
and functionalization for therapeutic purposes [20]. Biomedically useful organic and biodegradable
NPs such as poly-lactic-co-glycolic acid (PLGA) NPs have been approved by the US Food and Drug
Administration and the European Medicines Agency as drug delivery systems [21–23]. Nanomedical
applications are also under development for passive or active drug targeting in the field of cancer
treatment [24], and have great potential in vaccination [25] and immunotherapeutic approaches [26,27].

The synthesis methods for generating NPs include gas-phase and wet-chemical methods,
and procedures involving organic solvents that extend even to the production of biocompatible
and biodegradable nanomaterials [28–31]. Elimination of organo-chemical residues is particularly
important in NPs meant for biological application. Wet-chemical methods may be especially prone
to contamination of the resulting NPs with bacterial components such as endotoxin (i.e., LPS) that,
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even after sterilization, can induce an inflammatory response that may be mistakenly attributed to
particles [32]. Nanomaterials may interact with humans at multiple levels throughout their life cycle,
with exposure scenarios ranging from food additives and consumer products to the workplace and the
medical field. This implies that the interaction may occur at the level of different barrier tissues and
that the NP exposure doses may significantly vary. Besides human exposure, we should be aware that
manufacturing, use, and disposal of such nanomaterials may be also detrimental to the environment
where they may exert undesirable effects on the entire biosphere, including microorganisms [33,34].
This may again lead to indirect effects on human health by impacting biodiversity in the environment,
and thus the food chain, and the microbiota in symbiosis with humans. In each case, from synthesis
to environmental effects or direct particle exposure, the potential exists for nanoparticles to impact
human health.

The direct effects of different nanomaterials on the innate immune system have been reviewed
earlier [35–37]. NPs can enter the human body by different routes such as inhalation, ingestion,
injection, or skin contact (depicted in Figure 1). Some inhaled or ingested NPs have been shown to
penetrate the relevant biological barriers, the alveolar epithelium, or the intestinal epithelium [38].
While dermal penetration can be considered as a minor entry route of NPs, some studies provided
evidence that NPs can to a certain extent penetrate the protective layers of the skin, in particular if the
skin presents anomalies [39,40]. Once inside the body, NPs can interact with different components
of the innate immune system, such as neutrophils, monocytes, macrophages, dendritic cells, natural
killer cells, etc. [36,41]. Furthermore, NPs may also impact adaptive immune responses for example by
modulating the function of dendritic cells in antigen presentation [35]. The question of whether or not
a nanomaterial can be considered as immunologically safe is heavily discussed in the current literature
and depends on numerous factors, including the condition of the target host [42,43]. For instance,
elderly people or people with chronic diseases are more likely to develop detrimental reactions to
NPs that pose no problem to healthy people in identical exposures [44]. Other factors depend on the
nanomaterial itself (size, shape, and composition), its potential contamination (especially with LPS),
its concentration upon exposure and the sensitivity of the target host [45]. While the capacity of NPs to
directly impact the immune system has been extensively studied, far less literature exists on the impact
of NPs upon coexposure with infectious pathogens. Within this review we focus on the capacity of
NPs to affect the innate immune activation triggered by live bacteria, thereby modulating the course
of a normal defensive innate/inflammatory reaction. We have chosen to focus on NPs that are not
functionalized with specific molecules, in order to examine the direct impact of the bionano interaction
on the antibacterial immune response.
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2. The Effects of NPs on Innate Immune Stimulation

Many in vitro models that investigate the interaction of novel NP formulations with innate
immune activation use synthetic or purified ligands that activate monocytes, macrophages, or other
PRR-expressing cells. PRR-based cell activation leads to production of molecules involved in the
defensive inflammatory reaction, including costimulatory surface molecules and soluble factors such
as cytokines and chemokines. Several scenarios exist in which unfunctionalized NPs may interfere
with and alter both the initiation and progression of inflammatory responses induced by microbial
or other stimuli. Of most concern from a pathological standpoint is the possibility that NPs could
exacerbate or prolong PRR-driven inflammatory reactions, leading to uncontrolled tissue-damaging
inflammation. For instance, NPs may synergize with and amplify the effects of the bacterial stimulation.
An exemplary case is the production of interleukin-1β (IL-1β). LPS binding to TLR4 upregulates,
through the transcription factor NFκB, the gene encoding the potent inflammatory cytokine IL-1β [46].
IL-1β is produced as an inactive pro-protein that needs enzymatic cleavage before being exported
extracellularly as biologically active IL-1β. This usually requires a second signal involving activation
of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, which induces the
enzyme caspase-1 to cleave pro-IL-1β [47,48]. Active IL-1β then leaves the cell and binds to IL-1 receptors
(which are present on most cells in the body, erythrocytes being an exception) and triggers defensive
activation responses [49]. If uncontrolled in duration and intensity, IL-1β-induced inflammation can
lead to pathological symptoms such as vasodilation, leukocyte influx, swelling, fever, and eventually
inflammation-driven tissue damage may occur [50]. Silica NPs, multiwalled carbon nanotubes and
many other NP types have been shown to be potent inducers of NLRP3 inflammasome activation,
an event that could contribute to the establishment of uncontrolled pathological inflammation [51,52].
Conversely, NLRP3 activation by NPs could be exploited in a beneficial manner in the case of adjuvant
function, where activation of the innate immune system is desirable for induction of long-lasting
adaptive immunity [4,26].

Although some NPs may enhance inflammation by acting on NLRP3 activation, in several cases,
it was observed that an inflammatory response to inflammatory stimuli could be downregulated by the
presence of NPs. This is most commonly reported in terms of reduced cytokine production in response
to LPS stimulation. Nanoplatinum was observed to suppress the production of cytokines and reactive
oxygen species (ROS) in LPS-stimulated mouse macrophage-like leukemia cells [53]. Grosse et al.
demonstrated an inhibition of the response to LPS in terms of production of tumor necrosis factor-alpha
(TNFα), IL-1β, and IL-6 when human primary monocytes were exposed to iron oxide NPs, an effect
more pronounced at higher particle concentrations but smaller particle sizes [54]. Possible explanations
include a NP “cleaning” effect, in which the stimulant (as in the case of IL-1 β) is adsorbed onto the
particle surface limiting its capacity to bind to its receptor [55]. Other evidence demonstrated that
mouse bone marrow macrophages preexposed to superparamagnetic iron oxide NPs (SPIONs) exhibit
a more inflammatory gene activation profile in response to LPS, raising another potential pathway
for altering LPS-induced reactivity [56]. However, as experiments with similarly sized metallic or
silica NPs failed to interfere with LPS-induced inflammation [32,56], it is likely that the NP effects may
depend on the particle type and concentration, the exposure characteristics (before LPS, concurrent
with LPS, etc.), the cell type (transformed vs. primary, human vs. murine) and the assay conditions.

We noted that in many cases, exposing innate immune cells to NPs has no effect on cellular
reactivity to inflammatory stimuli, in spite of the fact that cells recognize and uptake the particles to
which they are exposed [6,57,58]. This phenomenon is likely widely underreported, as it is inherently
a “no-result” outcome, and these data have a tendency to be omitted from the literature. We also noted
that much of the literature concerning NPs and immune activation regards the mechanistic aspects
of the interaction, and uses particle and stimulant doses that are poorly related to realistic human
exposure scenarios [45].

Some examples for the impact of unfunctionalized NPs on innate immune activation can be found
in Table 1.
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Table 1. Overview on studies investigating the effect of NPs on innate immune cell activation.

NP Type (Size, Dose, Shape) Stimulus
(Receptor)

Effect on
Stimulus-Induced
Innate Response

Cell Type Notes Discusses NP
Dose Selection Ref

↑ ↓ =

Au
5–35 nm

10–70 µg/mL
not available (n/a)

IL-1β
(IL-1R1) × Human THP-1

monocyte-like
leukemia cells

Induction of
cytokine production

No, some experiments
addressed surface area

[55]
R848

(TLR7/8) ×

25 nm
10 µg/mL
spherical

LPS (TLR4) ×
Human primary

monocytes
Induction of

cytokine production
Yes, endotoxin-free
concentrations used [59]

Au (10 nm), Ag (14 nm)
1.3–12 µg/mL

spherical

LPS + TNFα
(TLR4+TNFR) ×

Human primary
monocytes

Kinetic evaluation of cytokine
expression and production

Yes, concentrations chosen
based on cytotoxicity and

endotoxin assays
[6]

Pt
2.4 nm

10–1000 µM
n/a

LPS (TLR4) ×

Mouse RAW 264.7
macrophage-like

leukemia cells

Induction of cytokine and
ROS production

No, use of different
concentrations not discussed [53]

Iron oxide
58.7 nm

1–50 µg/mL
n/a

LPS 100
ng/mL
(TLR4)

× ×
Primary murine
microglial cells

Particle accumulation in
lysosomes, decreased IL-1β
but not TNFα production

Utilized a dose response [60]

n/a
0–30 mg/mL

n/a

Apoptotic
cancer cells

(Scavenger R)
×

Mouse RAW 264.7
macrophage-like
leukemia cells in

coculture with other
cancer cells (in vitro);

tumor-associated
macrophages

(in vivo)

In vitro: M1 cell polarization
In vivo: M1 polarization at

day 7; M2 polarization at day 21

Yes, doses chosen were
related to human

administered doses
of ferumoxytol

[61]

10, 30 nm
1–100 µg/mL

spherical
LPS (TLR4) ×

Human primary
monocytes

Induction of TNFα, IL-6 and
IL-1β production Utilized a dose response [54]
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Table 1. Cont.

NP Type (Size, Dose, Shape) Stimulus
(Receptor)

Effect on
Stimulus-Induced
Innate Response

Cell Type Notes Discusses NP Dose
Selection Ref

↑ ↓ =

11 nm
2 µg/mL
spherical

LPS + TNFα
(TLR4+TNFR) ×

Human primary
monocytes

Kinetic analysis of expression
and production of IL-1β

and IL-1Ra

Yes, selected the highest
endotoxin-free concentration [62]

Lipid-modified glycol-split
heparin

110, 160 nm
0.5 mg/mL
spherical

LPS (TLR4),
PAM3CSK4

(TLR1/2),
Poly(I:C)
(TLR3)

× ×
Mouse peritoneal

macrophages

Signal transduction and
cytokine production inhibited

only in LPS-activated cells
Utilized a dose response [63]

PCL-PEG
70–130 nm

1–100 µg/mL
n/a

LPS (TLR4) ×
Human primary

monocytes
Induction of TNFα and IL-1β

production

NP concentration equalized
for surface area,

no explanation for
dose selection

[58]

Pristine graphene
100–1000 µm
20–100 µg/mL

crystalline

LPS (TLR4)
in vitro, heat
killed E. coli

ex vivo

× ×

Mouse ex vivo
peritoneal

macrophages and
bone marrow-derived

dendritic cells

NLRP3 inflammasome
activation and IL-1β production

(increase), IL-6 and IL-12p70
production (unchanged)

Yes, sub-toxic dose selected [64]

Carbon black
14, 56 nm
4 mg/kg

n/a

LPS (TLR4) × In vivo mouse lung
Lung inflammation (histology)

and cytokines production
(IL-6, TNFα)

Referenced previous work [65]

CeO2
3–5 nm

1 nM–10 µM
crystalline

LPS + IFNγ ×

Mouse J774.A1
macrophage-like

histiocytic
lymphoma cells

ROS production, iNOS protein
production

Yes, dose responses
were used [66]

IL-1R1: Interleukin 1 receptor 1; TNFR: TNF receptor; Pt: platinum; PCL: poly(ε-caprolactone); PEG: polyethylene glycol; ROS: reactive oxygen species; INOS: inducible nitric
oxide synthase.
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3. The Effect of NPs on Innate Immune Activation by Live Bacteria

Activation of innate immune responses by bacteria typically occurs, as already mentioned,
principally through recognition of bacterial surface patterns by PRRs, including TLRs. In addition,
microorganisms that enter the cytosol can be recognized by a class of cytosolic PRRs, the NOD-like
receptors (NLRs). While these are the most likely and potent mechanisms of innate immune activation,
in the case of bacterial stimulation several additional variables must be considered beyond the
ligand–receptor based effect. A primary task of the innate immune response is to restrict bacterial
growth and spread. Malfunctioning or suppressed immune responses, for instance in the case of
diabetic chronic wounds, can result in uncontrolled bacterial proliferation leading to chronic and
tissue-damaging infection [67].

Upon recognition of potentially dangerous agents such as bacteria, macrophages attempt to engulf
the threat for destruction and elimination by activating the energy-expensive process of phagocytosis [2].
The efficiency of cell-mediated host defense also depends upon effective and rapid capture of motile bacteria
and on the motility of phagocytes themselves [68,69]. Some bacteria such as Staphylococcus aureus have
evolved an active immune avoidance mechanism by secreting biofilms, which strongly decrease immune
detection or even drive the activation of immunosuppressive cells [70,71]. Further, some bacterial
species are capable of intracellular survival, residing within phagosomes and preventing their fusion
with lysosomes to escape phagolysosome-based destruction [72]. These processes are dynamic, adding
increased levels of physical and chemical complexity that are not mimicked by PPR activation with
soluble ligands such as LPS. This underlines the significant difference, in terms of molecular and
functional mechanisms engaged in the response, between ligand-induced PPR stimulation (mimicking
a late response, once bacteria have been destroyed and only single molecules are still present, with only
PRR stimulation still occurring), uptake of dead bacteria (mimicking an intermediate phase of the
response, once bacteria have been killed extracellularly but not yet destroyed; PRR stimulation and
phagocytosis still occurring), and interaction with live bacteria (mimicking the first phases of the
responses, with PRR stimulation, phagocytosis, proliferation restriction, and bacterial killing occurring).
Thus, in vitro assays exclusively based on PPR stimulation would only reproduce the late phase of an
innate immune response to bacteria and may not be predictive of the possible interference of NPs in
particular with the early innate reaction to bacteria. This becomes particularly important in scenarios
where coexposure to NPs and bacteria may take place. Certainly, in consumer or occupational exposure
to NPs in the respiratory or digestive tract an interaction with the microbiota colonizing the respiratory
and digestive mucosae is expected [73,74]. NPs may also be applied topically for a variety of purposes,
where interactions with epidermal bacteria would be unavoidable [75]. Increased use of NPs in modern
society makes it likely that coexposure to bacteria and NPs will become more common.

NPs can interact with bacteria in multiple ways, thereby interfering with the bacterial capacity to
activate innate immune responses (Figure 2). It should be noted that small NPs (≤30 nm) may adhere to
the bacterial surface, blocking as much as 80% of the bacterial surface area from contact with target cells
and subsequent cell activation [76]. NP coating could thus serve the dual purpose of inhibiting bacterial
infectivity and motility and masking the PAMPs to which TLRs or NLRs would otherwise bind [77].
It has been shown that pretreatment with Au or SiO2 NPs can inhibit killed E. coli phagocytosis by
RAW 264.7 cells [78], although this may not in fact alter the course of an inflammatory response to
E. coli infection [79]. Similarly, SPIO NPs could decrease uptake of killed Staphylococcus pneumoniae
in bone marrow-derived mouse macrophages [56]. The general evidence that NPs inhibit bacterial
phagocytosis leads to the hypothesis that they can also inhibit innate cell activation by bacteria. Indeed,
data from our group show that pretreatment with Au NPs decreases the response of primary human
monocytes to live Bacille Calmette-Guérin (BCG, a strain of Mycobacterium bovis used as a tuberculosis
vaccine) in terms of cytokine production, although the NPs had no effect on LPS stimulation [59].
The mechanism remains unclear.
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Figure 2. A schematic representation of the different avenues by which NPs may impact the innate
immune response against bacteria. NPs (black dots) may interfere with the activation of innate cells
(e.g., macrophages) by bacteria (green) in different negative and positive ways: (I) NP coating of
bacteria can inhibit bacterial uptake into cells; (II) NP coating of bacteria can mask surface PAMPs and
activation of cellular PRR; (III) NPs may compete with bacteria for cellular phagocytosis; (IV) NPs
may have bactericidal activity resulting in release of PAMPs (small green polygons) leading to (V)
PRR activation; (VI) NPs may induce epigenetic modifications (nucleosomes depicted in magenta);
(VII) NP-mediated cytotoxicity causing cell membrane disruption and cell or tissue leakiness for
bacterial invasion; and (VIII) NPs may enhance bacterial growth.

While the aforementioned studies describe models using safe and biomedically relevant particles,
toxic NP types could enhance the detrimental impact of bacterial infections. Especially in the case
of occupational exposure, disruption of tissue homeostasis by toxic NPs could open the door for
pathogenicity. Particles resulting from welding fumes were observed to be particularly dangerous in this
regard, with exposure driving inflammation and eventually increasing susceptibility to pneumococcal
disease [80,81]. Likewise, inhalation of toxic copper oxide (CuO) NPs impaired the mouse capacity to
clear a lung infection by Klebsiella pneumoniae [82]. While these NPs do not have a direct synergistic
effect on bacterial growth, it is clear that agents that cause tissue damage and impair immune functions
facilitate rapid bacterial growth and infectious spread [83,84]. The possibility that certain NP types
could have a direct positive influence on bacterial growth should not be ignored [85], although data on
the topic remain scant.
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The bactericidal capacity of certain NPs is the most commonly reported scenario in which NPs
can contribute to an effective immune reaction. Live bacteria induce immune responses of greater
magnitude than their killed counterparts [9,86]. It can thus be hypothesized that the impact of NPs on
immune activation caused by live bacteria could be far different than that on responses induced by
PAMPs or killed bacteria. Silver NPs are perhaps the best studied particles in this regard. Ag NPs
have a potent bactericidal activity mainly due to the release of toxic Ag ions that negatively impact
membrane permeability and respiration [87,88]. Moreover, Ag NPs have also been found to enter
the bacterial cells, where the high reactivity of silver may interfere with processes relating to sulphur
(abundant on cell membranes) or phosphorus (abundant in compounds such as DNA) containing
compounds [87,88]. More recently, Ag NPs have been demonstrated as effective antibiofilm agents,
although it is unclear whether the particles act at the biofilm level or exclusively on bacteria [89].
Dependent upon the NP type, NPs could also contribute to biofilm formation [90]. The antimicrobial
activity of other NP types, including ZnO, iron oxide, and mesoporous silica, is extensively reviewed
elsewhere [91–93]. The use of NPs as antimicrobial agents is of great interest, in particular in the case
of antibiotic-resistant infections [93]. Inhibition of bacterial proliferation and subsequent killing of
pathogenic bacteria is the objective of treatment against bacterial infection, and NP-based treatments are
already in use in this regard [94]. However, in scenarios such as bacterially driven sepsis, bacteriolysis
following certain antibiotic treatments is known to liberate membrane-bound bacterial components
such as LPS leading to excessive pathological inflammation due to uncontrolled PRR activation [95].
The same could be a pitfall for NP-caused bacteriolysis.

Direct comparison between PAMP-induced responses and responses to live bacteria is not easy,
since the two responses are different. In any case, it is clear that NPs can impact both types of reaction,
and that the effect of NPs on PAMP-induced innate activation is not necessarily predictive of their
impact on the response to live bacteria. The possibility of using unfunctionalized NPs for modulating
innate reactions to bacteria in a beneficial direction is however promising and opens the way to future
applications. Table 2 summarizes some recent findings on the subject.
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Table 2. Overview on studies on the impact of NPs on innate immune stimulation by live bacteria.

NP Type (Size, Dose, Shape) Stimulus

Effect on Bacteria-
Induced Response Cell Type Notes Discusses NP Dose

Selection
Ref

↑ ↓ =

Au
13 nm

0.17–17 mg/kg
spherical

E. coli × In vivo mouse
Intravenous delivery daily

during the course of
the infection

No [79]

25 nm
10 µg/mL spherical BCG × ×

Human primary
monocytes

Endpoint: production of TNFα,
IL-6 and IL-10 (inhibited),

IL-1Ra (unchanged)

Yes, endotoxin-free
concentrations used [59]

Au
10, 300 nm

5, 10 mg/mL spherical
SiO2

10, 300 nm
5, 10 mg/mL

spherical

E. coli ×

Mouse RAW 264.7
macrophage-like

leukemia cells

Pretreatment with Au and SiO2,
cells displayed reduced

phagocytosis of FITC labeled
E. coli (no inflammation data for

bacterial exposure)

Yes, dosimetry data based on
relevant dose metrics
(by area, by number,

by volume) specifically
designed for a functional

study, checked for artificial
overdosing; no relation to

human exposure

[78]

SiO2
30, 140 nm

25% bacterial coverage
spherical

E. coli,
H. pylori ×

Human AGS stomach
adenocarcinoma cells

Endpoint: IL-8 production.
Bacteria precoated with NPs

Yes, based upon predicted
bacterial surface coverage [76]

50.9 nm
5 mg/kg

n/a
P. aeruginosa × ×

In vivo mouse NP
lung pretreatment

followed by challenge

Endpoints: cytokine production
(IL-6, KC, IL-1β, IL-12, TNFα)

and bacterial phagocytosis
(unchanged), mortality

(increased)

No; potential for overdosing
with invasive and

unphysiological nasal
instillation; yes, in relation to

a mechanistic study

[83]

Ag
80 nm

10 µg/mL
n/a

S. aureus,
E. coli × ×

Human
monocyte-derived

macrophages,
osteoclasts

Endpoints: intracellular
bactericidal activity,

ROS generation

Yes, with dose determination
for a functional study and

without relation to
human exposure

[96]
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Table 2. Cont.

NP Type (Size, Dose, Shape) Stimulus

Effect on Bacteria-
Induced Response Cell Type Notes Discusses NP Dose

Selection
Ref

↑ ↓ =

Ag-PVP
10, 20, 80 nm 0.78–200 µg/mL

n/a
C. trachomatis ×

Mouse J774
macrophage-like

histiocytic
lymphoma cells

Endpoint: IL-6, TNFα and other
cytokines and chemokines)

Yes, dose response to
determine maximal effective

concentration
[97]

Iron oxide
100 nm

3 mg/mL
n/a

S. aureus ×

Mouse RAW 264.7
nacrophage-like

leukemia cells, topical
application of NP or

bacteria on the mouse

in vitro: IL-1β, TNFα, IL-12
production, in vivo: CFU

following infection (decreased),
cytokine expression

(IL-1β increased)

Utilized a dose response [98]

13 nm
6.25–50 µg/mL

spherical)
S. pneumoniae ×

Mouse bone
marrow-derived

macrophages

NP pretreatment resulted in
decreased bacterial

phagocytosis

Yes, allegedly mimicking
occupational exposure doses
(not explained how); particle
kinetics in culture discussed

and macrophage
overload tested

[56]

CuO
12 nm

3–100 µg/mouse
core/shell

K. pneumoniae ×
Murine model of

lung infection

NP toxicity, inflammation (IL-6,
TNFα, KC, others), and reduced

ability to clear bacteria

Yes, for sub-acute inhalation
dose range mimics human
occupational exposure for
intratracheal instillation

3 concentrations with dose
bridging to human
inhalation exposure

[82]

Diesel exhaust particles
n/a

80 µg/mouse
n/a

S. pneumoniae ×
Murine model of

lung infection

Mouse more susceptible to
pathogenic infection, increased

lung homogenate cytokines
(IL-6, TNFα, IL-1β, KC, others)

No rational given [99]

Welding fumes
100–1000 nm

600 µg/mouse n/a
S. pneumoniae ×

Murine model of
lung infection

Increased bacterial CFU in
exposed lungs

No rational beside use of a
high dose [100]

H. pylori: Helicobacter pylori; KC: mouse CXCL1; PVP: polyvinylpyrrolidone; P. aeruginosa: Pseudomonas aeruginosa; C. trachomatis: Chlamydia trachomatis; CFU: colony forming units;
S. pneumoniae: Staphylococcus pneumoniae; K. pneumoniae: Klebsiella pneumoniae.
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4. The Long-Term Effects of NP Exposure

In addition to the possibility that NPs can directly modify immune responses toward bacteria,
several indirect and potentially long-term immune consequences of the NP–bacterial interaction
should be considered. These include the possibility of improving the immune response in vaccination,
the possibility of modulating resident microbiota towards improving human health, and the possibility
of inducing/modulating innate memory towards increased resistance to infections.

4.1. NPs and Vaccines

Vaccines are among the most significant innovations in modern medicine. Successful vaccination
involves two components: (i) presentation of antigen by professional antigen-presenting cells (APCs,
typically dendritic cells) to induce adaptive immunity and long-term memory and (ii) innate immune
activation, which drives crosstalk between innate and adaptive immune cells, facilitating and amplifying
induction of adaptive immunity and memory. NPs can be applied for both functions, i.e., as carriers
for improving antigen delivery, and as adjuvants that amplify immune responses and subsequent
memory establishment [26,101–103].

NPs can be used to transport and deliver diverse types of antigens such as nucleic acids, proteins,
peptides, and immune stimulating agents (adjuvants). Specific NP types have been reported to
improve antigen processing and uptake, and prevent premature proteolytic degradation of protein
antigens [104,105]. Vaccine antigen can be delivered to the target cells by either encapsulation within
NPs or by antigen adsorption onto the particle surface. Encapsulation can prevent premature antigen
degradation and achieve sustained release, whereas surface adsorption can both stabilize the antigen
and facilitate the uptake by APCs through surface receptor-mediated mechanisms [20]. Importantly,
intracellular delivery can be tuned so as to achieve presentation of the same antigen both in class I
and in class II major histocompatibility complexes, in order to achieve a more complete protective
immunity [106]. In addition, the particulate nature of NPs endows them with adjuvant capacity,
i.e., the capacity of promoting a localized innate reaction while antigen presentation takes place.
All these desirable properties can improve the vaccine delivery and efficacy compared to the other
conventional delivery and adjuvant systems [26].

NP types such as inorganic NPs and polymeric NPs have been shown to be efficient antigen
carriers. Immunity against Mycobacterium tuberculosis could be enhanced in mice using chitosan NP
coated in lipid antigen, enhancing the delivery of antigen to the APCs [107]. Likewise, conjugation of
N-terminal domains of flagellin onto Au NPs elicited higher titers of antigen-specific antibodies in
mice compared to the carrier-free antigen [76]. Au NPs have also been used as carriers to enhance
immunogenicity of antibacterial vaccines against Yersinia pestis, and S. pneumoniae [108–110]. Vetro et al.
demonstrated that Au NPs coated with synthetic oligosaccharides corresponding to the repeating units
of S. pneumoniae triggered better response to the oligosaccharide epitope (usually poorly immunogenic)
and showed similar antibody production in vivo in the mouse as the human PCV13 pneumococcal
vaccine (in which diphtheria toxoid is used as a carrier of the pneumococcal polysaccharides) [108].

Furthermore, NPs can be used either directly as adjuvants, or as adjuvant carriers concurrent with
antigen. A cationic liposome-based adjuvant stabilized with a synthetic glycolipid (CAF01) could
induce a strong and persistent Th1 response to tuberculosis in humans [111] and persistent protective
immunity in mice [112]. In the mouse, the adjuvant properties of CAF01 was linked to protracted
uptake and activation by dendritic cells [113]. PLGA particles in particular show promise for delivery
of multiple molecules simultaneously. By loading PLGA nanoparticles with both TLR4 and TLR7
agonists, Kasturi et al. could demonstrate a synergistic adjuvant effect that greatly enhanced IgG
antibody titers against ovalbumin compared to delivery of a single adjuvant [114]. This underlines
the potential of using NPs to modulate innate immune responses for the optimal adjuvant effect,
and indicates the possibility of fine tuning vaccination strategies against bacterial infection.

In summary, NP-based vaccine formulations are a promising strategy that can induce long-lasting
protective memory, as NPs can function as carriers to modulate antigen delivery and improve
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immunogenicity, and they can also act as adjuvants that amplify the induction of protective immunity
by a controlled amplification of innate/inflammatory reactions. Developing nanovaccines with optimal
safety and efficacy will be of great importance, especially now, in the era of antibiotic resistance.

4.2. NPs and Microbiota

Perhaps the most likely avenue for NP interactions with bacteria in a human context occurs
within the several locations inhabited by microfloral populations. Figure 3 depicts some potential
implications of such NP–bacterial interactions on human innate immunity. The gastro-intestinal tract
is colonized by a large and highly interactive community of microbes that play a pivotal role in host
health by providing essential nutrients and aiding in digestion. It is now increasingly recognized that
these commensal microbiota also contribute to the host immune defense, for example, by providing
resistance against invading pathogens and by training and stimulation of the host immune system,
as reviewed by [73,115,116]. Owing to these critical functions provided by intestinal microbiota,
their disruption (dysbiosis) by, for example, a dietary change or a chemical exposure may adversely
affect the health of the host [117–119] and in humans is associated to numerous diseases including
obesity, inflammatory bowel disease, and diabetes [120]. Given the central role that microbiota play in
host immunity and host health, there is a need to incorporate commensal microbiota in the health risk
assessment of NP applications, both from a biomedical standpoint, and in the context of occupational,
consumptive, or inadvertent NP exposure [121].
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An increasing body of literature now indicates that NPs have the potential to disrupt both the
gastro-intestinal, but also the respiratory microbiota of animals, as reviewed by [74,118,122–125].
Some studies have indicated that in rodents Ag NPs can negatively affect Lactobacillus and other core
intestinal Firmicutes [126,127]. These results are, however, contrasted by other findings that show no or
a positive impact of Ag NPs on the relative abundance of these bacterial taxa in the intestinal microbiota
of rodents [128–130]. Exposure to micro- and nanoplastics has also been proposed as a potential cause
of gut dysbiosis [131,132]. Further investigation will help reveal the extent by which NPs can disrupt
the commensal microbiota and the consequent impact of NPs on gastro-intestinal conditions.

Further, it remains unclear which implications dysbiosis induced by NPs could have on host
health [122,125]. Some studies have shown that microbiota modulations under NP exposure coincide
with changes in the expression of host immune markers [126,127,133], which may reflect the inherent
link between microbiota and host immunity. In contrast, other studies have found no relation between
microbiota changes and host immune status under NP exposure [134]. A modulation of the expression
of immune markers by NPs does not necessarily indicate that the host is being immunocompromised.
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However, a chronic stimulation of intestinal epithelial cells consequent to synergistic NP-microbial
effects and leading to a chronic inflammatory milieu in the gut may have critical consequences on
barrier integrity and long-term tissue homeostasis. To study whether NPs actually have an adverse
effect on the host immune status through dysbiosis, we need animal models in which immunity
to infections or other challenges is assessed [134,135]. To date, the possible impact of NPs on the
interactions between host immunity, microbiota, and host health status remains largely unexplored,
but given the widespread exposure to NPs this clearly requires further investigation.

4.3. NPs, Bacteria, and Innate Immune Memory

It is now evident that innate immune cells can develop memory of past challenges, which makes
them able to react to subsequent stimulations in a more efficient and more protective fashion.
Some stimuli, most notably LPS, drive a tolerance-type memory, in which production of inflammatory
effectors is less potent in response to a second challenge, in order to achieve protection without
risking the significant tissue damage that a strong reaction to LPS would cause [136,137]. Conversely,
in response to other agents (e.g., fungal β-glucan, oxidized low-density lipoproteins, and BCG) a
different type of memory develops, which leads to an increase in cellular reactivity upon a second
challenge, again aiming at improving health protection [138–140]. This elevated response has been
termed “trained immunity” or “potentiation” [141,142]. Thus, innate immune memory is a protective
mechanism, with tolerance shielding the host from excessive inflammation and consequent tissue
damage [140], and potentiation enhancing the host defense against unrelated pathogens [143]. Moreover,
it appears that innate immune memory may be conferred either locally, for instance within resident
macrophages of the lung [144], or systemically via monocyte progenitors in the bone marrow [145,146].
In both scenarios, innate immune memory is a long-lasting phenomenon (life-long in invertebrates,
at least a few months in humans), despite the shorter lifespan of memory monocytes and macrophages.
Most importantly, at variance with immunological memory in adaptive immunity, innate memory in
mammals (including human beings) is largely non-specific, meaning that priming (first stimulation)
with an agent such as BCG may induce a more powerful secondary response to an unrelated stimulus.
Thus, innate memory is apparently one of the mechanisms at the basis of the non-specific protection
induced by vaccination/priming that enhances resistance to vaccine-unrelated diseases [147–149].

Since engineered NPs are foreign particles that the innate immune system may recognize as
potentially dangerous, it is well possible that they could act as innate memory inducers and/or interfere
with memory induction by bacteria and other stimuli. Two scenarios should be considered: (i) that
unintentional exposure to NPs or microorganisms together with NPs may erroneously prime the
innate immune system for inadequate response to future challenges (e.g., by provoking excessive and
destructive inflammation to a subsequent infection) and (ii) that NPs could be used to deliberately
induce/modulate innate memory in order to prime the innate immune system towards a more efficient
response to future infections, in a sort of non-specific innate vaccination.

In 2017, the first evidence that NPs can induce innate memory was published, which showed
a memory effect induced by Au NPs on human primary monocytes and that also hypothesized
that the NP-dependent epigenetic reprogramming capacity could be at the basis of innate memory
induction [150]. In 2020 several independent reports showed that different NP types could induce innate
memory. In the marine bivalve Mytilus galloprovincialis, previous exposure to nanoplastics modulated
the hemocyte subpopulations and immune-related genes, resulting in an increased bactericidal capacity
upon subsequent exposure to nanopolystyrene [133]. This is the first indication that NPs, similar to
bacteria and PAMPs, could induce an innate memory resulting in increased resistance to subsequent
infections. Another study demonstrated that pristine graphene (unable to induce cell activation capacity
per se) could prime mouse bone marrow-derived macrophages to react to a subsequent challenge with
different PAMPs (LPS, CpG, and R848) with an increased production of the inflammatory cytokines IL-6
and TNFα, in parallel to a decreased production of the anti-inflammatory cytokine IL-10, indicating
graphene-induced memory reprogrammed macrophages in the direction of immune potentiation,
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despite the apparent inert nature of the nanomaterial [151]. In addition to the capacity of some NPs
to induce innate memory, an interesting possibility is that the presence of NPs may modulate the
priming/memory-inducing capacity of other agents. Preliminary results indeed show that the memory
response of human primary monocytes primed with live BCG and challenged with LPS, in terms of
production of inflammatory TNFα and IL-6 and anti-inflammatory IL-1Ra and IL-10 cytokines was
significantly reduced if Au NPs were present with BCG during priming [59]. These findings open the
possibility of novel approaches of immunomodulation, in which NPs can be used for improving vaccine
efficacy and general resistance to infections, and also for modulating and rebalancing the altered
immune responses in a range of immune-related diseases, such as chronic inflammatory, degenerative,
and autoimmune diseases [152].

5. Conclusions and Future Perspectives

Human exposure to NPs has become increasingly frequent in modern society, both from an
occupational and consumer standpoint, and in biomedical applications. Here we addressed the impact
that NPs may have on the innate immune response, in particular within the context of the protective
response to live bacteria. NPs can interfere with bacterial life, motility, growth, and biofilm formation,
and can decrease phagocytosis of bacteria by human immune cells. Since the immune reaction to
live bacteria is much more complex than that to PAMPs, generally used in vitro as a bacterial proxy,
reliable assays for assessing the capacity of NPs to affect the innate immune response should make use
of live bacteria. It also becomes apparent that the NP impact on innate responses to bacterial infection
is not limited to the immediate reaction. In vaccination strategies, NPs can facilitate the development
of long-lasting specific immunity against pathogenic bacteria at multiple levels: by improving antigen
delivery to antigen-presenting cells, by acting as adjuvants that amplify adaptive responses through a
controlled inflammatory reaction at the site of antigen presentation, by activating antigen-presenting
cells for more efficient antigen presentation, and through modulation of innate memory, which could
prime innate immune cells towards a more efficient response to the vaccine. Moreover, NPs may alter
the composition of the host microbial community, potentially altering synergism between the host and
microflora during immune responses. In each case, in order to understand the full potential impact of
NP exposure on human health and innate immunity we need to examine their interactions with live
bacteria in suitable in vitro and in vivo models. Overall, based on the most recent data, the possibility
of using NPs for modulating innate immune responses towards increased resistance to infections is a
promising and realistically feasible possibility.
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